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Identifying a miRNA signature associated with survival will open a new window for developing miRNA-
targeted treatment strategies in stomach and esophageal cancers (STEC). Here, using data from The
Cancer Genome Atlas on 516 patients with STEC, we developed a Genetic Algorithm-based Survival
Estimation method, GASE, to identify a miRNA signature that could estimate survival in patients with
STEC. GASE identified 27 miRNAs as a survival miRNA signature and estimated the survival time with
a mean squared correlation coefficient of 0.80 ± 0.01 and a mean absolute error of 0.44 ± 0.25 years
between actual and estimated survival times, and showed a good estimation capability on an indepen-
dent test cohort. The miRNAs of the signature were prioritized and analyzed to explore their roles in
STEC. The diagnostic ability of the identified miRNA signature was analyzed, and identified some critical
miRNAs in STEC. Further, miRNA-gene target enrichment analysis revealed the involvement of these
miRNAs in various pathways, including the somatotrophic axis in mammals that involves the growth hor-
mone and transforming growth factor beta signaling pathways, and gene ontology annotations. The iden-
tified miRNA signature provides evidence for survival-related miRNAs and their involvement in STEC,
which would aid in developing miRNA-target based therapeutics.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction in 28 %, 32 %, and 40 %, respectively, of stomach cancer cases,
Stomach and esophageal carcinomas (STEC) are among the
most prevalent malignant diseases causing thousands of deaths
globally. Worldwide, stomach cancer ranks sixth in cancer inci-
dence, with 1,089,103 new cases, and third in cancer morality, with
768,793 deaths, while esophageal cancer ranks tenth in cancer
incidence, with 604,100 new cases, and sixth in cancer morality,
with 544,076 deaths, based on estimates for the year 2020 [1].
STEC ranks higher in mortality than incidence because these can-
cers are often first diagnosed at an advanced stage. In the United
States, diagnosis occurs at a localized, regional, and distant stage
and in 25 %, 29 %, and 31 %, respectively of esophageal cancer cases
[2,3]. For localized, regional, and metastatic disease, five-year sur-
vival is 64 %, 28.2 %, and 5.3 %, respectively, for stomach cancer, and
46.7 %, 25.1 %, and 4.8 %, respectively, for esophageal cancer [2,3].
Treatment for STEC is selected based on disease stage [4,5]. Surgery
can be curative but is offered mainly in early disease stages. Che-
motherapy and chemoradiotherapy provide an added survival ben-
efit to surgery in early-stage disease and are offered without
surgery in later disease stages. Targeted therapies (e.g., Tras-
tuzumab, an inhibitor of human epidermal growth factor receptor
2) improve survival in STEC and are increasingly being used in
STEC treatment [6], and immunotherapy and other emerging ther-
apies continue to be evaluated for improvement in STEC survival
[4,5].

Biomarkers associated with STEC survival are potential targets
for designing new STEC treatments to improve patient survival
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[7,8]. MicroRNAs (miRNAs) function as oncogenes or tumor sup-
pressor genes in STEC [6,7] and have been investigated as biomark-
ers of STEC diagnosis and prognosis [9,10]. Roles for miRNAs in
STEC progression and survival have been described in several
reports. For example, low levels of miR148a, a miRNA that sup-
presses cell invasion and migration, are associated with advanced
clinical stage and poor prognosis in stomach cancer [11]. MiR-
616-3p promotes angiogenesis and metastasis and is correlated
with poor prognosis in stomach cancer [12]. Elevated miR-21
expression is linked to lymph node metastasis [13] and poor prog-
nosis [14] in esophageal cancer. MiR-375 targets proteins involved
in cancer cell proliferation and invasion [15], and its downregula-
tion is associated with advanced cancer staging and poor prognosis
in esophageal squamous cell carcinoma [16]. Aberrant miRNA
expression has also been identified in STEC. Hwang et al. identified
miRNAs, including miR-601, miR-107, miR-18a, miR-370, miR-300
and miR-96 that were significantly expressed in early gastric can-
cers when compared to normal samples [17]. A serum biomarker
miRNA panel consisting of 12 miRNAs was developed for risk
assessment in patients with gastric cancer [18]. Furthermore, sev-
eral dysregulated miRNAs have been found in esophageal tumors
that regulate carcinogenesis [19,20]. A quantitative RT-qPCR study
on patients with esophageal carcinoma revealed three miRNAs,
including miR-34a-5p, miR-148a-3p and miR-181a-5p that were
associated with the cancer progression [21].

Inmost studies, associations betweenmiRNAs and STEC survival
have been based on results from a single study sample assessed
using the log-rank test to compare Kaplan-Meier survival curves
or Cox proportional hazards regression analysis [22–25]. A few
other studies have employed discovery and validation stages in
their design to increase the strength of the evidence supporting
associations between miRNAs and STEC survival. These include
studies that have identified differentially expressed miRNAs in
STEC in the discovery stage and tested for association between
the miRNAs and survival in an independent STEC study sample in
the validation stage [26–31]. Machine learning methods are also
being applied to identify miRNAs associated with STEC survival.
In a study of esophageal squamous cell carcinoma, a recursive fea-
ture elimination-support vector machine algorithm along with
LASSO Cox proportional hazards regression was used to identify
miRNAs associated with survival and build a prognostic model in
a training sample, and the prognostic model was shown to correlate
with survival in an independent, test sample [32]. While these pre-
vious reports indicate that miRNAs have potential clinical value as
biomarkers of prognosis in STEC, they have not addressed whether
miRNAs can predict STEC survival time in individual patients.

To design a personalized survival prediction model, it is neces-
sary to identify biomarkers that show a robust association with
survival in STEC patients. Accordingly, this study aimed to develop
a genetic algorithm (GA)-based survival estimation method (GASE)
to identify a survival-associated miRNA signature and estimate
survival time in patients with STEC. A genetic algorithm (GA)-
based survival estimation method (GASE) is proposed for estimat-
ing the survival time in STEC patients using miRNA expression pro-
files. GASE was developed using support vector regression (SVR)
that incorporates an optimal feature selection algorithm inherita-
ble bi-objective combinatorial genetic algorithm (IBCGA) [33].
The identified miRNA signature was analyzed further to explore
miRNA association with STEC. The system overview of GASE is
shown in the graphical abstract.
2. Material and methods

The miRNA expression profiles of patients with STEC were
retrieved from The Cancer Genome Atlas (TCGA) database. These
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data were generated using an Illumina Hiseq 2000 sequencing
platform. The number of patients with STEC in the initial dataset
was 628. After excluding the patients without survival information
and those whose survival time was less than 30 days, the final
dataset consisted of 123 patients with miRNA expression profiles
and clinical data, including days to death. Each miRNA expression
profile consisting of 500 miRNAs was used for the survival estima-
tion procedure. For the independent validation, we used a cohort of
393 patients who were alive with STEC at last follow-up in the
TCGA.

2.1. Survival estimation method GASE

The GASE’s two primary objectives were to estimate the sur-
vival time and simultaneously identify the miRNA signature asso-
ciated with survival in patients with STEC. GASE was developed
using SVR and an optimal feature selection algorithm IBCGA. The
optimization technique implemented in GASE was adopted from
previous studies [34–36]. SVM is a supervised machine learning
method, which has demonstrated good prediction capability in
solving classification and regression problems in various biomedi-
cal fields, especially in cancer genomics [37]. SVR uses a nonlinear
transformation to find the relation between input and output vari-
ables by generating a hyperplane that optimally fits in the high
dimensional space and carries out the regression function [38].
The tuning of the parameters C, c, and m determine the perfor-
mance of SVR; hence parameter tuning plays a vital role in the
SVR modeling process. The minimization of the loss function can
be optimized using the following objective function for the given
input data points.

min
1
2
j wj jj2 þ C

XN

i¼1
ni þ ni

� ð1Þ

where ||w|| is the magnitude of the vector to the surface, C is a reg-
ularization parameter, ni and ni* are slack variables, ni � 0, ni* � 0,
and i = 1,2,. . .N.

The optimal parameters of GASE were tuned based on an intel-
ligent evolutionary algorithm (IEA) [39]. In the optimization pro-
cess, IBCGA [33] was used to identify a small set of miRNAs
while maximizing the fitness function in terms of squared correla-
tion coefficient. GASE prediction performance was evaluated using
two metrics, squared correlation coefficient and mean absolute
error. IBGCA effectively solves bi-objective combinatorial problems
where a small set of informative features will be selected from a
large number of candidate features. The applications of IBCGA in
identifying biomarkers in cancer research have been demonstrated
in previous studies [34–36,40,41]. In the optimal feature selection
process, all the candidate features were encoded into binary vari-
ables, including the parameters C, c, and m of the SVR. The detailed
steps involved in IBCGA can be found in the supplementary meth-
ods. After identifying the miRNA signature, main effect difference
(MED) [42] analysis was used to prioritize the miRNAs of the signa-
ture based on their contribution to the prediction performance.

2.2. Feature appearance score

To ensure robustness, we performed 50 independent runs of
GASE and selected one feature set with the highest appearance
score for the analysis. The feature appearance score (FAS) indicates
the frequency of the features that appeared in the 50 independent
runs. A feature set with a more significant appearance score sug-
gests that the feature frequency in that particular set is higher
when compared to other features across the independent runs.
There are St features in the t-th signature. The frequency score
for each featurem presented in the miRNA signatures can be calcu-
lated as follows.
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FeatureappearanceScore ¼
XSt

i¼1

f ðmiÞ=St ð2Þ

where m is the miRNA of the t-th signature.
2.3. LASSO and elastic net

To evaluate the estimation ability of GASE, we compared the
prediction performance with some standard regression methods,
including ridge [43], Lasso [44] and elastic net [45]. We used the
miRNA expression profiles and survival time of 123 patients with
STEC as input. The minimum k was selected after 100 independent
runs of LASSO and elastic net using 10-CV.
2.4. Strong evidence on miRNA-gene target interaction

To identify the target genes of the selected miRNAs, we used the
miRTarBase (9.0 beta) database [46] to extract the experimentally
verified microRNA-target interactions (MTIs) with strong evidence,
which are validated by reporter assay, Western blot, and qPCR.
2.5. Gene set enrichment test

Gene-set libraries are used to organize accumulated knowledge
about the function of groups of genes. We used Enrichr [47,48],
which is a web-based application that includes the latest gene-
set libraries, to perform gene-set enrichment analysis. We evalu-
ated the ability of Enrichr to rank terms from gene-set libraries
by combining the p-value computed using Fisher’s exact test with
the z-score of the deviation from the expected rank by multiplying
these two numbers as follows:

c ¼ logðpÞ � z

where z = z-score and p = p-value.
This study used six Gene-set libraries, including 1) WikiPath-

way Human 2021 [49], 2) Kyoto Encyclopedia of Genes and Gen-
omes (KEGG), 3) MSigDB Hallmark [50], 4) Gene Ontology
Molecular Function 2021 [51], 5) Gene Ontology Biological Process,
and 6) Gene Ontology Cellular Component.
Table 1
Prediction performance of GASE.

Method R2 MAE (years) Features selected

Ridge regression 0.77 0.54 485
LASSO 0.51 0.69 28
Elastic net 0.50 0.71 30
GASE-FAS 0.80 0.43 27
GASE-Best 0.83 0.41 32
GASE-Mean 0.80 ± 0.01 0.44 ± 0.25 33.44 ± 3.59
3. Results

3.1. GASE prediction performance

We used a survival estimation method, GASE, to identify a
miRNA signature and estimate the survival time in patients with
STEC. One hundred and twenty-three patients with miRNA expres-
sion profiles were retrieved from the TCGA database. GASE identi-
fied 27 miRNAs as a survival miRNA signature and estimated the
survival time with a mean squared correlation coefficient (R2) of
0.80 ± 0.01 and a mean absolute error (MAE) of 0.44 ± 0.25 years
between actual and estimated survival times.

A robust miRNA signature was selected by measuring the fre-
quency appearance score (FAS) using 50 independent runs of GASE.
A miRNA signature with the highest FAS indicates higher frequen-
cies of miRNAs in the signature across the independent runs of
GASE. The mean FAS obtained for the independent runs was 15.5
5 ± 1.45, while the highest FAS was 18.85 (shown in Supplemen-
tary Fig. S1 and Supplementary Table S1). The feature set with
the highest FAS was selected for the analysis. This feature set
obtained a R2 of 0.80 and a MAE of 0.43 years between actual
and estimated survival times, and selected 27 miRNAs as a signa-
ture to estimate survival time in patients with STEC.
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3.2. Prediction performance comparison and validation

Next, we compared GASE with some standard machine learn-
ing methods on their performance to predict survival times. The
machine learning methods used in the comparison included
ridge regression, least absolute shrinkage and selection operator
(Lasso) and elastic net. Ridge regression obtained a R2 of 0.77
and a MAE of 0.54 years between actual and estimated survival
times. Lasso obtained a R2 of 0.51 and a MAE of 0.69 years
between actual and estimated survival times, and elastic net
obtained a R2 of 0.50 and a MAE of 0.71 years between actual
and estimated survival times, respectively. In comparison, GASE
obtained a highest R2 of 0.83 and a MAE of 0.41 years between
actual and estimated survival times (Table 1). The results indi-
cated that the performance of GASE was better than that of
the standard machine learning methods. The correlation plots
of GASE and the other machine learning methods are shown in
Supplementary Fig. S2A-D.

Next, the estimation ability of GASE was validated using a vali-
dation dataset consisting of 393 patients with STEC along with
their follow-up times. The follow-up times of these patients were
in the range of 0.3–56 months. We attempted to estimate the sur-
vival times of these patients using the GASE prediction model. The
mean follow-up times observed in patients with STEC was 8.09 ± 1
2.09 months. The mean predicted survival time of these patients
was 17.74 ± 10.50 months. GASE achieved an accuracy of 80.41 %
for estimating the survival times of patients whose estimated sur-
vival times were higher than the follow-up times (mean follow-up
time 4.0 ± 5.9 months). The mean estimated survival time of the
316 patients was 19.10 ± 10.28 months, and a mean prediction
error of 12.15 months was obtained for the remaining patients.
The results could be interpreted as follows: an estimated survival
time that was higher than the patient’s follow-up time was consid-
ered as a correct prediction, whereas an estimated survival time
that was lower than the follow-up time was a considered a predic-
tion error. The follow-up and estimated survival times of these
patients are shown in Fig. 1.
3.3. Ranking of miRNA signature

The miRNAs of the identified miRNA signature were ranked
based on their contribution towards estimating the survival time
using main effect difference (MED) [42] analysis. A higher MED
score represents greater contribution towards the prediction of
survival time. A miRNA with a higher MED score indicates superior
prediction ability towards the survival time estimation, whereas a
lower-scoring miRNA indicates a smaller contribution to survival
time estimation. The top 10 ranked miRNAs according to the
MED analysis, include hsa-miR-760, hsa-miR-767-5p, hsa-miR-
1301-3p, hsa-miR-891a-5p, hsa-miR-532-5p, hsa-miR-29a-5p,
hsa-miR-16-5p, hsa-miR-130a-5p, hsa-miR-329-3p, and hsa-miR-
496 (Table 2). The prioritization of miRNAs based on their contri-
bution to the survival estimation is shown in Fig. 2.



Fig. 1. The GASE prediction performance on an independent test cohort of 393 patients with follow-up times.

Table 2
Ranking of miRNA signature and corresponding MED scores.

Rank miRNA MIMAT-ID MED

1 hsa-miR-760 MIMAT0004957 1.728135
2 hsa-miR-767-5p MIMAT0003882 1.480966
3 hsa-miR-1301-3p MIMAT0005797 1.344602
4 hsa-miR-891a-5p MIMAT0004902 1.14225
5 hsa-miR-532-5p MIMAT0002888 1.139153
6 hsa-miR-29a-5p MIMAT0004503 0.887408
7 hsa-miR-16-5p MIMAT0000069 0.88658
8 hsa-miR-130a-5p MIMAT0004593 0.863724
9 hsa-miR-329-3p MIMAT0001629 0.844311
10 hsa-miR-496 MIMAT0002818 0.818043
11 hsa-miR-20a-3p MIMAT0004493 0.724058
12 hsa-miR-125a-5p MIMAT0000443 0.63757
13 hsa-miR-181b-5p MIMAT0000257 0.590379
14 hsa-miR-675-3p MIMAT0006790 0.578151
15 hsa-miR-9-5p MIMAT0000441 0.484588
16 hsa-miR-664a-5p MIMAT0005948 0.425219
17 hsa-miR-93-5p MIMAT0000093 0.364274
18 hsa-miR-30e-5p MIMAT0000692 0.355408
19 hsa-miR-376c-3p MIMAT0000720 0.345478
20 hsa-miR-326 MIMAT0000756 0.312151
21 hsa-miR-193a-5p MIMAT0004614 0.275742
22 hsa-miR-532-3p MIMAT0004780 0.268942
23 hsa-miR-625-3p MIMAT0004808 0.259763
24 hsa-miR-106a-5p MIMAT0000103 0.213424
25 hsa-let-7 g-5p MIMAT0000414 0.152833
26 hsa-let-7f-5p MIMAT0000067 0.04358
27 hsa-miR-193b-5p MIMAT0004767 0.010963
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3.4. Diagnosis prediction

The diagnostic ability of the identified miRNA signature was
measured by distinguishing healthy and STEC patients using Can-
cerMiRNome database [52]. The individual miRNAs that compose
the miRNA signature had AUCs in a range of 0.49–0.94 for distin-
guishing healthy from STEC patients, as shown in Table 3. Among
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the signature miRNAs, 13 miRNAs, including hsa-miR-93-5p, hsa-
miR-1 81b-5p, hsa-miR-125a-5p, hsa-miR-1301-3p, hsa-miR-30e-
5p, hsa-miR-767-5p, hsa-miR-16-5p, hsa-miR-675-3p, hsa-miR-
326, hsa-miR-760, hsa-miR-20a-3p, hsa-miR-664a-5p, and hsa-
miR-130a-5p were good diagnostic predictors of esophageal carci-
noma (ESCA) (AUC � 0.70), as shown in Fig. 3. Ten miRNAs, includ-
ing hsa-miR-30e-5p, hsa-miR-1301-3p, hsa-miR-125a-5p, hsa-
miR-93-5p, hsa-miR-326, hsa-miR-532-5p, hsa-miR-9-5p, hsa-
miR-181b-5p, hsa-miR-193a-5p, and hsa-let-7 g-5p were good
diagnostic predictors of stomach adenocarcinoma (STAD)
(AUC � 0.7), as shown in Fig. 4.
3.5. Expression differences of the miRNA signature

Expression difference analysis was performed to measure the
significance in the expression levels of the identified miRNA signa-
ture between normal and tumor tissues of ESCA and STAD patients
using the CancerMiRNome database [52]. There were 14 miRNAs,
including hsa-miR-625-3p, hsa-miR-664a-5p, hsa-miR-326, hsa-
miR-130a-5p, hsa-miR-20a-3p, hsa-miR-675-3p, hsa-miR-760,
hsa-miR-16-5p, hsa-miR-767-5p, hsa-miR-1301-3p, hsa-miR-
125a-5p, hsa-miR-181b-5p, hsa-miR-93-5p, and hsa-miR-30e-5p
which showed a significant difference (p < 0.05) between normal
and ESCA samples (Table 4). There were 19 miRNAs, including
hsa-miR-664a-5p, hsa-miR-767-5p, hsa-let-7 g-5p, hsa-let-7f-5p,
hsa-miR-376c-3p, hsa-miR-29a-5p, hsa-miR-760, hsa-miR-1301-
3p, hsa-miR-532-5p, hsa-miR-20a-3p, hsa-miR-125a-5p, hsa-
miR-181b-5p, hsa-miR-9-5p, hsa-miR-93-5p, hsa-miR-30e-5p,
hsa-miR-326, hsa-miR-193a-5p, hsa-miR-532-3p, and hsa-miR-
193b-5p, that had significantly different expression between nor-
mal and STAD patients (Table 4). The top 10 ranked miRNAs and
their expression differences between healthy and ESCA and STAD
patients are shown in Figs. 5 and 6, respectively.



Fig. 2. Chord diagram showing the prioritization of miRNAs of the signature based on their survival estimation ability in stomach and esophageal carcinoma. The size of the
line is proportional to the percent contribution towards the survival estimation.

Table 3
Diagnosis prediction of patients with STEC using the miRNA signature.

miRNAs ESCA-AUC STAD-AUC

hsa-miR-760 0.73 0.60
hsa-miR-767-5p 0.78 0.63
hsa-miR-1301-3p 0.82 0.82
hsa-miR-891a-5p 0.52 0.53
hsa-miR-532-5p 0.59 0.78
hsa-miR-29a-5p 0.57 0.64
hsa-miR-16-5p 0.77 0.49
hsa-miR-130a-5p 0.70 0.56
hsa-miR-329-3p 0.55 0.53
hsa-miR-496 0.60 0.59
hsa-miR-20a-3p 0.73 0.62
hsa-miR-125a-5p 0.84 0.81
hsa-miR-181b-5p 0.87 0.77
hsa-miR-675-3p 0.74 0.54
hsa-miR-9-5p 0.49 0.78
hsa-miR-664a-5p 0.73 0.69
hsa-miR-93-5p 0.94 0.81
hsa-miR-30e-5p 0.82 0.85
hsa-miR-376c-3p 0.57 0.66
hsa-miR-326 0.74 0.81
hsa-miR-193a-5p 0.59 0.73
hsa-miR-532-3p 0.52 0.68
hsa-miR-625-3p 0.68 0.5
hsa-miR-106a-5p 0.62 0.51
hsa-let-7 g-5p 0.64 0.7
hsa-let-7f-5p 0.50 0.62
hsa-miR-193b-5p 0.58 0.58

Abbreviation: ESCA-Esophageal carcinoma, STAD-Stomach adenocarcinoma, AUC-
Area under the receiver operating curve.
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3.6. MiRNA-gene target enrichment analysis

There were 558 miRNA target interactions (MTI) with strong
evidence, which included 32 miRNAs and 352 target genes from
miRTarBase (Supplementary Table S2). We performed gene-set
enrichment analysis using three pathway libraries: WikiPathway,
KEGG, and MSigDB Hallmark, shown in Fig. 7. The highly enriched
pathways in WikiPathway, KEGG, and MSigDB Hallmark were the
somatotrophic axis and its relationship to dietary restriction and
aging (WP4186) (adjusted p-value: 1.34E-10, Odds ratio: 117888,
combined score: 2,862,498), pancreatic cancer (adjusted p-
value:1.54E-34, Odds ratio:44.55, combined score: 3655.72), and
apoptosis (adjusted p-value:5.17E-20, Odds ratio: 12.68, combined
score: 563.12), respectively, shown in Supplementary Tables S3-S5.
Additionally, the miRNA signature-gene interaction network was
built using miRTarBase [46], TarBase V8. [53] and miRecords
[54]. There were 28,057 edges associated with 10,525 genes. We
reduced the low priority edges using the shortest path network
measures [55]. The final network, consisting of 832 edges 93 tar-
geted genes, is shown in Supplementary Fig. S3.

The Gene Ontology (GO) annotations of the target genes were in
three categories: biological process, molecular function, and cellu-
lar component. The highly enriched pathways for biological pro-
cess, molecular function, and cellular component were positive
regulation of smooth muscle cell apoptosis process
(GO:0034393), I-SMAD binding (GO:0070411), and serine/thre-
onine protein kinase complex (GO:1902554), respectively, as
shown in Supplementary Figs. S4-S6 and Supplementary Table S6.



Fig. 3. Diagnosis prediction ability of miRNAs was evaluated in ESCA using ROC curves.

Fig. 4. Diagnosis prediction ability of miRNAs was evaluated in STAD using ROC curves.
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Table 4
Expression differences of the miRNA signature between normal and tumor tissues.

miRNA signature Normal vs ESCA Normal vs STAD
p-value p-value

hsa-miR-760 0.003 0.0297
hsa-miR-767-5p 0.0004 0.0003
hsa-miR-1301-3p 0.0001 <0.0001
hsa-miR-891a-5p 0.8733 0.6737
hsa-miR-532-5p 0.3987 <0.0001
hsa-miR-29a-5p 0.3481 0.008
hsa-miR-16-5p 0.0005 0.0911
hsa-miR-130a-5p 0.0115 0.1496
hsa-miR-329-3p 0.4576 0.6845
hsa-miR-496 0.1857 0.1031
hsa-miR-20a-3p 0.005 <0.0001
hsa-miR-125a-5p <0.0001 <0.0001
hsa-miR-181b-5p <0.0001 <0.0001
hsa-miR-675-3p 0.0033 0.1292
hsa-miR-9-5p 0.9717 <0.0001
hsa-miR-664a-5p 0.0177 0.0002
hsa-miR-93-5p <0.0001 <0.0001
hsa-miR-30e-5p <0.0001 <0.0001
hsa-miR-376c-3p 0.5389 0.0033
hsa-miR-326 0.0117 <0.0001
hsa-miR-193a-5p 0.3494 <0.0001
hsa-miR-532-3p 0.8464 <0.0001
hsa-miR-625-3p 0.023 0.9569
hsa-miR-106a-5p 0.1783 0.9017
hsa-let-7 g-5p 0.3872 0.0003
hsa-let-7f-5p 0.7968 0.0026
hsa-miR-193b-5p 0.343 <0.0001

Abbreviation: ESCA-Esophageal carcinoma, STAD-Stomach adenocarcinoma.
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3.7. MiRNAs in cancers

The roles of the top 10 ranked miRNAs in various diseases and
cancers were examined using the Human microRNA Disease Data-
base (HMDD v3.2) [56], miRTarbase, and by reviewing the scien-
tific literature. The information from these resources indicate
that the top 10 ranked miRNAs are involved in STEC. A quantitative
real-time PCR analysis reported that hsa-miR-760 is significantly
downregulated in ESCA tissues and cell lines, suggesting that this
miRNA could be used as a prognostic indicator [57]. Significant dif-
ferential expression of hsa-miR-769-5p was observed in ESCA tis-
sue when compared to the normal tissues [58]. Over-expression
of hsa-miR-1301-3p induces cell proliferation and tumorigenesis
Fig. 5. Comparison of expression of the top 10 ranked miRNAs between norm
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in gastric cancer tissues [59]. Wu et al. reported the differential
expression of hsa-miR-1301-3p in ESCA, suggesting that this
miRNA could be used as a prognostic biomarker for ESCA [60].
Zhang and colleagues reported the downregulation of hsa-miR-
532-5p in gastric cancer cells, and its expression is associated with
poorer survival in patients with gastric cancer [61]. Tokumaru and
colleagues demonstrated the association of hsa-miR-29a with
overall survival in patients with gastric cancer, and lower expres-
sion of hsa-miR-29a worsens the overall survival in patients with
gastric cancer [62]. Hsa-miR-16-5p has been utilized as a prospec-
tive biomarker for prognosis prediction in patients with gastric
cancer and ESCA [63,64]. Hsa-miR-130a-5p affects cell growth,
migration and invasion by targeting cannabinoid receptor 1 in gas-
tric cancer cells [65]; it also deregulates PTEN and controls malig-
nant cell survival and tumor growth in multiple cancers [66]. Hsa-
miR-329-3p acts as a tumor suppressor by targeting T lymphoma
invasion and metastasis in gastric cancer cells and could be utilized
as potential therapeutic target [67]. Hsa-miR-496 is downregu-
lated in gastric cancer cell lines, and it inhibits cell proliferation
via targeting Lyn kinase in gastric cancer cell lines [68]. Among
the top 10 ranked miRNAs, the roles of two miRNAs, hsa-miR-
769-5p and hsa-miR-891a-5p, have not been reported previously
in either STAD or ESCA.

Additionally, a miRNA-disease network was constructed for the
miRNA signature using miRNet 2.0 [55]. The miRNAs of the signa-
ture were observed to be involved in several diseases. In the
miRNA-disease association network, there were 12 nodes (miR-
NAs) with 132 edges associated with 85 diseases, shown in Supple-
mentary Fig. S7.
4. Discussion

MiRNAs provide a way to explore disease mechanisms in vari-
ous cancers, including STEC. The clinical applications of miRNAs
in cancer rely on identifying miRNA signatures as potential
biomarkers and developing miRNA-target based therapeutics.
Accordingly, we developed a survival time estimation method,
GASE, to identify a miRNA signature that was correlated with STEC
patient survival. Computational methods for feature selection
often suffer from issues related to data quality and high dimen-
sionality, especially when dealing with biomedical data. To address
the challenges to identifying the right biomarker, we used an opti-
mal feature selection algorithm, IBCGA, which is good at identify-
al and ESCA samples using boxplot representation (* indicates p < 0.05).



Fig. 6. Comparison of expression of the top 10 ranked miRNAs between normal and STAD samples using boxplot representation. (* indicates p < 0.05).

Fig. 7. The pathways enrichment analysis of miRNA signature targeted genes in three categories, (A) wiki pathways, (B) KEGG pathways, and (C) MSigDB hallmark.
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ing s small number of important features from a large number of
candidate features. The optimization method was previously uti-
lized to estimate the survival time in various cancers [34–36]. In
this study, we exclusively focused on identifying a miRNA signa-
ture in patients with STEC. The proposed method, GASE, identified
27 miRNAs as a survival miRNA signature and performed better
than standard machine learning methods in estimating survival
time. Our evaluation of the diagnostic ability of the identified miR-
NAs revealed that 13 miRNAs were good diagnostic predictors
(AUC � 0.7) in ESCA and 10 miRNAs in STAD. The differential
expression analysis between tumor and normal samples from
patients with STEC revealed that several miRNAs had significantly
different expression between tumor and normal samples. Further,
previous reports provide evidence supporting the importance of
the top 10 ranked miRNAs of the signature in STEC.

The miRNA-gene target interaction analysis showed that the
target genes were highly enriched in the somatotrophic axis
and its relationship to dietary restriction and the aging
(WP4186) pathway. The somatotrophic axis in mammals involves
signaling by growth hormone (GH), which is produced by the
anterior pituitary, and its secondary mediator, insulin-like growth
factor 1 (IGF-1). In a previous study, growth hormone–releasing
hormone and its receptor (GHRH-R) were found primarily in the
anterior pituitary gland, gastric cancers, other solid tumors, and
lymphomas. Increased levels of GHRH-R in tumor samples from
patients with gastric cancer are associated with poor outcomes
[69]. Another important enriched pathway of the miRNA signa-
ture was transforming growth factor beta (TGF-b) signaling path-
way. TGF-b is a cytokine that participates in both physiological
and pathological processes including tumorigenesis [70]. During
tumor progression, TGF-b signaling regulates the immune/inflam-
matory response and the tumor microenvironment. It also regu-
lates tumor growth, epithelial-mesenchymal transition (EMT),
and cancer cell stemness depending on tumor stage and cellular
context [71]. EMT is also an enriched pathway from MSigDB Hall-
mark (adjusted p-value: 8.24E-19, Odds ratio: 11.13, combined
score: 506.81), which is consistent with this biological mecha-
nism. Abnormal TGF-b signaling has been associated with pro-
gression of gastrointestinal cancer [72], which includes
esophageal, gastric, liver, colorectal, and pancreatic carcinomas
that, collectively, are major causes of cancer-related deaths
worldwide [73]. Several TGF-b-based therapeutics have been
developed for the treatment of gastrointestinal cancers and have
displayed efficacy in clinical trials [74,75]. Additional support for
the role of TGF-b signaling in STEC was obtained from the GO
annotation analysis, which showed that I-SMAD binding
(GO:0070411) was enriched in the GO molecular function cate-
gory (adjusted p-value: 1.03E-06). Nuclear accumulation of active
SMAD complexes is crucial for the transduction of TGF-b super-
family signals from transmembrane receptors to the nucleus.

The top hits for gene target enrichment analysis also indicated
that the miRNA signature was related to miRNAs involved in
DNA damage response, epidermal growth factor receptor tyrosine
kinase inhibitor resistance, apoptosis, Wnt/beta-catenin signaling,
and angiogenesis. DNA damage response pathways are known to
be related to therapy resistance in STEC [76,77], and resistance to
epidermal growth factor receptor tyrosine kinase inhibitors are rel-
evant to survival in STEC, consistent with the use of epidermal
growth factor receptor tyrosine kinase inhibitors as targeted ther-
apy in STEC [78,79]. The Wnt/beta-catenin signaling pathway has
been implicated in cancer progression in STEC [80], and the dysreg-
ulation of apoptosis and angiogenesis are known to promote tumor
growth [81,82]. This suggests the miRNAs in the signature and the
putative gene targets of these miRNAs are possible molecular tar-
gets for exploitation in the pursuit to create new therapies for
STEC.
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In addition to being associated with survival, the miRNAs in the
signature could discriminate between healthy and STEC patients,
and were differentially expressed between the healthy and tumor
tissues of patients with STEC. This suggests that the capability of
these miRNAs to function as prognostic or diagnostic biomarkers.
Further investigation is needed to determine the utility of the
miRNA signature as a prognostic biomarker for monitoring
response to therapy or predicting survival after therapy in STEC
patients and as a biomarker for early STEC diagnosis. Other ques-
tions for study are whether the miRNA signature can perform as
a biomarker in STEC of different types and stages, and whether
the miRNA signature can be detected in blood at a level of accuracy
comparable to that in tumor tissue (to allow for the possibility of
performing liquid biopsies for biomarker detection).

In conclusion, a better understanding of the miRNA signature in
survival predictions will aid in developing treatment strategies for
STEC. We anticipate that the miRNA signature identified here could
help in understanding the roles of miRNAs in STEC and developing
miRNA-based cancer therapeutics.
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