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A semi-synchronous label 
propagation algorithm with 
constraints for community 
detection in complex networks
Jia Hou Chin & Kuru Ratnavelu

Community structure is an important feature of a complex network, where detection of the community 
structure can shed some light on the properties of such a complex network. Amongst the proposed 
community detection methods, the label propagation algorithm (LPA) emerges as an effective 
detection method due to its time efficiency. Despite this advantage in computational time, the 
performance of LPA is affected by randomness in the algorithm. A modified LPA, called CLPA-GNR, was 
proposed recently and it succeeded in handling the randomness issues in the LPA. However, it did not 
remove the tendency for trivial detection in networks with a weak community structure. In this paper, 
an improved CLPA-GNR is therefore proposed. In the new algorithm, the unassigned and assigned 
nodes are updated synchronously while the assigned nodes are updated asynchronously. A similarity 
score, based on the Sørensen-Dice index, is implemented to detect the initial communities and for 
breaking ties during the propagation process. Constraints are utilised during the label propagation and 
community merging processes. The performance of the proposed algorithm is evaluated on various 
benchmark and real-world networks. We find that it is able to avoid trivial detection while showing 
substantial improvement in the quality of detection.

Over the decade, network analysis has been widely applied in various research fields such as biology, transpor-
tation, sociology and bibliometric studies1–4. Complex networks posses features that provide insight into these 
properties, with a majority of the real-world complex networks consisting of a network feature called the com-
munity structure. A community in a complex network is defined as a set of nodes that are densely connected to 
each other in a group, while they are loosely connected with the rest of the network5. Naturally, nodes with similar 
attributes will be more likely to form a community. Thus, in principal, one can acquire the functions, traits or 
properties of a group of individuals by investigating a community. Given the practicality of studying the commu-
nity structure in complex networks, community detection emerges as a popular research topic. Consequently, a 
large number of community detection algorithms have been developed for the purpose of uncovering the com-
munity structure in complex networks6.

The label propagation algorithm (LPA)7 was first introduced in 2007, as a community detection algorithm that 
requires less computational time. The objective of the LPA is to allocate each node into a community with the 
most number of its neighbouring nodes. The simplicity and near linear complexity of the LPA makes it feasible 
to detect communities in huge networks with millions of nodes. However, there are some pronounced issues in 
the LPA that affect its performance. The randomness that is induced in its update sequences and tie breaking 
processes cause the LPA to return multiple detections, thus making it a non-deterministic detection algorithm. 
Furthermore, in networks with a weak community structure, the LPA is unable to detect any meaningful commu-
nity. As a consequence, the LPA detects only one community (trivial detection) in such networks.

The relative simplicity of LPA, coupled with these issues, led scientists to seek improvements and enhance-
ments in this algorithm. Leung et al.8 introduced link preferential and hop attenuation to handle the tie breaking 
cases. Modularity was implemented into the LPA by Barber and Clark9, while Liu and Murata10 further improved 
it by merging the detected communities to further increase the modularity. Xie et al.11 proposed a modified LPA, 
called the speaker-listener based LPA (SLPA), that can detect overlapping communities. Aside from their SLPA, 
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Xie and Szymanski12 also developed LabelRank, a LPA variant that implemented a Marcov Cluster Algorithm in 
order to stabilise LPA. They further improved the LabelRank with an update rule, hence speeding up the LPA13. 
A modified LPA that utilises a prediction of the percolation transition was proposed by Zhang et al.14. That algo-
rithm is able to delay the formation of monster size communities, which reduces the chance of trivial detection. 
The NIBLPA15 is a node-influence based LPA that tackles the randomness issue in the LPA. The influence scores, 
of the nodes in a network, are used to determine the update sequences as well as breaking ties between multiple 
communities during the propagation processes. The most recent LPA variants include the SpeakEasy16, LINSIA17 
and CLPA-GNR18 algorithms. SpeakEasy is a LPA variant that specialises in the detection of overlapping commu-
nities in biological networks. It employs both the neighbouring and global information of a network so that the 
combination of that information can yield accurate detection. The ability of LINSIA to control the propagation 
processes allows it to reveal hub and outlier nodes, apart from detecting overlapping communities in a network. 
CLPA-GNR is a modified LPA that implements constraints at different stages of the algorithm, while updat-
ing the solo and grouped nodes separately. Furthermore, it can obtain deterministic detections in undirected 
and unweighted networks by removing the randomness in the LPA. Even though much effort has already been 
expended in getting rid of the disadvantages and in enhancing the advantages of the LPA, the improvement of the 
LPA in terms of robustness and stability remains an open question.

Semi Synchronous Constrained Label Propagation Algorithm (SSCLPA)
The implementation of constraints and fixed update sequences in the CLPA-GNR allow it to produce accurate and 
deterministic detection. However, the drawback of the CLPA-GNR is its tendency of obtaining trivial detection 
in networks with weak community structure18. Hence, in this work, we address this issue and propose a new LPA 
variant called SSCLPA, which is an improved CLPA-GNR. The proposed algorithm can detect disjoint commu-
nities in undirected and unweighted networks. It draws on the essence of the CLPA-GNR such as the constraints 
and fixed update sequence, and further enhances them. As a result, the SSCLPA is able to avoid trivial detection 
and still be able to obtain deterministic and accurate detection.

Similar to its predecessor, the proposed algorithm consists of constraints that are applied at various stages 
of the algorithm. The restrictions are gradually relaxed towards the end of the algorithm. A new constraint is 
implemented in the SSCLPA, where communities that reach certain threshold of strength values are exempted 
from the propagation or merging processes. This new form of constraint is crucial in delaying the formation of 
monster size communities, hence allowing the growth of other communities. By limiting the growth of specific 
communities, the chances of getting trivial detection can be eliminated. Instead of the mutual neighbour score 
(MNS) that is used in the CLPA-GNR, the Sørensen-Dice index (SDI) is implemented as the similarity score in 
SSCLPA. Similar to the function of the MNS in the CLPA-GNR, SDI is used in the early stage of the algorithm to 
detect initial communities. Aside from that, it can substitute the capacity score in the CLPA-GNR to break ties 
between multiple communities during the propagation processes.

In both the CLPA-GNR and SSCLPA, nodes are categorised into two types, namely the solo and grouped 
nodes. But, unlike in the CLPA-GNR where all the propagation processes are asynchronous, the solo nodes 
undergo synchronous updates while grouped nodes are subjected to asynchronous updates in the SSCLPA. The 
synchronous updates of solo nodes can speed up the propagation process without sacrificing the accuracy of 
the detection. There are also difference in the rules for the update sequence in CLPA-GNR and SSCLPA. In the 
CLPA-GNR, the degree of the nodes is the only criterion in deciding the update sequences. However, in the 
SSCLPA, the number of neighbouring nodes that are also solo nodes is also taken into account.

In general, the SSCLPA will do an initial detection by using similarity score, which creates large amount 
of small communities. The propagation process involves the allocation of nodes into detected communities, 
while the merging process attempts to reduce the number of communities by merging them. These processes 
are repeated throughout the algorithm until convergence in the labels is achieved. The details of the SSCLPA are 
explained in the Method section.

Results
The SSCLPA is tested on various benchmark networks before it is implemented on any real-world network. Three 
types of benchmark networks are employ in this study, namely the Lancichinetti-Fortunato-Radicchi (LFR)19,20, 
Girvan-Newman (GN)5, and Relaxed Caveman (RC)21,22 benchmark networks. It must be noted that at this time 
both the benchmark and real-world networks are undirected and unweighted with disjoint communities. The 
evaluation criterion for networks with ground truth communities is the normalised mutual information (NMI)23. 
The value of the NMI ranges from 0 to 1, where NMI =​ 1 when two partitions are identical. If a partition is totally 
independent of another partition, then NMI =​ 0. On the other hand, the modularity (Q)24 and modularity density 
(Qds)25 are used to evaluate the quality of detection in networks without the ground truth communities. A good 
detection yields high values of Q and Qds.

The performance of the proposed algorithm is also compared to the other community detection methods: 
LPA7, CLPA-GNR18, GANXiS (or SLPA)11,26,27, the Ronhovde and Nussinov algorithm (RN)28, Blondel29, and 
Infomap30. LPA is the original label propagation algorithm, while the CLPA-GNR and GANXiS are the afore-
mentioned LPA variants. In addition, the RN is a spin-glass type Potts model community detection algorithm. 
This algorithm is not only good in detecting heterogeneous sized communities in a network, but it is also free 
from resolution-limit. The Blondel algorithm is an effective modularity optimisation detection method, that can 
detect communities heuristically in a relatively short computational time. Lastly, Infomap detects communities by 
optimising the map equation while minimising the description length of a random walker. As GANXiS, LPA and 
Blondel do not produce a deterministic detection, they are executed 100 times for each network and the detection 
that yields the highest Q value is chosen for the purpose of comparison.
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Lancichinetti-Fortunato-Radicchi benchmark (LFR).  The LFR benchmark networks are the most pop-
ular benchmark networks for community detection algorithms, as they contain features that are common in the 
real-world networks. Furthermore, the degree of nodes and the sizes of the communities in the generated LFR 
synthetic networks are always heterogeneous. One of the most important parameters in the LFR networks is the 
mixing parameter, μ, which represents the average percentage of edges that connect a pair of nodes from different 
communities. Note that the strength of the community structure decreases as the value of μ increases.

We generated 4 groups of LFR networks in this investigation. The average and maximum degrees are fixed at 
kavg =​ 20 and kmax =​ 50. On the other hand, the exponent for the degree sequence and the exponent for the com-
munity size distribution are fixed at γ =​ 2 and β =​ 1. The rest of the parameters are depicted in Table 1.

Figure 1 shows the results for the various detection algorithms on the 4 groups of LFR networks. Algorithms 
that yield NMI =​ 0 indicate that those algorithms can only detect a single community in the networks. Thus, the 

Networks N Cmin Cmax μ

SNSC 1000 10 50 0.1 to 0.8

SNLC 1000 20 100 0.1 to 0.8

LNSC 5000 10 50 0.1 to 0.8

LNLC 5000 20 100 0.1 to 0.8

Table 1.   Summary of the generated LFR networks.

Figure 1.  The NMI comparison on the undirected and unweighted LFR benchmark networks, with various 
network sizes and community sizes. The notations N, k and C refer to the size of networks, average degree and 
the size of communities, respectively. See also the caption on the plots.
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detection is trivial and the algorithms cannot uncover any community structure in those networks. The present 
algorithm manages to detect community structure in all the groups of the LFR networks, even in networks with 
high μ values. The other LPA based algorithms, including the original LPA, get trivial detection when μ ≥​ 0.6. 
Infomap also faces a similar problem at high μ values. We highlight that not only does the SSCLPA detect com-
munities at high μ values (μ ≥​ 0.7), the quality of the detection is also good. For instance, in the SNSC case 
(Fig. 1(A)), the NMI of the present algorithm is significantly higher than the other algorithms at μ =​ 0.7. The NMI 
values of the SSCLPA in the SNLC, LNSC and LNLC cases (Fig. 1(B–D)) are close to 1, which indicates near per-
fect detection. Although the performance of the present algorithm is not as good as RN at μ =​ 0.8 in most of the 
networks, the quality of its detections is still highly acceptable. One of the reasons for the discrepancies between 
the SSCLPA and RN algorithms is the number of detected communities in networks with μ =​ 0.8. The number 
of detected communities in those networks by using the present algorithm is always smaller than the number of 
ground truth communities. On the contrary, the RN yields a large number of small size communities in those 
networks. Nonetheless, the overall performance of SSCLPA is good and it outperforms the other LPA based algo-
rithms when applied to the LFR benchmark networks.

Girvan-Newman benchmark (GN).  There are 128 nodes, which are divided equally into 4 communities 
with 32 nodes each, in the GN networks. The parameters, Pin and Pout, refer to the probabilities of defining an edge 
as an intra-community or inter-community edge. It is important for 

k 16avg  when deciding the values of Pin and 
Pout. GN networks can be generated by using the LFR networks generator, where μ is used to represent Pin and Pout. 
The following parameters are employed to generate the GN networks with the LFR networks generator: N =​ 128, 
kavg =​ kmax =​ 16, C =​ 32, γ =​ β =​ 0, and μ =​ 0–0.8.

The comparison between the results of the SSCLPA and the other algorithms in a GN benchmark is depicted 
in Fig. 2(A). Once again, the SSCLPA yields the best detection across the μ values among the LPA based algo-
rithms in this benchmark test. Furthermore, it outperforms Infomap and its performance is on par with Blondel. 
Although the NMI values of the proposed algorithm are again not as high as the RN at μ ≥​ 0.6, the SSCLPA still 
manages to detect 4 communities in those GN networks. On the other hand, similar to the LFR cases, RN detects 
far more communities than the number of ground truth communities in those networks.

Relaxed Caveman benchmark (RC).  The RC benchmark networks have 512 nodes with 16 communities 
of highly heterogeneous size. Initially, a RC network consists of 16 isolated k-cliques. Similar to the role of μ in 
the LFR benchmark networks, here a parameter known as the Degradation (D)31 is implemented to progressively 
weaken the community structure of the network. As the value of D increases, the number of intra-community 
edges that are converted to inter-community edges is increased. The value of D is varied from 10% to 80% in 
this work. As shown in Fig. 2(B), the performance of the SSCLPA is exceptional in the RC benchmark networks. 
Generally, it has higher a NMI than all the LPA based algorithms. Moreover, instead of getting trivial detection 
like the other LPA based algorithms at the higher D values, the results of the proposed algorithm are comparable 
to those from Blondel which has the best performance in the RC networks. We note that the RN shows a sudden 
spike in the NMI value at D =​ 70%. Apparently, this phenomenon is caused by the tendency of RN to detect large 
number of communities in networks with weak community structure. This tendency of RN renders its detection 
unreliable in finding meaningful communities in those kind of networks.

Real-World Networks.  The real-world networks that are used in this study are summarised in Table 2 
and the detection results are depicted in Tables 3, 4 and 5. These networks are often employed in the testing of 

Figure 2.  The NMI comparison on the undirected and unweighted GN and RC networks. The legend is the 
same as in Fig. 1.
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community detection algorithms. As shown in Table 3, the detection performance of the SSCLPA agrees fairly 
well with the ground truth communities in the Zachary, Dolphins and Football networks. In fact, it achieves the 
highest NMI value in the Football network and it is also the second best algorithm in the Zachary network. Its 
performance in the Pol-books network is less than desirable, but this is compensated for by having the second 
highest Qds value (see Table 5).

Undoubtedly, the Blondel algorithm, which focuses on the optimisation of the Q value, can obtain the highest 
Q values in almost all of the real-world networks (see Table 4). Nonetheless, the performance of the SSCLPA in 
terms of the Q values is acceptable, considering the fact that its Q values are within 6% of the highest Q values in 
networks with sizes lesser than 10000 nodes, except for the Email network, which is ~8% lower than then best Q 
value. It can be observed that the SSCLPA underperforms in term of the Q in large networks such as the Pretty 
Good Privacy, Astro-ph and Brightkite networks. However, the SSCLPA has the second highest Qds after the Qds 
of the GANXiS in those networks (see Table 5). Furthermore, it is worth noting that its Qds is higher than those 
of the Infomap and Blondel algorithms. In general, the proposed algorithm outperforms most of the other algo-
rithms except for the GANXiS in term of Qds. Instead, it can be observed that the SSCLPA has the best detection 
performance in terms of Qds in the Football and Jazz networks.

The computational time of various community detection algorithm is compared in Table 6. Since in general 
the CLPA-GNR runs slower than the SSCLPA, we do not report the computational time of the CLPA-GNR. As a 

Networks Nodes Edges
Ground 

Truth

Zachary32 34 78 Yes

Dolphins33 62 159 Yes

Pol-books24 105 441 Yes

Football34 115 613 Yes

Jazz35 198 2742 No

E. coli36 418 519 No

Email37 1133 5451 No

Power21 4941 6494 No

Pretty Good Privacy38 10680 24316 No

arXiv Astro-ph39 18771 198050 No

Brightkite40 58228 214078 No

Table 2.  Summary of the real-world networks considered in this study.

Networks SSCLPA
CLPA-
GNR LPA GANXiS Infomap RN Blondel

Zachary 0.707 0.837 0.602 0.707 0.699 0.631 0.687

Dolphins 0.616 0.488 0.645 0.458 0.537 1.000 0.645

Pol-books 0.493 0.552 0.554 0.462 0.537 0.574 0.569

Football 0.969 0.955 0.933 0.951 0.952 0.969 0.903

Table 3.  The NMI of the real-world networks with ground truth communities. The best detection algorithm 
for each network is shown in bold.

Networks SSCLPA
CLPA-
GNR LPA GANXiS Infomap RN Blondel

Zachary 0.415 0.303 0.416 0.415 0.402 0.406 0.420

Dolphins 0.525 0.513 0.527 0.513 0.525 0.379 0.527

Pol-books 0.518 0.514 0.526 0.519 0.527 0.527 0.527

Football 0.601 0.579 0.605 0.603 0.603 0.601 0.603

Jazz 0.420 0.282 0.443 0.442 0.443 0.288 0.445

E. coli 0.735 0.749 0.772 0.757 0.707 0.771 0.777

Email 0.525 0.520 0.558 0.540 0.536 0.008 0.570

Power 0.884 0.888 0.818 0.797 0.811 0.343 0.934

Pretty Good 
Privacy 0.798 0.852 0.821 0.804 0.857 — 0.880

arXiv Astro-ph 0.334 0.294 0.537 0.570 0.581 — 0.614

Brightkite 0.538 - 0.640 0.631 0.441 — 0.664

Table 4.  The Q values of the real-world networks. The best detection algorithm for each network is shown in 
bold.
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LPA variant that yields deterministic detection, the SSCLPA runs in reasonable time in large networks. In general, 
the LPA can run faster than the proposed algorithm, but the time that are depicted in the table is the total time for 
100 runs. Thus, it is not guaranteed that the LPA can produce its best detection within those runs. In fact, larger 
number of runs is needed by LPA as the size of the networks increases. GANXiS, which is also a LPA variant, 
requires longer computational time despite its good performance in terms of Q and Qds in those networks. For 
instance, GANXiS consumes 1741s to produce 10 detection results. Although the Infomap and Blondel algo-
rithms can complete the detection within 10 s, but their low Qds values in those networks cannot be overlooked.

Discussion
The SSCLPA addresses both the randomness and trivial detection issues in the LPA. It inherits the prominent 
features of our earlier CLPA-GNR and further enhances them. In particular its update sequences are fixed based 
on the degree and the number of solo neighbouring nodes. Furthermore, the SDI is used in early detection and 
to break ties during the propagation processes. Constraints, such as the conditions of propagating labels and the 
exemption of the communities, are introduced at various stages of the SSCLPA. These restrictions help the pro-
posed algorithm to avoid trivial detection. The process of dividing nodes into two groups, which are then updated 
separately, ensures the good quality of the detections. As the random elements are eradicated in the SSCLPA, it is 
able to provide deterministic detection. The performance of the proposed algorithm in both the benchmark and 
real-world networks is excellent, regardless of the sizes of the networks. As a LPA variant, the proposed algorithm 
does not obtain any trivial detection, and it can detect high quality communities in terms of the NMI, Q and Qds 
metrics. Moreover, the SSCLPA is a time efficient community detection algorithm that can run in reasonable 
time, considering that fact that it is able to provide good and deterministic detection. The results in this work 
show that the SSCLPA is a promising community detection algorithm that works well in detecting disjoint com-
munities in undirected and unweighted networks.

There remains, however, rooms for improvement in the performance of the SSCLPA. Other than the SDI, better  
similarity scores can improve the outcomes of the initial grouping stage and breaking the ties more accurately. It 
would also be interesting to implement different criteria on the exemption of communities, in order to observe 
the effects of exempting different communities on the final outcomes of the detections. Since the CLP processes 
are synchronous, they are readily parallelisable. The extension of the SSCLPA into the directed or weighted net-
works is highly possible, and it is a top priority in our future work.

Methods
Let G =​ (V, E) be a network where = ∈V v i{ : }i  and = ∈E e r u V{ : , }ru  are sets of nodes and edges. In the 
SSCLPA, nodes are divided into two types, known as the solo and grouped nodes. Solo nodes refer to nodes that 
are not yet assigned into any community yet, while grouped nodes mean otherwise. Solo and grouped nodes are 
denoted by = ∈V v i{ : }S Si  and = ∈V v j{ : }GR GRj , respectively. The labels of Vs and VGR are updated sepa-

Networks SSCLPA
CLPA-
GNR LPA GANXiS Infomap RN Blondel

Zachary 0.235 0.182 0.234 0.235 0.217 0.240 0.230

Dolphins 0.207 0.187 0.187 0.216 0.213 0.136 0.187

Pol-books 0.216 0.183 0.192 0.225 0.199 0.190 0.191

Football 0.491 0.482 0.449 0.473 0.474 0.491 0.417

Jazz 0.232 0.187 0.215 0.221 0.220 0.205 0.213

E. coli 0.132 0.116 0.142 0.154 0.087 0.154 0.116

Email 0.076 0.057 0.050 0.059 0.088 0.015 0.041

Power 0.070 0.055 0.161 0.149 0.003 0.124 0.019

Pretty Good 
Privacy 0.160 0.064 0.153 0.160 0.018 — 0.031

arXiv Astro-ph 0.130 0.097 0.115 0.145 0.099 — 0.027

Brightkite 0.037 - 0.027 0.044 0.006 — 0.011

Table 5.  The Qds values of the real-world networks. The best detection algorithm for each network is shown in 
bold.

Networks SSCLPA LPA GANXiS Infomap Blondel

Pretty Good 
Privacy 24 s 7 s 557 s 1 s 0.25 s

arXiv Astro-ph 169 s 83 s 2444 s 5 s 0.22 s

Brightkite 290 s 76 s 1741 s 8 s 0.37 s

Table 6.  The computational time of various detection algorithms on the Astro-ph and Brightkite networks. 
The reported time for the LPA is the sum of 100 runs on both networks. On the other hand, the reported time 
for the GANXiS is the sum of 100 on the Pretty Good Policy and arXiv Astro-ph networks, while 10 runs on the 
Brightkite networks.
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rately in two propagation processes in the SSCLPA. On the one hand, the size of the detected communities is 
increased by allocating Vs into the communities. On the other hand, the detected communities are strengthened 
in term of the density of the communities by reallocating VGR amongst the detected communities. In the original 
LPA, all the labels of the nodes are updated in one propagation process. As the labels of the nodes are affected by 
the labels of the neighbouring nodes during the propagation process, the labels of the nodes are susceptible to the 
changes of the labels of all the nodes in a network if they are updated in a single propagation process. By separat-
ing the updates of the labels of VS and VGR in two propagation process, VS and VGR are only susceptible to the 
changes in the labels of VS and VGR during their corresponding label propagation processes, respectively. To be 
precise, the labels of VS are only affected by the changes in the labels of VS as the labels of VGR remain the same 
throughout the label propagation involving VS. The same concept is applied during the label propagation involv-
ing VGR. Hence, this update strategy is a more organised way of updating the labels of nodes than that in the 
original LPA.

In the proposed algorithm, the labels of VS are updated synchronously. Thus, an update sequence is not 
required. However, VGR is updated asynchronously. The rules for the update sequence in this case are as follows:

1.	 Nodes are arranged in ascending order based on the number of solo neighbouring nodes. Solo neighbour-
ing nodes are neighbouring nodes that are solo nodes. Nodes with lesser solo neighbouring nodes are 
updated first.

2.	 Nodes are then arranged in ascending order based on their degree. Nodes with a lower degree value are 
updated first.

The update sequence of nodes are decided by update rule 1 first. If multiple number of nodes have the same 
number of solo neighbouring nodes, then update rule 2 is applied on those nodes. The possible candidate labels 
of the target nodes are lesser if the number of solo neighbouring nodes is lesser. Furthermore, nodes with a low 
degree usually serve as the peripheral member nodes in large communities. Hence these update rules prioritise 
nodes that have a lesser influence on the labels of the other nodes. The rules are implemented in all processes 
unless otherwise stated.

There are 4 main processes that are being utilised extensively in the 5 main stages in the proposed algorithm 
(see Fig. 3). These are now explained in the following subsections.

Main Processes.  Exempted Community (EC).  It is common to find that after a few iterations of the LPA, 
some of the detected communities are far stronger than most of the others. These communities will grow expo-
nentially in the later stages of the LPA. Eventually, this phenomenon may lead to trivial detection, where the LPA 
only detects a single community that consists of all the nodes in a network. In order to prevent this kind of detec-
tion, communities that exceed a strength threshold are exempted from the propagation and merging processes. 
By doing so, the other communities have the chance to grow without competing with those communities.

Given that = ∈C c i{ : }i  and = ∈ ∈V v d C i{ : , }C di  as the set of communities and their corresponding 
member nodes in the communities, the term k V( )IN C  is defined as the intra-community degree. For instance, 

=k v( ) 5IN c 11
 shows that vc 11

 is connected to 5 other member nodes in community c1. Then, the strength value of the 
member nodes in the communities is defined as:

=s V k V
k V

( ) ( )
( ) (1)C C

IN C

C

where k V( )C  is the degree value of the corresponding member nodes. As consequence, the strength value of the 
communities can be obtained:

= = ∑S s V s V
V

( ) ( )
(2)

C C C
C C

C

where VC  is the number of member nodes in a community.
Finally, CEC is defined as a set of communities with α>SCEC

. The parameter, α, is the strength value that 
determines the number of communities to be exempted and α ∝ SC. In general, a lower α value brings about 
more exempted communities and we note that this process is executed prior to other processes as CEC plays a 
crucial part in those processes.

Constrained Label Propagation (CLP).  The CLP is a label propagation process that assigns VS into detected com-
munities. Nodes are updated synchronously in CLP unless stated otherwise. Let node vSj be the targeted node. A 
community ci is eligible to claim vSj if it fulfils the following conditions:

1.	 Let | |Ev cSj i
 be the total number of edges between vSj and V ci

. Then | | = | |E Emaxv c v CSj i Sj
.

2.	 ci ∉ ​CEC.
3.	 If Q0 is the minimum k V( )IN ci

 and Q1 is the first quartile of k V( )IN ci
, then | |Ev cSj i

 must be larger or equal to 
Q0 or Q1. This condition is defined differently at various stages of the algorithm.

CLP Condition (1) is simply the label propagation condition of the original LPA. However, this condition 
does not always increase or retain the strength of the communities after the solo nodes enter the communities. 
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Therefore, CLP Condition (3) is implemented for this purpose. Finally, CLP Condition (2) ensures that the target 
solo nodes do not enter the exempted communities.

If there is a tie between multiple communities, the mean of the SDI (SDI) of the competing communities is 
compared. For example, let there be a tie between communities c1 and c2. The targeted node vS1 is connected to c1 
and c2 via vc 11

, vc 21
 and vc 12

, vc 22
, respectively. If the SDI  of vS1 with vc 11

, vc 21
 is higher than that for vS1 with vc 12

, vc 22
, 

it will enter c1 provided that the CLP Condition (3) is satisfied. The labels of the nodes remain the same if there is 
a tie in the SDI .

Grouped Nodes Reallocation (GNR).  The function of the GNR is to check the validity of VGR and reallocate them 
if necessary. The GNR is identical to the CLP process, but it is implemented on the group nodes VGR instead of the 
solo nodes VS. So, similar to the CLP, the GNR needs to fulfil the conditions that are applied on the CLP before 
VGR can be reallocated from one community to another. If there is a tie between multiple communities, the mean 
of the SDI (SDI) of the competing communities is compared. In contrast to the CLPA, the GNR is an asynchro-
nous label propagation process. As a consequence, VGR are updated asynchronously. Since the purpose of the 
GNR is to strengthen the detected communities, it is usually implemented after the CLP or GM processes.

Groups Merging (GM).  Start with the largest community in descending order, a couple of communities, ci and 
cj, can be merged if the following conditions are met:

Figure 3.  The flowchart of the SSCLPA. In Stage 1, each node is given a unique label. The SDI score for each 
couple of nodes are calculated. In Stage 2, large number of communities are detected by using k1 grouping 
and HTH SDI grouping. The size of detected communities is increased by using CLP 1 and GNR 1 is used to 
strengthen the communities. CLP 1 →​ GNR 1 indicates that CLP 1 is executed until there is a convergence in 
the labels of the nodes before GNR 1 is executed. In Stage 3, the size of communities is further increased by 
using CLP 2. On the other hand, the number of detected communities are reduced by using GM 1 and GM 
2 processes. The dash symbol indicates combination of the processes. For example, EC-CLP 2 shows that EC 
is executed once before CLP 2 is executed. The number of communities are further reduced in Stage 4. The 
processes in this stage are executed recursively until it reaches a stability where the number of communities 
cannot be reduced anymore. There are two ways of proceeding Stage 5. The first way is to execute all the 
parts in this stage. If trivial detection is obtained at the end of this stage, then one can choose to skip EC-CLP 
5 →​ EC-GNR 5 and EC-CLP 6 →​ EC-GNR 5 parts. By doing so, SSCLPA can avoid trivial detection. SSCLPA is 
terminated when it reaches EC-CLP 6 →​ EC-GNR5 in Stage 5.
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1.	 ci, cj ∉​ CEC.
2.	 Let | |Edp  be the number of edges between a couple of communities, where d, p ∈​ C and d ≠​ p. Then, this 

condition is defined as | | = | |E Emaxc c c pi j i
.

3.	 Let EC
IN  be the total number of intra-community edges in the communities. Two ratios are obtained, 

where RatioA is the average number of edges in cj and RatioB is the average number of edges between ci and 
cj. Then this condition is defined as:

=RatioA
E

V (3)

c
IN

c

j

j

=RatioB
E

V (4)

c c

c

i j

i

− ≤RatioB RatioA 1 (5)

GM Condition (3) is a relaxed version of the merging condition in the CLPA-GNR18 where it allows more 
communities to be merged. Nonetheless, this merging strategy can still maintain the strength of the merged 
communities to some extent.

Main Stages.  The flowchart of the SSCLPA is depicted in Fig. 3. The details of the stages and their corre-
sponding processes are explained in the following subsections. In general, each stage is a combination of varia-
tions in the CLP, GNR and GM processes.

Stage 1: Initialisation.  In this stage, the nodes are assigned unique initial labels and the SDI is calculated.

•	 Initial labeling: Every single node in a network is given a unique label.
•	 SDI calculation: The SDI of all the pairs of nodes, x and y, in an undirected and unweighted network is 

calculated:

∩
= =

| |

| | + | |
SDI SDI

b b
b b
2

(6)
xy yx

x y

x y

where bx  and by  are the number of neighbouring nodes of x and y respectively. It must be noted that bx  does 
not include node y and vice verse. The term ∩| |b bx y  represents the number of mutual neighbouring nodes of x 
and y.

Stage 2: Initial Detection.  This stage aims to detect as many communities as possible in a network. Nodes with 
one degree are grouped with their sole neighbouring nodes to form communities. Then, more communities are 
found by using the highest to highest (HTH) SDI Grouping. The sizes of the detected communities are increased 
by using CLP 1 and the communities are strengthen by GNR 1.

•	 k1 grouping: Nodes with one degree are assigned the label of its sole neighbouring node.
•	 HTH SDI Grouping: Solo nodes VS, in ascending order of degree, are assigned into communities where the 

member nodes of the communities have the highest SDI score with each other. Let = ∈B b i{ : }x xi  be a set 
of neighbouring nodes of node x, and the highest SDI score of node x is defined as = | |∈SDI SDImaxx

max
g B xgx

. 
Node x will be assigned into a community with a set of nodes, VM ⊂​ V if the following conditions are 
satisfied:

=SDI SDI (7)xV x
max

M

=SDI SDI (8)V x V
max

M M

•	 CLP 1: This is an asynchronous CLP so VS is updated according to the predefined update sequence. In this 
CLP, a community ci must have at least one member node which has the highest SDI score with the target solo 
node vSj, =SDI SDIv V v

max
Sj ci Sj

. CLP Condition (2) is not required here. CLP Condition (3) is defined as 
| | ≥E Q1v cSj i

. The labels of the nodes remain the same if there is a tie between multiple communities.
•	 GNR 1: CLP Condition (2) is not required in this GNR. CLP Condition (3) is defined as | | ≥E Q1v cSj i

 here. 
The labels of the nodes again remain the same if there is a tie between multiple communities.
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Stage 3: Label Propagation and Communities Merging 1.  In this stage, both the CLP 2 and GNR 2 processes are 
executed iteratively in order to further increase the sizes of the communities. Every time the CLP 2 is executed, it 
is followed by the GNR 2 for enhancement purpose. In order to reduce the large number of communities that are 
detected in Stage 2, GM1 and GM2 are introduced in this stage. Similarly, GNR 2 is executed after the CLP and 
GM processes in order to strengthen the detected communities.

•	 CLP 2 & GNR 2: Here we execute the CLP and GNR processes with CLP Condition (3) of  | | ≥E Q1v cSj i
.

•	 GM 1:  Execute  the  GM process  on communit ies  with more than 3  member nodes , 
= ∈ | | >C c i V{ : , 3}Z Zi c Zi

. This step prevents the communities with lesser than 4 member nodes from 
disrupting the merging process, which have the potential of forming monster size communities. The labels of 
the nodes remain the same if there is a tie between multiple communities.

•	 GM 2: Unlike GM 1, all the detected communities, regardless of their sizes, can be merged. However, a new 
condition where the modularity score does not decrease after the merging is added in GM 2. This additional 
condition controls the merging of the communities with lesser than 4 member nodes. The labels of the nodes 
again remain the same if there is a tie between multiple communities.

Stage 4: Iterative Merging.  In Stage 4, GM 1 and GM 2 are executed iteratively to further reduce the number of 
communities, until the networks reach a stability where the number of communities cannot be further reduced.

Stage 5: Label Propagation and Communities Merging 2.  In the last stage, STL-CLP is used to boost the size of 
the communities that do not grow in size during the previous stages. Then, most of the the VS, if not all, will be 
assigned into communities by using CLPA 3/4/5/6. In order to do so, the constraints on the CLP 3/4/5/6 are grad-
ually relaxed from CLP 3 to 6. Furthermore, the remaining communities will be merged for the last time by using 
GM 3. As usual, GNR 3/4/5 are used to strengthen the communities after the CLP and GM processes. Similar to 
the CLP 3/4/5/6, the constraints in the GNR 3/4/5 are gradually relaxed. In networks with a weak community 
structure, some of the processes are omitted in order to avoid trivial detection. This procedure is explained in the 
legend of Fig. 3.

•	 Smallest to largest CLP (STL-CLP): Start from the smallest and proceed to the largest communities, a com-
munity ci will absorb a solo node vSj into the community as long as vSj is connected with V ci

, and CLP Condi-
tions (2) and (3) (| | ≥E Q1v cSj i

) are satisfied. CLP 1 and CLP 2 do not always allow the growth of small 
communities, as those communities often fail to compete for solo nodes in CLP 1 & 2. This is a CLP which 
prioritises the growth of the small communities.

•	 CLP 3/4/5/6 and GNR 3/4/5: In these label propagation processes, a solo node vSj has the chance to enter an 
exempted community provided that the number of edges from the solo node to the exempted communities, 
Ev CSj EC

,  is the highest amongst all the communities that are connected to the solo node, 
| | = | |E Emaxv C v CSj EC Sj

. In addition, | |Ev CSj EC
 must be 2 times higher than the second highest number of con-

nection from the solo node to the other communities.As mentioned earlier, the constraints on the CLP 
3/4/5/6 and GNR 3/4/5 are gradually relaxed in Stage 5. This can be done by modifying CLP Condition (3) for 
each CLP and GNR. Aside from that, CLP Condition (3) is defined differently depending on whether the ci is 
an exempted community or not. Thus, CLP Condition (3) in the CLP 3/4/5/6 and GNR 3/4/5 is defined as 
follow:For CLP 3 and GNR 3:

| | ≥ ∈

| | ≥ ∉

E Q c C

E Q c C

2, if

1, if (9)

v c i EC

v c i EC

Sj i

Sj i

For CLP 4 and GNR 4:

| | > ∈

| | > ∉

E Q c C

E Q c C

2, if

1, if (10)

v c i EC

v c i EC

Sj i

Sj i

For CLP 5 and GNR 5:

| | ≥ ∈

| | ≥ ∉

E Q c C

E Q c C

1, if

0, if (11)

v c i EC

v c i EC

Sj i

Sj i

where Q0, Q1 and Q2 are the minimum, first quartile and median of the k V( )IN ci
.Finally, the CLP Condition 

(3) is omitted in CLP 6.
•	 GM 3: Generally, this process is very similar to GM 2, except that it can handle ties between multiple commu-

nities. In case of a tie, the values of RatioB−​RatioA for each pair of communities are compared. The pair of 
communities with the −RatioB RatioAmin  is merged, provided that the modularity does not decrease after 
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the merging. Furthermore, it is a free-for-all GM where all the communities, including the exempted commu-
nities, have the chance to merge. Hence, GM Condition (1) is omitted in this process.

Time Complexity.  The time complexity of the initial labelling is represented by O V( ). The calculation of the 
SDI, allocation of one degree nodes, and the HTH SDI grouping run on O E( ). As the solo and grouped nodes are 
updated separately in the CLP and GNR processes, the time complexity of the propagation process is also split. In 
general, the time complexity of the CLP and GNR are O E( )S  and O E( )GR , where ≤O E O E( ) ( )S , 

≤O E O E( ) ( )GR  and + =O E O E O E( ) ( ) ( )S GR . Most of the time, the CLP or GNR process is coupled with 
the EC process and they are executed until there is a convergence in the labels. Given that the EC process runs in 
O E( ) and t represents the number of iterations before convergence, the time complexity of the EC-CLP and 
EC-GNR processes are +O t E E( ( ))S  and +O t E E( ( ))GR , respectively. The group merging process runs in 
O E( ) and it is coupled with the EC and GNR processes. Thus, the time complexity of the EC-GM-GNR process 
is +O t E E( ( 2 ))GR .

Stage 4 of the proposed algorithm is iterative. Let tS4 be the number of iterations before Stage 4 reaches  
a  c o n v e r g e n c e  i n  t h e  l a b e l s .  T h e  t i m e  c o m p l e x i t y  o f  S t a g e  4  i s 

∗ ∗ + + + +t O t E E O t E E O t E(2 ( ( 2 )) ( ( )) ( ( ))S G S GR4 . By referring to the algorithm flowchart (see 
F i g .   3 ) ,  t h e  t i m e  c o m p l e x i t y  a r e  +O V O E( ) ( ) ,  ∗ + +O E O t E O t E2 ( ) ( ( )) ( ( ))S GR , 

∗ + ∗ + ∗ +O t E O t E O t E E2 ( ( )) 2 ( ( )) 2 ( ( 2 ))S GR G  and ∗ + ∗ +O t E O t E O E5 ( ( )) 5 ( ( )) ( )S GR  
for Stage 1, 2, 3 and 5, respectively.
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