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ABSTRACT: Molecular dynamics (MD) simulations are an exceedingly and
increasingly potent tool for molecular behavior prediction and analysis. However, the
enormous wealth of data generated by these simulations can be difficult to process and
render in a human-readable fashion. Cluster analysis is a commonly used way to
partition data into structurally distinct states. We present a method that improves on the
state of the art by taking advantage of the temporal information of MD trajectories to
enable more accurate clustering at a lower memory cost. To date, cluster analysis of MD
simulations has generally treated simulation snapshots as a mere collection of
independent data points and attempted to separate them into different clusters based
on structural similarity. This new method, cluster analysis of trajectories based on
segment splitting (CATBOSS), applies density-peak-based clustering to classify
trajectory segments learned by change detection. Applying the method to a synthetic
toy model as well as four real-life data sets−trajectories of MD simulations of alanine
dipeptide and valine dipeptide as well as two fast-folding proteins−we find CATBOSS to
be robust and highly performant, yielding natural-looking cluster boundaries and greatly improving clustering resolution. As the
classification of points into segments emphasizes density gaps in the data by grouping them close to the state means, CATBOSS
applied to the valine dipeptide system is even able to account for a degree of freedom deliberately omitted from the input data set.
We also demonstrate the potential utility of CATBOSS in distinguishing metastable states from transition segments as well as
promising application to cases where there is little or no advance knowledge of intrinsic coordinates, making for a highly versatile
analysis tool.

1. INTRODUCTION
With recent developments in both high-performance comput-
ing hardware and simulation algorithms, molecular dynamics
(MD) simulations have risen from a predominantly explan-
atory technique to an invaluable tool for molecular behavior
prediction.1−4 Fast network interconnect protocols,5,6 GPU-
based acceleration,7−10 and architecture-specific algorithms11

have allowed scientists to probe micro- and even millisecond
time scales as well as systems with thousands of atoms.12 A
natural consequence of these developments is the enormous
amount of data generated, necessitating robust analysis
methods.13,14 As part of effective data processing, cluster
analysis is frequently employed to partition structurally similar
data points into states.
Early landmark efforts in the field of cluster analysis include

approaches such as k-means and k-medoids, which aim to
minimize the distance between data points and points
identified as cluster centroids.15−18 The primary limitations
of such methods include difficulty handling clusters that are
not highly spherical (this issue may be addressed using kernel
k-means or spectral clustering),19,20 as well as the need for the
user to a priori specify the number of centroids, k. The time
complexity of these algorithms in their native form is O(n2),
where n is the number of data points, with further refinements

proposed.21,22 An alternative commonly used approach,
agglomerative hierarchical clustering, instead yields a family
of clustering schemes, starting from all points in separate states
and gradually merging points based on a distance metric until
all points are in the same state, wherein the user specifies the
number of clusters by cutting a dendrogram upon completion
of the algorithm.23,24 This approach has a worst-case cubic
time complexity,25 with O(n2) achieved by optimized
variants.26

In recent years, a density-peak-based approach proposed by
Rodriguez and Laio has established itself as the state of the
art.27 This method relies on the observation that cluster
centroids exhibit a relatively high local density compared to
their neighbors and a large distance from any points of higher
density. This method has proven competent at handling
clusters of varying shapes, sizes, and densities and has already
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been applied effectively to MD data sets.28−34 Limitations of
this method previously identified by the scientific community
include the need for the user to specify the cutoff distance for
the kernel density estimator and the need for the user to
visually inspect the generated decision graph and manually
assign cluster centroids as well as quadratic memory complex-
ity.35,36 The last issue in particular can make memory
requirements for a typical MD data set balloon to hundreds
of gigabytes, necessitating the use of expensive high-end
hardware. This problem can be mitigated by recomputing the
pairwise distances as needed, rather than storing them (which
trades memory for computational complexity) or using local
approximations for density estimation.36 Later implementa-
tions of the method may be run on large data sets on regular
desktop machines.37 Several other groups have also proposed
extensions of the method that address the aforementioned
shortcomings;35,36 however, none have, to our knowledge,
entirely eliminated user input or reduced memory complexity
without computational trade-off or the use of approximations.
In contrast to clustering a data set purely based on structural

similarity among data points, clustering the data set based on
segments can enable users to obtain a better and more natural
picture of the metastable states (Figure 1). Segment-based
clustering of time series data has been previously applied to

short, low-dimensional time series, such as single-molecule
spectroscopy data.38 Such clustering is accomplished by
applying a change detection method to the time series to
identify the segments and partitioning them into clusters based
on a given dissimilarity measure. A 2019 publication by Li and
Yang demonstrated a high level of robustness and accuracy on
one-dimensional (1D), two-state synthetic data.38 The ability
of this method to account for overlap in data distributions
represents a notable advance in the handling of time series
data. However, this method performs change detection by
recursive likelihood estimationin each iteration, the most
likely change point is determined, and its likelihood is
compared to a tunable critical value. Once a change point is
established, the trajectory is split into two fragments at that
point, and the procedure is applied recursively to the resulting
fragments.37 The complexity of the recursive change detection
becomes a computational bottleneck when applied to large,
multidimensional MD data sets.
In this work, we present a method similar in spirit, dubbed

cluster analysis of trajectories based on segment splitting
(CATBOSS), which uses density-peak clustering to cluster
trajectory segments, rather than data points. To our knowl-
edge, CATBOSS is the first segment-based clustering protocol
effectively applied to MD trajectory data. As part of

Figure 1. Example two-state synthetic trajectory clustered (A) by data points and (B) by segments. Each panel shows from top to bottom: the raw
trajectory (in the case of segment-based clustering, with change points indicated by vertical lines); the trajectory labeled by state assignments
following clustering; a histogram representing the (apparent unimodal) data distribution; and histograms representing the data distribution in each
of the two clusters learned by the two approaches. Note the sharp boundary between states in the point-based case and distribution symmetry in
the segment-based case; the latter suggesting data sampled from a distribution oscillating around a given mean (consistent with the ground truth).
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CATBOSS, trajectory segments are demarcated using
SIMPLE, a change detection algorithm developed by Fan et
al.39 This particular change detection method was chosen for
its ability to recognize correlated changes, which are frequently
present in MD data. In contrast to Euclidean distance between
pairs of data points, we use the earth mover’s distance metric
to determine the distance between trajectory segments. Earth
mover’s distance naturally extends the idea of distance between
points to that between collections of points, is perceptually
meaningful, and is a true metric for a metric ground distance.40

Distances between segments are then passed to density-peak
clustering, with each segment’s local density contribution
scaled linearly by its length. The resulting density profile, along
with tight grouping of segment means in the vicinity of state
centers in data coordinate space, makes for prominent, easily
resolved density peaks, which motivated the choice of
clustering algorithm. Applying CATBOSS to a batch toy
model similar to the 1D, two-state synthetic data used by Li
and Yang,38 we show that compared to the previously
developed method, CATBOSS maintains an extremely high
accuracy even when the two states are sampled from highly
overlapping distributions, or when one state has a much greater
population than the other. Moreover, using a pair of real-world
MD data setsalanine dipeptide and valine dipeptidewe
demonstrate that CATBOSS yields a natural partitioning of the
Ramachandran plot while dramatically lowering the number of
pairwise distances used for the clustering. Further, on the
example of valine dipeptide, we demonstrate an increase in
resolution which allows our method to identify clusters
corresponding to different side chain rotamers even when
given only backbone dihedral values. By analyzing the slope
and length distribution of trajectory segments, we show the
ability of our method to distinguish metastable states and
transition segments, providing valuable information about the
dynamics, in addition to the structure of the simulated systems.
As testing on simple model systems has yielded highly
promising results, we have also applied CATBOSS to two
MD trajectories of fast-folding protein systems that have
previously been used for clustering algorithm validation. We
report the partitioning results for the trajectory of folded
dynamics of bovine pancreatic trypsin inhibitor (BPTI),12 in
comparison to another recently published method, SAPPHIRE-
based clustering.41 In addition, we also consider the CATBOSS
partitioning of a long (∼1.5 × 106 frames) trajectory of the
Nle/Nle mutant of the villin headpiece 35-residue subdomain
(HP35) at 360 K,42 in comparison to most probable path
clustering by Jain and Stock.43 This trajectory also serves as
further proof of scaling of the method presented here, where
we demonstrate the ability to handle a data set with a high
number of entries as well as a high-dimensional data set. We
apply our method to time series of both low-dimensional
intrinsic coordinates as well as all relevant backbone dihedral
angles. In all of these cases, we find that CATBOSS matches or
outperforms the previously reported methods. Lastly, we show
that storing intersegment (as opposed to interpoint) distances
results in an orders-of-magnitude decrease in memory
complexity compared to the base density-peak implementation
which takes a distance matrix as input, making CATBOSS a
versatile choice for a wide array of systems.
One caveat that bears mentioning is that the present method

works best when the number of entries in the trajectory is
much larger than the number of dimensions. This condition
helps ensure that the high-dimensional probability distribution

can be estimated well. This limitation is overcome for a lot of
chemical systems by virtue of underlying low-dimensional data
structure or presence of correlated changes among the
observables. While one might expect that in order to accurately
estimate these probability distributions, one needs n ≫ 2d data
points in a d-dimensional data set, when the intrinsic

dimensionality of the system d′ is lower, n ≫ 2d′ may be
sufficient. In addition, the nature of MD simulations further
mitigates this issuelarger (i.e., higher-dimensional) systems
require more simulation time (i.e., more data) in order to
achieve convergence. Additionally, metrics adaptive to non-
linear but intrinsically low-dimensional manifolds are a topic of
ongoing work. Dimensionality scaling of the method is
evaluated by clustering the valine dipeptide data set based
on 37 heavy-atom interatomic distances and, as mentioned
above, clustering the HP35 data set based on 66 backbone
dihedral angles.

2. METHODS

A schematic overview of CATBOSS is presented in Figure 2.
2.1. Synthetic Data Set. In a fashion similar to the testing

methodology provided in Li and Yang’s work,38 we randomly
generated 10 replicate data set batches. Each data set is a
25,000-step trajectory containing 50 segments sampled from 2
states (Npoints = 25,000; Nsegments = 50; Nstates = 2). The state

Figure 2. A schematic overview of the CATBOSS protocol.
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with the smaller population was referred to as the minor state
(or state 2), and the population of state 2, that is, the fraction
of the total population accounted for by the minor state was set
to between 0.05 and 0.50 in increments of 0.05. The intensity
(i.e., the mean of the distribution the data were drawn from) of
the major state (I1) was fixed at 100; the intensity ratio
between the minor and major states (I2/I1) was between 1.02
and 2.00, in increments of 0.01 between 1.02 and 1.05, and
0.05 thereafter. The standard deviations of both the major and
minor states were fixed at 20 (σ1 = σ2 = 20 (see Figure 3 for
example trajectories). Segment lengths were randomly
generated so that their sum would equal the corresponding
state’s population, with a minimum segment length of 5. We
compared the performance of our method to that by Li and
Yang,38 first by running the protocols in their entirety, that is,
using their change-point detection algorithm and their
clustering algorithm and then by running their clustering
algorithm only, while providing the ground-truth change
points.
2.2. Simulation Systems and Protocol. The two model

dipeptides simulated by our group, Ace-Ala-NMe (alanine
dipeptide) and Ace-Val-NMe (valine dipeptide) (Figure 4),
were simulated using conventional MD performed in the
GROMACS software suite.44 The RSFF2 force field, para-
metrized using a coil library with the goal of recapitulating
intrinsic (ϕ, ψ) preferences of amino acids, was used with the
TIP3P water model.45,46 Simulation convergence was verified
by performing two sets of simulations for each system, starting
from distinct initial structures. Each initial structure was
energy-minimized, solvated, and equilibrated, after which a 200
ns simulation of alanine dipeptide and a 250 ns simulation of
valine dipeptide were performed. The NPT production runs
were conducted at 300 K and 1 bar, with a 2 fs time step.

Peptide coordinates were saved every time step. Upon
conclusion of the simulation, convergence was verified by
calculating the normalized integrated product47 of the two
simulations’ (ϕ, ψ) density profiles, which was found to be
equal to 0.99 in both cases. One of the two simulations was
then used for subsequent analysis. More details of the
simulation setup can be found in the Supporting Information.
The resulting Ramachandran plots were also compared to
those reported in the original RSFF2 paper and found to be in
close agreement (Figure 4).45

From the raw atomic coordinates, the backbone dihedrals ϕ
and ψ were calculated for alanine dipeptide. Past dimension-
ality reduction studies have shown that these two dihedral
angles map well to the intrinsic coordinates of the system, as
the longest relaxation time components of the system’s

Figure 3. (A) A two-state, 1D model synthetic trajectory with the intensity ratio of 2.0 (“easy”) and state 2 population of 0.25 (“moderate”). (B) A
trajectory with intensity ratio of 1.5 (“moderate”) and state 2 population of 0.25 (“moderate”). (C) A trajectory with intensity ratio of 1.5
(“moderate”) and state 2 population of 0.50 (“easy”). The left figure for each panel shows the time series view of the trajectory with ground-truth
changes indicated. The right figure for each panel shows the data distribution with the mean values of each distribution marked by red lines. Note
that the distribution in panel (B) approaches a unimodal appearance; separating the data set into the two underlying distributions may be difficult
or imprecise to achieve by point-based clustering, as in Figure 1.

Figure 4. Model peptide systems. The structure (top) and the
Ramachandran plot from the MD simulation (bottom) of (A) alanine
dipeptide and (B) valine dipeptide. The contours are free energy
levels separated by 1 kBT.
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motion.48−50 For valine dipeptide, three data sets were
constructed: (1) one containing the backbone dihedral angles
ϕ and ψ, (2) one containing those two angles, as well as the
side chain dihedral χ, and (3) one containing the heavy-atom
interatomic distances, with atom pairs only one or two bonds
apart removed as well as pairs of atoms known to be coplanar
due to their positions across the peptide bonds removed. The
last data set had 37 dimensions. It is known that valine
dipeptide exhibits three distinct side chain rotamer states: χ =
60°, χ = 180°, and χ = 300°.51 These three side chain
conformations each have distinct backbone geometry prefer-
ences, and typically, the angle χ must be considered as part of
structural analysis.51 Interatomic distances were used to
confirm the higher-dimension scaling of the CATBOSS
method, allowing for analysis without a priori knowledge of
underlying low-dimensional structure, as well as to verify that
no other important peptide degrees of freedom were neglected.
The 2 fs dihedral angle trajectories were shifted whenever

the periodic boundary was crossed (e.g., a change from 179° to
−179° would become a change from 179° to 181°, to reflect
the true magnitude of the change), to avoid falsely detected
change points. The shifting process is illustrated in Figure 5.

The shifted trajectories were subsequently subsampled to a 1
ps sampling rate, for a total of 200,000 and 250,000 data points
for alanine dipeptide and valine dipeptide, respectively.
In addition to these two systems, we also considered two

long-time scale MD trajectories of protein systems. The BPTI
trajectory was generously provided by DE Shaw Research.12

This trajectory contains approximately 1.03 ms of total
simulation time, with a 25 ns sampling rate, accounting for
41,250 frames, and served as one of the data sets used to
validate SAPPHIRE-based clustering, another recently published
method that aims to preserve kinetic data by taking advantage
of the temporal character of noisy time series.41 SAPPHIRE-based
clustering uses the progress index algorithm52 to group similar
frames together and computes a kinetic annotation variable
based on the transition counts for each progress index.41 To
ensure a fair comparison, we apply the same manual
featurization process as Cocina et al.41 PyEMMA 2.553 was
used to select all the backbone and side chain dihedrals. The
side chain dihedrals for each of the three disulfide bridges in
BPTI were added, and dihedrals corresponding to symmetric
or fixed substituents (χ2 on Phe, Tyr, and Asp residues and χ3
on Glu and Tyr residues) were then manually removed,
yielding 271 dihedrals remaining.41 The sines and cosines of
these dihedrals were then processed using time-structure-based
independent component analysis (tICA)54,55 with a lag time of
500 ns. The top 10 components were used for further analysis.
We performed structural analysis of our cluster results and
used PyEMMA to build a Markov state model (MSM) with a
lag time of 500 ns, based on CATBOSS state assignments. This

MSM was then validated using a 10-fold cross-validated
VAMP2 score calculation.56 Under the VAMP framework, a
Markov process is described by the Koopman equation.57 The
top singular values of the Koopman operator (corresponding
to the slowest modes of the process) can be optimized and
summarized in a score value, which can be used to compare
different trajectory discretizations.
The HP35 trajectory was also provided by DE Shaw

Research.42 The trajectory contains approximately 300 μs of
simulation time, with a sampling rate of 200 ps and 1,526,041
frames. This data set has also served as a benchmark data set
for a clustering protocol accounting for kinetic information
the most probable path (MPP) clustering algorithm published
by Jain and Stock.43 This algorithm relies on an initial
structural discretization of the trajectory space using k-means,
followed by a kinetic-oriented stage, which assumes a time
scale separation between intra- and interstate transitions. At
this stage, structural microstates with a self-transition
probability below a chosen threshold are merged with their
most probable transition, until a state whose highest transition
probability is that of self-transition is reached.43 Again, in order
to compare CATBOSS to this algorithm on even grounds, we
followed the same featurization protocol: We began with
backbone dihedral angles ϕ and ψ of residues 2−34 (excluding
the terminal residues) and applied dihedral principal
component analysis (dPCA)58 to reduce dimensionality.
Eleven multipeak dPCs were used for analysis. We present
an evaluation of cluster structures as well as the corresponding
MSM. To demonstrate high-dimensional scaling of CATBOSS,
we also applied our protocol to the same data set, without any
dimensionality reduction of the 66 backbone dihedrals.

2.3. Change-Point Detection. Change detection was
performed using the SIMPLE change detection algorithm
implemented in Python.39 The main principle of the algorithm
is illustrated in Figure 6. SIMPLE relies on the underlying idea
that within a noisy time series typical of an MD trajectory,
points between two successive changes will be sampled from
the same distribution. It is further motivated by the assumption
that neighboring regions of a molecule are likely to undergo
conformational changes simultaneously.39 SIMPLE outputs a
set of change points S, which maximizes an objective function
of the form:

∑λ| − | |α
=

L S S(data )
i

K

i
1 (1)

where L(data | S) is the log-likelihood of data given the
selected set of change points, and λ∑i = 1

K |Si|
α is a penalty

function. In the penalty function term, |Si| is the number of
changes detected in all variables at time i, λ > 0, and 0 ≤ α ≤ 1.
For any candidate set of change points, the data are fit to a
family of distributions defined by mean and spread; fitting to a
family of distributions ensures that the method is translation
and scaling invariant. The log-likelihood values are added over
all data segments, for all observables. The implementation of
the algorithm used here fits the data to a Laplace distribution
family, where the log-likelihood is given by
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where μ is the mean of the distribution, and v is the scale
parameter. For this distribution model, the SIMPLE

Figure 5. An example of trajectory shifting to preserve distance upon
crossing the periodic boundary. The raw trajectory is shown in black
dots. The trajectory is shifted (red triangles) when two consecutive
points are more than 180° apart.
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optimization problem has been shown to be asymptotically
consistent.39

The penalty function, the intensity of which is tuned by the
user-set parameter λ, prevents overfitting by balancing out the
first term, which increases as additional change points are
added. The other tuning parameter, α, affects the extent to
which the penalty is lessened for changes occurring
simultaneously across multiple variables, with 1 being no
change to the penalty, and 0 being no additional penalty past
the first changing variable.39 The default parameter values, λ =
20 and α = 0.7, were applied to the interatomic distances data
set for valine dipeptide, and the parameter values of λ = 100
and α = 0.7 were applied to the long HP35 trajectory. For the
remaining data sets, a range of λ values between 10 and 20 was
tested, yielding similar results; λ = 10 was chosen out of an
abundance of cautiongenerally speaking, subsequent cluster-
ing can “rescue” false positive change points (though excessive
splitting may diminish the amount of kinetic information
preserved), but not false negative ones. Similarly, α values of
0.7 and 1.0 were both tested, with differences between the two
found to be minor, particularly in the low-dimensional data
sets. The α value of 0.7 was chosen in line with the original
paper’s guidance and in keeping with chemical intuition that
conformational changes are often driven by coupled motions in
multiple degrees of freedom.59

In a more general scenario, depending on the system and the
trajectory sampling rate, additional parameter tuning may be
necessary. An appropriate first step involves applying SIMPLE
systematically, starting with a very high initial value for λ (i.e.,
capturing the most “obvious” changes) and decreasing the
value on a logarithmic scale until the desired (or if unknown, a
reasonable) change time scale is observed.39

2.4. Calculating Intersegment Distances. After trajec-
tory segments were determined by SIMPLE, the distances
between pairs of segments were calculated using the earth
mover’s distance metric implemented in MATLAB.40,60 This
distance metric, illustrated in Figure 7, presents a trans-
portation problem solved by determining the minimum cost
flow between two histograms, that is, the minimum work
needed to transform one histogram into the other (in other

words, to turn one “pile of dirt” into another, hence the name).
In this case, work is defined as the amount of “dirt” moved
times the distance by which it is moved. Earth mover’s distance
has previously been applied as a metric of conformational
similarity between free energy landscapes,62 but has not, to our
knowledge, been used for clustering MD data. Earth mover’s
distance between two histograms P and Q is given by
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where {f ij} are the flows and dij are the ground (in our case,
Euclidean) distances between bins i and j of histograms P and
Q, respectively. The probability masses were set to be equal,
with segments length-normalized such that ∑iPi = ∑jQj = 1,

Figure 6. Schematic overview of the SIMPLE change detection algorithm.39 The local penalty at each time point depends on the number of
changes detected and the simultaneity parameter α.

Figure 7. Schematic overview of the earth mover’s distance metric
(partially motivated by reference 61). Cost or “work” is defined as the
mass times the distance moved; bars are given unit width so mass can
be read directly off the y axis.
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and the distances computed using Pele and Werman’s
FastEMD package.60 The pairwise distances between the
segments were organized into a distance matrix and used as the
input for density-peak clustering, with local density contribu-
tion of each segment set to its length, given in number of data
points.
The choice of earth mover’s distance was motivated by

several reasons: Compared to less computationally intensive
metrics, such as Jensen−Shannon divergence63 or normalized
mutual information,64 earth mover’s distance is more general,
as it does not require the probability distributions being
compared to have overlapping domains. For a simple example,
consider the idea of distributions supported on parallel line
segments in 2: suppose Pθ is the distribution of θ ∈Z( , ) 2,
where Z is a random variable and θ is a fixed parameter. Then
the earth mover’s distance EMD(P0, Pθ) = |θ|, and is therefore
continuous and converges to zero as θ → 0. Commonly used
divergences such as Jensen−Shannon and Kullback−Leibler,65
are discontinuous at 0: JS(P0, Pθ) = log(2), θ ≠ 0, and similarly
KL(P0, Pθ) = ∞, θ ≠ 0.66 Thus, earth mover’s distance
captures the intuition that Pθ is getting “closer” to P0 as |θ|
decreases, unlike Jensen−Shannon and Kullback−Leibler.
More precisely, the topology induced by the Jensen−Shannon
and Kullback−Leibler divergences is extremely strong, which is
particularly problematic when the distributions being com-
pared do not have overlapping supports.66 As a “weaker”
metric, earth mover’s distance is also better suited to learning
distributions supported by low-dimensional manifolds, which is
often relevant for systems studied by MD simulation.66

Additionally, earth mover’s distance is more intuitive, as it
has the units of the observables being compared. Its
computational drawbacks can also be mitigated through
quasilinear-time approximations.67 Further, compared to
Frećhet distance, another p-Wasserstein (p = 2) distance
(note that, strictly speaking, the equivalence between Frećhet
distance as defined on curves and 2-Wasserstein distance holds
true only when the curves are densities) previously used to
evaluate trajectory similarity,68 earth mover’s distance (p = 1)
is more robust to the presence of outliers in the probability
distributions being compared. The modular character of
CATBOSS does, however, allow for an easy application of
other distance metrics.
2.5. Clustering by Density Peaks. The trajectory

segments were clustered using a modified implementation of
density-peak-based clustering by Rodriguez and Laio.27 Under
the density-peak clustering scheme, each segment is assigned a
local density ρ, computed using a Gaussian kernel, and the
distance δ from the nearest neighbor of higher density. Points
with ρ and/or δ substantially greater than the majority of
points were selected by inspection as putative centroids.
Cluster assignment was performed in a single set of operations,
with each segment assigned to the same cluster as its nearest
neighbor of higher density.27 The principal algorithm was left
largely intact, with modifications limited to preallocating
memory for execution speed, and allowing the selection of a
nonrectangular region on the decision graph. As previously
mentioned, density-peak-based clustering relies on a hard-
coded distance cutoff for the kernel density estimator. In the
original implementation, this value is set to a fixed (second)
percentile of the sorted list of pairwise distances. While the
algorithm is fairly robust to cutoff choice, a list-position based
cutoff may present issues with clusters of varying densities.35 In
order to include information from all data points, while

minimizing user input, for all segment-based clustering trials,
the kernel density estimator cutoff was set to the average
distance to the ln(N)-th nearest neighbor, where N is the
number of trajectory segments considered. This choice of
cutoff was motivated by the idea that the number of nearest
neighbors k(N) must adapt to the underlying data distribution
as the number of samples N → ∞.69 Indeed, one must
consider k(N)→∞ as N→∞ to prevent degeneracy, but one
must also have k(N)/N → 0 as N → ∞ to ensure locality,
otherwise small-population clusters may be drowned out.70 We
see that k(N) = ln(N) satisfies this property, albeit other
choices may also give good results for our approach (e.g., k(N)
∼ N ).
Point-based density peak clustering was also performed as a

control on the dipeptide data sets. As saving all pairwise
distances for data sets of this size (necessitating distance
matrices of approximately 240 GB for alanine dipeptide, and
375 GB for valine dipeptide) was intractable, point-to-point
distances were not saved and were instead generated on the fly,
during the clustering. The distance cutoff was set, per the
authors’ original code, to the second percentile of the sorted
list of distances; however, instead of precomputing the full list
of distances, a list of distances was generated for trajectories
subsampled to 50 ps and used to determine the distance cutoff.
In order to isolate the cutoff effect, point-based clustering was
also performed using the same cutoff optimization scheme
used for CATBOSS.
The density-peak algorithm defines cluster border regions as

points within the density cutoff distance from another cluster.
Points with a density below that of the highest-density border
point are considered halo points and may be treated as noise.27

Results were obtained with and without halo control (i.e.,
removal of halo points from classification), in order to evaluate
the method’s level of confidence and outcome of including
potential noise in the results.

2.6. Identifying Transition Segments by Analyzing
Slopes. As the sampling rate of the data set may occasionally
be finer than the time scale on which conformational changes
occur, we may see a MD trajectory data set contain points
which do not actually belong to a metastable state but
constitute an ongoing transition (see an example in Figure 8).

Under the scope of CATBOSS, the set of trajectory segments
found by SIMPLE includes segments consisting of such points.
If we represent the MD trajectory as a time series, a metastable
state will be a “flat” segment, consisting of points drawn from a
distribution centered around a mean value (Figure 8, blue
dots). On the other hand, a transition will be a segment with a
distinct slope, connecting from one metastable state to another

Figure 8. An example trajectory snippet showing the transition
phenomenon. The blue vertical line shows a clean, abrupt transition
typical of a change occurring on a time scale faster than the sampling
rate. The red segment corresponds to a transition on a time scale
slower than the sampling ratea segment with a nonzero slope
(shown by the red trend line) is detected.
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(Figure 8, red stars). We formulate a simple statistical test for a
“sloped” segment. We begin with the idealized assumption that
a trajectory segment of length n is drawn from a normal
distribution with mean μ equal to the mean of the segment.
Under this model, the slopes of best-fit regression lines for
segments of length n drawn from this distribution will also be
normally distributed, with the distribution mean equal to zero.
We compute an empirical approximation of the standard
deviation from the variance of residuals and the variance of the
segment to be analyzed:

σ σ

μ
=

∑ −= x( )i
n

i
slope

1
2

(4)

where xi is the i-th point of the segment, and σ is the standard
deviation of the residuals in the regression model.71 For each
segment, we calculated the slope of its best-fit regression line
and compared it to σslope for that segment; if the absolute value
of the slope was >1.96·σslope (p < 0.05), then we rejected the
null hypothesis that the segment may be flat. This analysis was
performed on the alanine dipeptide data set to illustrate our
protocol’s ability to identify transition segmentssomething
that currently available clustering algorithms struggle with.
More specifically, while the density-peak algorithm includes a
way to identify regions where the uncertainty in the density
estimate is high (in the form of halo control),27 we observe
that the use of this feature frequently results in over- or

underestimation of transition regions. Figure S1 shows one
such case, where unclassified points (shown in black) account
for the majority of the data set. Similar results hold true with
an updated density-peak protocol which merges clusters
consisting entirely of points whose density is comparable to
the border density with their neighboring clusters.37

The code for the protocol described above is available at
https://github.com/ysl-lab/CATBOSS.

3. RESULTS AND DISCUSSION

3.1. CATBOSS Reliably Separates Two Overlapping
States of Varying Populations. A summary of clustering
results and comparison of CATBOSS with a recent segment-
based clustering algorithm37 is given in Figure 9. The surface
plot of clustering accuracy with respect to the intensity ratio
(I2/I1) and state 2 population recapitulates the “curved
waterfall” shape seen in Li and Yang’s work.38 Clustering
accuracy in this case was defined as the percentage of total
points belonging to the minor state that were correctly
classified. As I2/I1 decreases, the two states display higher
overlap and eventually they can no longer be distinguished
(this phenomenon would occur even sooner in the point-based
regime).38 On the other hand, as the population of the minor
state decreases, the minor state population becomes signifi-
cantly smaller than that of the major state, and the lowly
populated minor state is ultimately overpowered by the highly

Figure 9. Accuracy of segment-based clustering methods on two-state, 1D synthetic data. (A) Li and Yang’s hierarchical method.38 (B) CATBOSS.
(C) Li and Yang’s hierarchical method with ground-truth change points provided.37 (D) CATBOSS with ground-truth change points provided.
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populated major state and cannot be resolved, either. We note
that CATBOSS consistently outperforms the other method in
terms of peak accuracy, robustness to overlap, and robustness
to population difference (Figure 9).
To test whether the performance difference between the

previous method and CATBOSS was entirely attributable to
change detection differences or not, we applied both
algorithms to segments delimited using the ground truth
change points (Figure 9C,D). It is found that CATBOSS
outperforms the other protocol under these circumstances as
well.
We notice that the difference in accuracy between the

protocol adopted by Li and Yang and CATBOSS stems not
only from the difference in the way that clustering is performed
(hierarchically versus by density peaks) but also the final step
in Li and Yang’s protocol, which uses the Bayesian information
criterion to determine the most likely number of states.38 This
statistical metric yields highly conservative results, leading to
the determination of one lone cluster even when a higher
number of clusters would yield correct assignments. In order to
account for this, we also performed a round of tests in which
the dendrogram was manually cut at two clusters; the results
are shown in Figure S2. The performance in this case is very
similar to that of CATBOSS; however, in a real-world use case,
the number of clusters is not known in advance. In
comparison, CATBOSS selected centroids based on a gap in
ρ·δ, with decision graph assignments displayed and verified
manually.
3.2. Compared to Point-Based Clustering, Segment-

Based Clustering of Alanine Dipeptide Yields Natural
State Boundaries. A summary of clustering results on the (ϕ,
ψ) trajectories of alanine dipeptide and comparison of
CATBOSS with the point-based control is given in Figure
10. Alanine dipeptide is a simple, well-studied system,

frequently used as a benchmark for MD data analysis
tools.48,50,72−74 Its dynamics have been shown to have a low-
dimensional intrinsic structure and are well-explained using the
two backbone dihedral angles (ϕ, ψ).48−50 Unsurprisingly,
both point- and segment-based clustering are able to learn the
intuitive partitioning of the dihedral data, with similar
populations across the board (Figures 10 and S3). However,
the nature of point-based clustering prevents it from
accounting for overlap between states and accounts for less
natural-looking state boundaries in the control (for example,
comparing the boundaries between states in Figure 10). The

definition of state boundaries is an issue which has been
previously identified and tackled in a variety of ways;75−77

however, generally speaking, commonly used notions of “core
sets of states” do not take advantage of temporal information
during the clustering stage. In the case of CATBOSS, the
boundaries are a direct consequence of the time series features
and require no further postprocessing. To demonstrate that
these boundaries are well-defined, we built a MSM for this
trajectory using the cluster assignment from point-based
density-peak clustering and from CATBOSS as the state
input. As MSMs are commonly constructed using a
combination of fine-grained k-means and various types of
kinetic clustering,78−80 as a reference we also built a MSM
from a k-means discretization with 100 microstates merged
using PCCA+, a popular fuzzy spectral clustering method
based on a Perron eigenvalue cluster, which generally results in
a non-negative, nearly block-diagonal transition matrix.80

Figure 11 shows that the slow implied time scales appear to
plateau at much shorter lag times when the CATBOSS
clustering results were used as the state input, suggesting that
CATBOSS does capture some kinetic information about the
system.

3.3. Slope Analysis Suggests That States 4 and 5 Are
Transitional. The state assignments in both the point-based
and CATBOSS cases suggest the presence of non-negligibly
populated states (states 4 and 5 in Figure 10; ∼3−4% in
population) between the PPII/β region (states 1 and 2 in
Figure 10A; states 1 and 3 in Figure 10B) and the right-handed
α-helical region (state 3 in Figure 10A; state 2 in Figure 10B).
Whereas point-based clustering provides little information
about these states, clustering using CATBOSS shows that
states 4 and 5 consist predominantly of short segments (Figure
S4), suggesting short lifetimes despite the non-negligible state
populations (∼3−4%). To further examine whether these
states can be called “states”, implying that they are metastable,
we applied the statistical test outlined in the Methods section
to the alanine dipeptide trajectory. As Figure 12 shows, states 4
and 5 in Figure 10B were visibly overrepresented in the set of
“sloped” segments. A similar observation was made for a
number of segments initially grouped with state 3, potentially
corresponding to transitions between states 1 and 3 in Figure
10B. To further substantiate these findings, a CATBOSS
analysis was performed with the sloped segments removed
from consideration. As Figure S5 shows, states 4 and 5 are no
longer resolved as individual clusters.

3.4. Segment-Based Clustering of (ϕ, ψ) in Valine
Dipeptide Reveals Additional Degrees of Freedom. A
summary of clustering results on the two-dimensional valine
dipeptide data set, that is, using (ϕ, ψ), and comparison of
CATBOSS with the point-based control is given in Figures 13
and S6. In the case of this system, the differences between
CATBOSS and the point-based control are far more
pronounced. CATBOSS yields a total of 11 clusters, compared
to 6 seen in the point-based clustering. A look at the 3D plot of
the data, with the side chain dihedral χ on the additional z-axis,
reveals that to a large degree, the segment-based protocol was
able to discriminate among different side chain rotamers,
without being presented with the χ angle data (Figure 13,
bottom row). This finding showcases a remarkable improve-
ment in clustering resolution brought about by segmentation.
An illustration of the input of the two contrasting algorithms

provides an explanation of the superior resolution of the
segment-based algorithm: While the (ϕ, ψ) density distribu-

Figure 10. Performance comparison of (A) point-based clustering
and (B) CATBOSS on the alanine dipeptide (ϕ, ψ) data set. The six
most populated clusters for each method are shown as density
contour plots in the Supporting Information.
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tion of the data points shows no subdistribution in each of the
β, PPII, and αR regions (Figure 14A), a look at the segment
means readily shows further clustering, especially in the case of
the β and αR regions (Figure 14B). Such separation is
impossible to see on the data-point level. This behavior may be
a result of different side chain orientations inducing slight
backbone conformational change, leading to a small-magnitude
shift in the position of free energy minima. Figure 15 shows the
backbone (ϕ, ψ) distribution for each of the three side chain
conformers (χ = 60°, 180°, and 300°). The different positions
of the density peaks in the β, PPII, and αR regions are clearly
observed and they are possible to capture using CATBOSS,
due to the segmentation of the data emphasizing density gaps
between states, while allowing for overlapping data distribu-
tions. It is worth noting, however, that there is not always a
clear separation between the β and PPII regions (Figure 13B,
bottom).
3.5. Including the Side Chain Dihedral Angle Results

in Intuitive Partitioning. A result summary for the three-
dimensional (3D) (ϕ, ψ, χ) data set of valine dipeptide is given
in Figures 16 and S7. Including the side chain dihedral angle χ
makes a clustering algorithm’s job “easier”, insofar as it
provides most of the information about valine dipeptide’s

behavior.51 With this information provided, as seen in the
alanine dipeptide case, both point-based clustering and
CATBOSS perform well, with relatively minor differences
(Figure 16). Aside from boundary improvements, we also
observe that CATBOSS singles out low-population regions
(states marked in shades of dark blue in the 3D panel of Figure

Figure 11. Implied time scale comparison on the alanine dipeptide data set for three different trajectory discretizations: (A) k-means structural
clustering followed by PCCA+ kinetic clustering, (B) point-based density-peak clustering, and (C) CATBOSS. Note that the plateau occurs sooner
in the case of CATBOSS.

Figure 12. Free energy contour plots of data points from the alanine
dipeptide data set belonging to segments classified by slope analysis.
Note the overrepresentation of states 4 and 5 (Figure 10) among the
sloped segments.

Figure 13. Performance comparison of (A) point-based clustering
and (B) CATBOSS on the valine dipeptide (ϕ, ψ) data set. The six
most populated clusters for each method are shown as density
contour plots in the Supporting Information.

Figure 14. (A) All data points of the valine dipeptide data set
projected onto the backbone dihedral space. (B) All segment means
of the valine dipeptide data set projected onto the backbone dihedral
space. Note the visible separation between subclusters in the major
states in (B).
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16B, pointed at by dark blue arrows) on the periphery of major
states that readily lend themselves to interpretation as
transition segments analogous to those previously described
for alanine dipeptide.
To further evaluate the obtained cluster assignments, we

separated the data set based on the value of the side chain
dihedral χ and applied both methods to each individual
conformer separately. We then observed that when clustered
individually, all conformers displayed good separation between
the β and PPII regions (Figure S8). We believe this difference
in separation to be the result of the structure in the valine
dipeptide (ϕ, ψ, χ) data set. The data formed three well-
separated “layers” in the χ space, corresponding to the three
side chain conformers, wherein the larger average distances
between points lead to a larger cutoff being selected. However,
since points associated with the same side chain conformer
have negligible distance in χ, the larger cutoff results in points
separated by only small density valleys being lumped together
when the entire data set is evaluated at once.
However, in the case of CATBOSS, when clustering each

side chain conformer separately, in addition to the β and PPII
regions being resolved separately, we obtain additional states
with segment means between the two major regions and data
points traversing both (Figure S8B, states 4−6 in the left panel,

and state 4 in the middle panel). Visual inspection of the
trajectories (Figure S9) suggests that the segments in question
are bimodal, that is, sampling from more than one distribution.
The presence of these segments hints at a change detection
artifact. It is noteworthy that the transitions between the two
modes occur at a very fast rate, comparable to our sampling
frequency, which makes change detection more difficult.
Observing both fast and slow interconversion between the
two states may be due to interactions between the peptide and
the solvent molecules.81

3.6. Interatomic Distance Clustering Provides Evi-
dence of Scaling and Validation of 3D Data Set. The
summary of results on the 37-dimensional data set of valine
dipeptide is provided in Figures 17 and S10. As much as the

inclusion of a third dimension made clustering easier, the
consideration of all heavy-atom interatomic distances ought to
make it more difficult, primarily by challenging the scaling of
the distance metric used into higher dimensions.82,83 Good
scaling is important for an algorithm to have widespread
practical appeal, as oftentimes there is no a priori knowledge of
intrinsic coordinates to consider, or there is no sufficiently low-
dimensional intrinsic coordinate set that may explain a large
enough portion of the data variance.84 In those cases, the use
of a relatively (or entirely) complete set of internal coordinates
may be warranted. While the Euclidean-distance point-based
clustering scales reasonably well, some misclassifications (e.g.,
state 1) are still apparent, across multiple reasonable decision
graph assignments (the perceived best one of which is shown
in Figure 17A). We attempted manually optimizing the kernel
density cutoff, to no avail, and enabling halo control with the
applied cutoff, that is, removing noncore points from
classification, resulted in the majority of data being
unclassified. On the other hand, with the cutoff used, halo
control had much more utility on the segment-based front,
leaving 85.5% data classified, with no major deviations in

Figure 15. Density contour plots of subsets of the valine dipeptide
trajectory corresponding to (A) χ = 60°, (B) χ = 180°, and (C) χ =
300°. Note the slightly different positions of the major state density
peaks.

Figure 16. Performance comparison of (A) point-based clustering
and (B) CATBOSS on the valine (ϕ, ψ, χ) data set. The six most
populated clusters for each method are shown as density contour
plots in the Supporting Information.

Figure 17. Performance comparison of (A) point-based clustering (all
data shown, as noise removal discarded most data) and (B)
CATBOSS on the valine dipeptide data set (85.5% data shown,
following noise removal), considering heavy-atom interatomic
distances. The six top population clusters are shown for each method,
and the contour plots are shown as density contour plots in the
Supporting Information.
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assignment compared to the 3D data set (Figures 16B and
17B), leading to an overall more accurate clustering compared
to the point-based control.
3.7. CATBOSS Provides a Good Description of the

Folded Dynamics of BPTI. A breakdown of the clustering
results is presented in Figure 18, with the top 6 (out of total

34) clusters shown. The individual cluster distributions of tICs
are sharp and unimodal (Figure S11), suggesting clean cluster
separation. The tight backbone distributions (shown in blue
lines in Figure 18) further corroborate this observation. As
previously reported,41 the Cys14-Cys38 disulfide bridge
(shown as a ball-and-stick model) does appear to be a
prominent, though not the only discriminating factor between
the clusters. The distributions of dihedral angles describing the
geometry of this disulfide bridge are given in Figure S12.
Considering the implied time scales of MSMs built at various
lag times, we confirm that a lag time of 500 ns is appropriate
for this state selection (Figure S13). With this lag time
selection, a 10-fold cross-validated VAMP2 score was
calculated with a validation fraction of 0.1 and the top 10
singular values accounted for.56 The resulting mean VAMP2
score was 4.45, which exceeds those attained by all the
methods tested by Cocina et al. under the same settings.41

Additional parameter tuning may further improve upon this
score.
3.8. CATBOSS Discriminates between Folded, Un-

folded, and Intermediate States of HP35. An overview of
the CATBOSS clustering results is given in Figure 19, with the
top 6 (out of 17) clusters shown. The per-cluster distributions
of dPCs (Figure S14) are sharp and unimodal for the high-
population clusters, supporting a clean partitioning. A visual
examination of representative cluster structures (Figure 19)
shows that the states observed range from native-like (cluster
1) to partially folded intermediates (clusters 2, 3, and 5), to
entirely unfolded (clusters 4 and 6). This observation is in line
with previous work.43 Based on the MPP results, Jain and
Stock suggest that a subset of residues is particularly relevant to
state discrimination; residues in positions 3, 9−13, and 29−33
appear to be where the primary differences between clusters

are concentrated.43 More specifically, residue 3 assumes
distinct conformations in native-like states, the unfolded
state, and different intermediates, changes in residues 9−13
are associated with the unfolded−intermediate transitions, and
residues 29−33 distinguish the two native-like states.43 Upon
examination of the Ramachandran plots for the residues, it
appears that that is indeed the case (Figures S15 and S16). We
are similarly in agreement that there are multiple native-like
and intermediate states with appreciable population, though
some additional splitting of states is seen with CATBOSS
assignments. The populations of native-like states (Figure S16)
match up with the 31% figure reported by Jain and Stock
following their dynamic coring procedure.43

To further demonstrate CATBOSS’ scaling capabilities, we
repeated the above analysis for the 66-dimensional trajectory
consisting of the raw backbone dihedral angles without any
dimensionality reduction. Based on the dihedral distributions
of each cluster (Figure S17), we see that the clustering remains
robust, albeit with a different population distribution; it
appears that native-like states are split further, with the top
intermediate clusters now merged.
Overall, the results shown demonstrate the ability of

CATBOSS to handle large data sets and process them to a
more manageable form. With the SIMPLE parametrization
used here, the 66-dimensional data set was reduced from 1.5 ×
106 frames to approximately 30,000 segmentsa 50-fold
decrease in data set volume with no apparent loss of
information.

3.9. Remarks on Robustness. The presence of two tuning
parameters at the change detection stage of the process, as well
as the ability for the user to optimize the density cutoff
distance and affect core/halo assignments may be perceived as
the algorithm having a lot of “moving parts”. The plug-and-
play potential of the method was confirmed by comparing the
performance of the protocol with the parameter values shown
here to that with a range of other values. The results using
different values of SIMPLE tuning parameters are shown in
Figure S18 and imply a high degree of robustness in this
regard, with the caveat that in cases where finer separation is

Figure 18. BPTI clustering results. 100 randomly selected
representative structures of the top 6 clusters detected by CATBOSS
for the BPTI trajectory. The Cys14-Cys38 disulfide bridge is shown as
a ball and stick model.

Figure 19. HP35 clustering results. 100 randomly selected
representative structures of the top 6 clusters detected by CATBOSS
for the HP35 trajectory. Note the presence of a folded state (cluster
1), intermediate states (clusters 2, 3, and 5), and unfolded states
(clusters 4 and 6).
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desired or extremely fast or slow transitions are present, more
sensitive tuning may be advisable (Figure S19). Moreover, the
newly introduced automatically set cutoff yielded not only
strong performance across all data sets but also resulted in the
majority of data being classified as core points, with a high
degree of confidence. In fact, enabling halo control almost
exclusively declassified points identified as belonging to
transition segments, either by inspection or slope analysis.
The default cutoff applied in the stock version of the point-
based density-peak clustering code, on the other hand, yields
robust assignments, but is not necessarily optimal for every
system, and may result in highly uncertain halo control.
3.10. Remarks on Performance. One obstacle to the

application of point-based clustering to truly large MD data
sets was having to choose between quadratic memory
complexity for storing pairwise distances and recalculating
distances at every execution. With the stock MATLAB
implementation, storing the distance matrix alone for a
200,000-point data set would require in excess of 370 GB of
memory, even in single precision. With the settings described
in the paper, the number of segments found by SIMPLE was
on the order of 103 for all data sets but alanine dipeptide and
HP35, which clocked in at ∼104 segments, corresponding to a
worst-case distance matrix of ∼1 GB in single precision, which
can be trivially stored for repeated executions as well as fit in
the RAM of any modern computer. On the computational
complexity side of things, no significant performance hit was
observed as a result of SIMPLE preprocessing or earth mover’s
distance calculation. In fact, given the need for repeated
distance calculations in point-based mode, the segment-based
method generally ran as fast or faster. Moreover, if further
performance gains are desired and absolute accuracy may be
sacrificed, we would like to point out that if the segments are
not treated as histograms, but approximated by a continuous
distribution with a given mean, variance, and probability mass,
the earth mover’s distance is equivalent to the 1-Wasserstein
distance, which may be analytically computed in quasilinear
time for a single dimension.67 This approximation improves
upon the “rate-limiting step” of the algorithm, allowing for
efficient clustering of millions of entries.

4. CONCLUSIONS
Readily available computational resources and algorithmic
improvements have turned MD simulation into an immensely
powerful tool in a chemist’s arsenal. Cluster analysis is an
essential component of the MD analysis workflow, vital to
parsing an inevitably gigantic amount of data into a human-
readable form. In this work, we have devised what we believe
to be the first segment-based clustering protocol applied to
MD data sets. This method improves on the performance of
density-peak clustering and outdoes the state of the art by
harnessing time evolution information to produce fuzzy state
boundaries which are more consistent with systems’ dynamics
and provide information on transitions. Most notably, we have
presented evidence that segment-based partitioning greatly
enhances the resolution of clustering and may uncover, or
compensate for, the presence of hidden degrees of freedom.
We have also presented a way to “pick out” transition segments
and demonstrated robustness comparable to, or exceeding, the
currently available techniques. The modular character of
CATBOSS will allow it to further improve as adjustments
are made to its components; for instance, incorporating slope
analysis into the change detection stage may be a way to

distinguish between metastable and transition states more
robustly. Consequently, we expect that this method will be of
great use to chemists seeking insight into molecules’ structural
preferences and dynamics.

5. DATA AND SOFTWARE AVAILABILITY
The initial structures for all simulations performed, the
simulation parameter files, all of the time series analyzed in
this work, as well as all of the scripts necessary to perform the
analysis, are provided free of charge at https://github.com/ysl-
lab/CATBOSS. The README file for the repository provides
links to third-party scripts used as part of the protocol. Full
simulation trajectories of the dipeptide systems in .xtc format
are available upon written request from the authors.
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