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Abstract: The dynamic nutrient availability and photon flux density of diatom habitats necessitate
buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the
biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are
an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar
lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic
compounds and function as a carbon and electron sink. These functions are implemented
by interconnections with other intracellular systems, including photosynthesis and autophagy.
Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper
understanding of LDs may offer targets for metabolic engineering. In this review, we provide an
overview of diatom LD biology and biotechnological potential.
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1. Introduction

LDs are an organelle composed of a core of neutral lipids, mostly triacylglycerol (TAG), surrounded
by a polar lipid monolayer [1,2]. LDs can store reserves of energy, membrane components, carbon
skeletons, carotenoids and proteins [3,4]. Many different synonyms have been used to describe
this organelle throughout the literature and they can vary between organisms, such as lipid bodies,
lipid particles, oil bodies, oil globules, cytoplasmic inclusions, oleosomes and adiposomes. We will
use the term “lipid droplet” in this review, abbreviation “LD,” due to its current wider use within
the scientific community. LDs can mitigate stress caused by excess lipid, carbon or protein aggregate
accumulation, serve as an energy sink during periods of electron flow imbalance or nutrient scarcity
and help maintain redox homeostasis [5,6]. In so doing, they buffer the internal stoichiometry of
cells from changes in their environment. Their functions are coordinated with ERAD, proteasomal
degradation, autophagy, beta-oxidation, photosynthesis and lipid metabolism [7]. They serve as a
metabolic network hub for the storage and exchange of proteins and lipids between multiple cellular
compartments. Such inter-compartmental connections can exist as direct contact sites, close physical
associations or involve vesicle trafficking [8,9]. The myriad functions of LDs are performed and
regulated by a variety of proteins, which are localized to LDs by several mechanisms [10]. Although
diatom lipid metabolism has been studied from a physiological perspective for several decades,
recent advances in diatom molecular biology and LD biology in other organisms, are contributing to a
more sophisticated and comprehensive understanding. Only a handful of diatom LD proteins have so
far been characterized, although recent proteomic screens have identified further candidates for future
study. In this review we will summarize LD biology within the context of diatom cellular ultrastructure,
physiology, biochemistry, ecology and evolution. Although this topic was reviewed recently [11],
we will describe recent research that has advanced our understanding of diatom LDs. Although this

Biology 2020, 9, 38; doi:10.3390/biology9020038 www.mdpi.com/journal/biology

http://www.mdpi.com/journal/biology
http://www.mdpi.com
https://orcid.org/0000-0001-8618-0687
http://www.mdpi.com/2079-7737/9/2/38?type=check_update&version=1
http://dx.doi.org/10.3390/biology9020038
http://www.mdpi.com/journal/biology


Biology 2020, 9, 38 2 of 23

sub-discipline is in its infancy, since LDs are an ancient organelle conserved among all eukaryotes,
we will draw from comparisons with other organisms to fill in the gaps. Understanding this organelle
and its protein targeting mechanisms may hold the key to the biotechnological exploitation of diatoms.

2. Evolutionary Context

LDs are probably an evolutionarily ancient organelle that was present in the Last Eukaryotic
Common Ancestor (LECA). This can be deduced by several lines of reasoning. LDs are ubiquitous
among the Eukaryota and are even present in some bacteria. In Acinetobacter and Rhodococcus, LDs form in
response to a high carbon:nitrogen ratio and by budding-off from the cytoplasmic membrane [12]. This is
in contrast to eukaryotes, where the most commonly accepted models suggest they bud from the ER.
Protein and lipid trafficking to LDs has been shown to involve proteins such as coatomers, Arf1, SNARE,
TRAPP and Rab GTPases [13–17]. This conserved machinery was present in the LECA and was probably
responsible for the differentiation of the endomembrane system into specialized compartments [18,19].

At some point over a billion years ago, the ancestors of the Opisthokonta, Archaeplastida and
SAR clades diverged from the LECA [20]. The SAR super group contains the Rhizaria, Alveolata and
Stramenopila; the Opisthokonta contain animals and fungi; and the Archaeplastida contain the Rhodophyta
(red algae) and Viridiplantae (green algae and plants) [21]. Diatoms (Bacillariophyceae) are members
of the Ochrophyta, a monophyletic group within the kingdom Stramenopila, which gained a complex
red plastid by a serial endosymbiotic process [22,23] (Figure 1). Most research on LDs has been
performed on model animal species and cell lines, yeast, green algae and plants. Although there has
been a plethora of recent advances on the study of diatom LDs and lipid metabolism in recent years,
potential explanations to “fill in the gaps” can be acquired by examination of other model organisms.
Much research on diatoms infers similarities with other algae, simply by virtue of being algae and
thus sharing similar physiological, ecological and plastidial characteristics. However, the algae are a
polyphyletic group and in fact diatoms share some things more in common with animals than the
Viridiplantae, such as an ornithine-urea cycle [24]. Considering the antiquity of LDs, we can therefore
anticipate that diatoms may equally share features in common with the Opisthokonta as with the
Viridiplantae. When possible, comparisons with other stramenopiles can be given preference, such as
with the well-studied eustigmatophyte Nannochloropsis.
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The fossil record and molecular clocks suggest that diatoms likely originated and proliferated
during the Mesozoic era [25–27]. During the Cenozoic, geologic shifts, such as the opening of the Drake
passage and subsequent formation of the Antarctic Circumpolar Current, resulted in seasonal nutrient
pulses which allowed for the domination of marine phytoplankton communities by diatoms [28].
Antarctic sea ice diatoms rely on TAG as an energy sink to cope with the stressful conditions of their
environment [29]. The success of diatoms in-turn drove the evolution of krill, cetaceans and other
components of the rich marine food-webs that characterize contemporary oceans [28]. Therefore,
understanding LDs and diatom lipid metabolism is not merely an esoteric exercise but one of several
explanatory variables within a broader ecological and evolutionary context.

3. Lipid Composition

3.1. The Core

The LD core is composed of neutral storage lipids. Although such lipids are usually in the form of
triacylglycerol (TAG), the LD core in some organisms and cell types can consist, in part or entirely,
of sterols, other steryl esters, wax esters, carotenoids or polyprenols [4,12,30,31]. Nevertheless, TAGs are
the primary storage lipid in diatoms [32,33]. TAGs are an inert, stable, hydrophobic molecule consisting
of three fatty acids esterified to a glycerol backbone. TAGs store large amounts of energy, carbon and
membrane components, while simultaneously shielding the cell from the potential cytotoxicity of free
fatty acids [34–36]. Thin-layer chromatography of LDs isolated from P. tricornutum confirms they are
indeed composed mostly of TAG [37]; however recent lipidomic analysis has suggested that some
sterols are present in lower abundance [38].

Various species of green algae sequester carotenoids in LDs, which may shield the photosynthetic
apparatus from excessive light, reduce reactive oxygen species, serve as a sink for excess photosynthates
or protect LD lipids from oxidation. Evidence of several pigments in P. tricornutum and F. solaris
LDs has been found, including beta-carotene and fucoxanthin, as well as fucoxanthin-chlorophyll a/c
binding proteins [37–39]. Our lab has made similar observations (unpublished) but the presence and
function of carotenoids or other isoprenoids, in diatoms has not been explored in detail yet.

LDs can be labeled with neutral lipid-specific fluorochromes, such as Nile Red, Bodipy, LD540 or
LipidTOX, which can aid in their visualization and quantification in vivo [40–43]. Developments in
Raman spectroscopy are also yielding promise for label-free in vivo measurements of LDs, including
the potential to differentiate different lipids [44–46]. The low buoyancy of LD neutral lipid content
allows for their isolation by density gradient centrifugation, since they float on the surface of the
aqueous phase of centrifuged lysate [47,48].

3.2. The Monolayer Membrane

Most organelles are bounded by a polar lipid bilayer; however, LDs are unique in that they are
bounded by a monolayer. This is not a coincidental phenomenon but a more thermodynamically
stable configuration. The phospholipids constituting standard bilayers have a hydrophilic head and a
hydrophobic tail, whereby the bilayer is formed by the sandwiching together of the two hydrophobic
tails of each adjacent layer, such that the organelle contains an aqueous core. However, since LDs have
a hydrophobic core, they no longer require the inner phospholipid layer of the bilayer and instead are
bounded by a monolayer in which the hydrophobic tails are pointed inwards towards the core. In most
eukaryotes, the phospholipid monolayer of LDs is typically composed of phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) [49], however in microalgae other lipid classes have been observed,
including chloroplast glycerolipids and betaine lipids [50,51]. Lipidomic analysis of nitrogen starved
P. tricornutum (Pt.1) identified the major polar lipids to be sulfoquinovosyldiacylglycerol (SQDG),
PC and the betaine lipid diacylglycerylhydroxymethyltrimethyl-β-alanine (DGTA) [38]. The polar
lipid composition of the LD membrane may affect which proteins bind to it [52]. During phosphorous
deficiency, phospholipids are replaced by non-phosphorous lipids, such as betaine lipids, sulfolipids
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and galactolipids [53,54], although it is currently unknown what effect this might have on the
LD membrane.

3.3. Intracellular Connections

In most eukaryotes, LDs have been shown to be closely associated with the ER, which is the
presumed site of LD biogenesis. In yeast, most LD proteins co-localize to the ER [7]. Direct contact via
membrane bridges connecting LDs to the ER allows for the exchange of functional enzymes [55,56].
ER-Golgi transport machinery, such as coatomers and Arf1, may also be involved in the delivery of
functional enzymes to LDs [13,57]. In both the Opisthokonta and Viridiplantae, seipin localizes to ER-LD
contact sites and is important for LD biogenesis and maturation [58–60]. The P. tricornutum genome
contains at least one seipin homologue, PHATRDRAFT_47296 (B7G3W8) [61]. Overexpression of
PtSeipin resulted in increased TAG content, larger LDs, a higher proportion of saturated FAs compared
to total FA and a lower proportion of unsaturated FAs [61]. In the model green alga Chlamydomonas
reinhardtii, LDs have been shown to connect to both the ER and the plastid, the latter contributing DAG
to the expanding TAG pool, as well as polar lipids and proteins [51,62,63]. In both the Opisthokonta
and Viridiplantae, LDs can also form close-associations with mitochondria or peroxisomes, where
they function as a conduit for FAs directed to mitochondrial or peroxisomal beta-oxidation [64–71].
In Arabidopsis, the peroxisome-localized TAG lipase, Sugar-Dependent 1 (SDP1), was shown to
translocate to LDs during early seedling growth [72]. The interconnectivity between LDs and
other cellular compartments may be more complex in diatoms compared to the Opisthokonta and
Viridiplantae. The Ochrophyta inherited their plastid by a serial endosymbiotic process [22,23,73],
resulting in continuity between the outer membrane of the diatom plastid and the nuclear and ER
membranes [74,75], as well as other complex inter-compartmental interactions. For instance, metabolic
cross-talk between the plastid and mitochondria, allows for the regulation of cellular redox balance and
resource allocation under variable environmental conditions [76–78]. Potential interactions between
LDs and other intracellular compartments can be seen in Figure 2 and a simplified summary of the
putative interactions between LDs and other compartments is illustrated in Figure 3.
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Epifluorescent image of cells stained with only DiOC6, (C) Epifluorescent image of cells stained with 
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Figure 2. Micrographs of nitrogen starved P. tricornutum cells, illustrating potential interconnectivity
between LDs and various cellular compartments. Plastidial autofluorescence appears red, the LD stain Nile
Red fluoresces yellow and the ER/mitochondrial/endomembrane stain DiOC6 fluoresces green/greenish
blue. (A) Epifluorescent image of cells stained with Nile Red and DiOC6, (B) Epifluorescent image
of cells stained with only DiOC6, (C) Epifluorescent image of cells stained with Nile Red and DiOC6,
(D) Differential interference contrast image with no epifluorescent staining. P = plastid, L = lipid droplet,
LPI = lipid droplet-plastid interface, LEI = lipid droplet-endomembrane interface. The interfacial regions,
emphasized in boxes with dotted lines, are speculated to be potential regions of interaction between LDs
and other organelles.
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4. LD Formation and Degradation

4.1. Biogenesis

Diatoms experience fluctuations in nutrient availability and photon flux density. Being single
celled organisms, they are particularly vulnerable to such dynamic conditions, in terms of maintaining
metabolic homeostasis. This necessitates the ability to buffer against external changes to the environment
with internal storage capabilities. LDs are one aspect of this buffering requirement and hence form in
response to stress conditions, as well as part of the natural diurnal cycle. For instance, in P. tricornutum,
storage lipid accumulation reaches its diurnal zenith at dusk and is consumed throughout the night,
reaching a nadir at dawn [78,79]. Various nutrient deficiencies result in TAG accumulation, including
silicon [80,81], phosphorous [82,83] and nitrogen [33,84–86]. Each nutrient stress condition results
in different metabolic changes and hence, differences in lipid class profile, positional isomers and
enantiomers [87]. The waning of the diurnal cycle and macronutrient deficiency have been shown to
cause co-ordinated changes in transcriptional regulation, re-organization of metabolic flux and the
reallocation of cellular carbon towards lipid production [83,85,88–91]. Similar effects can be achieved
by disrupting nutrient assimilation, such as knocking-out or knocking-down nitrate reductase [92,93].
Neutral lipid accumulation can also be induced by exogenous addition of a variety of compounds,
including fatty acids [94], sodium bicarbonate [95], nitric oxide [96] or other compounds [97,98].
The various stresses described above cause imbalances in energy and redox homeostasis. For example,
nitrogen starvation constrains the formation of nitrogenous compounds, such as proteins, whose
constant turnover is required for the operation of photosynthetic machinery [99–101]. Likewise,
phosphorous starvation constrains the formation of ATP. Both de novo synthesis and remobilization of
membrane lipids, contribute to the accumulation of storage lipids [83,102–104]. LDs likely form in
predefined microdomains of the ER, where a lens of neutral lipids accumulates between the two leaflets
of the ER membrane [105,106]. The expanding neutral lipid accretion disk leads to increased curvature
of the ER membrane, which can be sensed by proteins that are further recruited to the nucleation site
and contribute to LD expansion [56,107–109].

4.2. TAG Biosynthesis

Acyl groups exported from the plastid are eventually incorporated into TAG via either
acyl-CoA dependent or independent pathways [110–112]. The acyl-CoA dependent pathway
involves the sequential activity of glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic
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acid acyltransferase (LPAAT) and diacylglycerol acyltransferases (DGAT). In the penultimate step,
phosphatidic acid is converted to diacylglycerol (DAG), which is finally converted to TAG by one
of several DGATs. Many of these acyltransferases were cloned and overexpressed in P. tricornutum
or T. pseudonana, where they were reported to enhance TAG generation [113–119]. The acyl-CoA
independent pathway involves phospholipid:diacylglycerol acyltransferase (PDAT), which uses other
polar lipids as an acyl donor for the formation of TAG from DAG. PDAT typically uses PC in yeast
and plants [120] but can use a range of various glycerolipids in microalgae [121]. TAG biosynthesis
canonically occurs in the ER, although in other eukaryotes, TAG biosynthesis enzymes have been
shown to re-localize to LDs [55,56,122]. Thus, the total remobilization of intracellular constituents
towards storage lipid production requires co-ordination between multiple organelles. Since LDs are
at the heart of this process and can potentially physically associate with all the organelles involved,
it might be possible that they function as a metabolic network hub, facilitating the interchange of the
various enzymes and substrates involved. Identification of mitochondrial, plastidial and ER proteins
in LD proteomics experiments might be indication of this hypothesized connection.

4.3. Lipolysis

During recovery from stress or during the dark period of the diurnal cycle, LD lipid stores
are remobilized and used for energy, membrane components, carbon skeletons or other metabolic
requirements. LD lipid stores are remobilized by two main mechanisms: either by lipolysis or by
autophagic degradation. During lipolysis, TAGs are hydrolyzed, liberating their three fatty acids and
glycerol for consumption by beta-oxidation and glycolysis in the mitochondria [123]. Lipolysis is
performed by a variety of different lipases and other lipolytic enzymes, which may be differentially
expressed under different nutrient availabilities [124,125]. In other eukaryotes, some TAG lipases
and their cofactors have been demonstrated to localize to LDs [126–129]. For example, CGI-58 is a
conserved protein with LPAAT activity that co-localizes to LDs with Adipose Triglyceride Lipase (ATGL),
assisting in the breakdown of TAG [130,131]. A homologue of CGI-58 was identified in T. pseudonana,
Thaps3_264297, which also displays LPAAT, phospholipase and lipase activity [124]. Knockdown
of Thaps3_264297 resulted in increased TAG accumulation in a variety of conditions, including
stationary phase and silicon starvation, faster TAG accumulation, larger LDs and potentially diminished
membrane re-modeling [124]. P. tricornutum possesses a TAG lipase, Tgl1, which shares homology
with a LD-localized TAG lipase in plants, SDP1 [125,132]. Knockdown of Tgl1 resulted in increased
TAG accumulation during growth phase, most prominently during stationary phase. More lipases
have been predicted in silico. The direct localization to LDs of either PtTgl1 or Thaps3_264297 has yet
to be confirmed.

4.4. Autophagy

Autophagy is a major cellular self-degradation process which can involve the degradation of either
bulk or select constituents [133]. Core autophagic proteins are conserved among most eukaryotes,
including the Stramenopila [134]. The relationship between autophagy and LDs can be complex [135].
LDs can be digested by selective autophagy but autophagy can also contribute recycled cellular
components to LD expansion [64]. For example, in starved mammalian cell lines, fatty acids liberated by
autophagic degradation of membranes, were shown to be directed to LDs by DGAT1 [136]. The LDs were
subsequently degraded by lipolysis, channeling fatty acids to closely associated mitochondria, while
simultaneously shielding them from lipotoxicity and acylcarnitine accumulation. Furthermore, LDs can
contribute membrane components for autophagosomal biogenesis [137]. Lipophagy, the engulfment
of a LD by an autophagosome, is a type of selective autophagy which was shown to be coupled with
both biogenesis and degradation of LDs in the Opisthokonta [138,139] and Viridiplantae [140–142].

In the Stramenopila, microlipophagy-like engulfment of LDs into vacuoles was observed in
Nannochloropsis oceanica, the marine oleaginous eustigmatophyte [143]. A biomolecular fluorescence
complementation (BiFC) assay indicated interaction between the major LD surface protein (LDSP) and
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the hallmark autophagy protein, AUTOPHAGY-RELATED8 (ATG8) [143]. Deletion of a predicted
ATG8-interacting, conserved WxxI LIR motif in NoLDSP disrupted its association with ATG8 [143].
The major lipid droplet protein of P. tricornutum, StLDP displays a similar hydrophobicity pattern to
NoLDSP, though they differ in amino acid sequence [37]. We also identified the ATG8-interacting motif
in StLDP using the iLIR Atg8 binding motif prediction tool [144], suggesting that it may play a similar
function as LDSP in N. oceanica.

In nitrogen-limited P. tricornutum, the recycling of internal nitrogenous compounds involves the
upregulation of autophagosomal, proteasomal and lysosomal machinery [145]. Nonoyama et al. (2019)
suggested that autophagy may be involved in LD degradation in F. solaris and P. tricornutum based on
the presence of vesicle trafficking, vesicle coat and heat shock proteins in the LD proteome [39].
Administration of the inhibitor chloroquine, which impairs the fusion of autophagosomes with
lysosomes [146], suppressed degradation of mature LDs [39]. Clathrin was identified in the LD proteomes
of both F. solaris and P. tricornutum [38,39,147]. During recovery from nutrient starvation, LDs shrink in size
due to lipolysis or lipophagy. However, introduction of the clathrin inhibitor Pitstop 2 resulted in larger
LDs compared to control treatments, implicating vesicle trafficking machinery in the remobilization of LD
storage lipids [39]. A similar observation was made in animal hepatocytes, where the RNA silencing of
clathrin inhibited the autophagic degradation of LDs [148]. In eukaryotes, autophagy and other catabolic
processes are inhibited by target of rapamycin (TOR) [149]. Under nutrient replete conditions, inhibition of
TOR resulted in TAG accumulation in P. tricornutum [98]. Further experiments will be needed to decipher
the precise relationship of autophagy with LDs in diatoms.

5. LD Proteins

5.1. The Challenges of Identifying LD Proteins

Most organelles function due to the co-ordinated operations of hundreds of different proteins,
their proteome. The decipherment of the LD proteome is obfuscated by several factors. Firstly, the proteome
will differ between species, strains, cell types, growth conditions and so forth. Second, many LD proteins
can have multiple locations within the cell [150] or may translocate from other locations. For example,
Diatom Oleosome-Associated Protein 1 (DOAP1) is translocated from the ER to LDs in Fistulifera solaris [151].
Sub-cellular localization can sometimes be inferred using in silico sequence-based predictive algorithm,
such as HECTAR [152]. However, such predictions cannot be relied upon as empirical verification and
may not always be accurate, particularly when predicting the localization of proteins to a compartment
it was not programmed to take into account. To our knowledge, no such algorithm has been designed
to predict LD protein localization yet. Many studies which demonstrate LD localization depend
on fluorophore-tagging, such as green fluorescent protein (GFP). This is limited by the resolution
of optical microscopy, which can have difficulty resolving differences between a protein physically
associated with the LD or merely localized near it on an adjacent or engulfing membrane [57].
Alternative methods, such as immunogold labelling, allow for finer resolution imagery via electron
microscopy, although fixation methods can occasionally result in artefacts. Proteins from isolated LDs
can be identified en masse by liquid chromatography coupled to mass spectrometry (LC/MS). In this
procedure, the proteins are typically separated on an electrophoretic gel, stained, excised and digested
in gel with the serine protease trypsin [153]. This procedure has several limitations, including poor
peptide recovery, modification artefacts and relies on effective visualization of stained protein bands.
Furthermore, the high lipid content of LD samples and hydrophobic properties of some LD proteins,
may interfere with standard SDS-PAGE [47]. New technological developments, such as suspension
trapping, can potentially overcome such obstacles [154,155]. However, LDs can be contaminated with
proteins from other cellular compartments during the isolation procedure. Moreover, since the LD
membrane forms direct contact sites with other cellular membranes and may non-specifically bind
hydrophobic or amphipathic proteins [156], it may be fundamentally impossible isolate a “pure” LD.
A newly developed tool, APEX2, can be used both as a tag for protein imaging by electron microscopy,
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as well as a label for organelle-specific proteomics, thus resolving many of the difficulties to discussed
above [157,158]. Nevertheless, such challenges emphasize the importance of ancillary experiments to
confirm protein localization.

5.2. LD Protein Targeting

LDs differ from mitochondria, plastids and the ER, which require cleavable signal peptides
for protein targeting [159–161]. So far, no such consensus signal has been identified for LD-specific
protein targeting. However, multiple mechanisms have been implicated in targeting proteins to LDs
and which may function in concert with each other [162]. A heterologously expressed, GFP-tagged
LD protein from the green alga Haematococcus pluvialis, was demonstrated to localize to LDs in the
diatom P. tricornutum [94]. This suggests a conserved mechanism of LD protein targeting shared across
evolutionarily disparate kingdoms.

The amphipathic alpha helix is a structural feature of many LD proteins critical for their binding to
the LD membrane [163–165]. Molecular dynamic simulations and in vitro experiments suggest that the
outer polar lipid monolayer of LDs contains membrane packing defects that expose the hydrophobic
core, facilitating the binding of amphipathic helices containing large hydrophobic residues [10,156,166].
Such alpha-helices are a physicochemical property of proteins that can vary in size and specific amino
acid composition [167]. This means that LD proteins in diverse kingdoms may possess them without
sharing sequence homology. Amphipathic alpha-helices can sense membrane curvature and even
specific lipids, which may be factors affecting their targeting specificity [167]. Several eukaryotic LD
proteins also possess hydrophobic domains that anchor them to LDs [168–170].

Although the general physicochemical properties of amino acids, such as size and hydrophobicity,
can contribute to LD protein targeting, specific amino acid residues can be important as well. Proline
residues are critical for the architecture of proline-knot motifs, hydrophobic anchors which bind some
proteins to the LD membrane, such as oleosin and caleosin in plants [171,172]. Yoneda et al. (2016) [37]
suggest this may be a feature of some diatom LD proteins as well. Tryptophan residues have also been
demonstrated to facilitate the interfacial binding between proteins and LD membranes [162,173,174].
Other residues, such as cysteines, can be modified by post-translational modifications that facilitate
membrane binding [175], discussed further below.

Multiple kinds of post-translational modifications have been implicated in LD protein targeting
and regulation. For example, phosphorylation of the animal LD protein perilipin A is required for the
translocation of hormone-sensitive lipase to LDs, thus increasing lipolysis [176–178]. Furthermore,
some LD proteins may be modified with hydrophobic prenyl or acyl moieties, which facilitate their
association with the LD membrane [179]. Acyl modifications are reversible, which could provide
a mechanistic explanation as to how some proteins may re-localize to LDs from other locations in
response to stress conditions. In mice, prenylation of ALDH3B2 is required for LD localization, where
it probably detoxifies aldehydes produced by lipid metabolism [180]. Interestingly, post-translational
modifications do not necessarily function in isolation but may confer targeting specificity. For example,
in animal cells, ELMOD2 can localize to the ER or mitochondria but when it is modified with a
palmitoyl moiety–palmitoylation–it localizes to LDs, where it activates Arf1, which subsequently
recruits ATGL [181]. In cultured mammalian cells, a component of the SNARE membrane fusion
machinery, SNAP23, was also shown to require palmitoylation to localize to LDs [182]. Multiple
Rab GTPases are consistently identified in LD proteomic screens in various eukaryotes and several
have been demonstrated to localize to LDs, where they are hypothesized to regulate interactions
with other organelles [15,16,183,184]. Interestingly, prenylation of Rab proteins is required for their
targeting to specific membranes [185,186]. Ubiquitination may also play a role in LD protein localization.
For instance, in both plants and animals, a ubiquitin regulatory protein recruits Cdc48 (or its orthologue),
which dissociates ubiquitinated LD proteins from LDs, such as oleosin or ATGL, thus affecting the rate
of lipolysis [187–189].
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5.3. Diatom-Specific LD Proteins

So far, diatom LD proteins have only been isolated from weakly silicified marine raphid pennate
species from the order Naviculales, F. solaris and P. tricornutum [37–39,147,190,191]. Although centrics
and pennates are genetically quite disparate, similarities in the metabolic responses of T. pseudonana [89]
and P. tricornutum [85] to N starvation suggests that we could expect some general similarities between
the LD proteomes of the Naviculales and other diatoms. The first diatom LD proteome reported was
from F. solaris [190]. LD formation was induced by nutrient starvation, cells were then fractured by
bead-beating and isolated by centrifugation. Proteins from the LD fraction were then precipitated,
run on SDS-PAGE, digested in gel with trypsin and sequenced by LC/MS. This procedure identified
41 proteins, almost half of which were also identified in the aqueous phase of their centrifugation.
Of the proteins only present in the LD fraction, HECTAR predicted that some of the proteins were
targeted to the chloroplast, mitochondria and ER. Although such predictions might not definitely
rule-out those proteins as being LD proteins, they may nevertheless be evidence of contamination from
other compartments. Of the proteins predicted to target to the cytosol, 5 were predicted to contain
transmembrane domains and two were confirmed to localize to LDs in vivo by expression of GFP-fusion
constructs. One of them, g6574/G16118 co-localized to the ER and was predicted to contain a potassium
channel. The other, later named Diatom Oleosome-Associated Protein 1 (DOAP1), was shown to possess a
cleavable ER-targeting signal peptide, a proline-rich hydrophobic C-terminal domain and a quinoprotein
alcohol dehydrogenase-like domain [151]. Interestingly, quinoprotein alcohol dehydrogenase-like domains
are also present on a component of the ER-membrane protein complex in opsithokonts, EMC1 [192].
EMC1 is capable of tethering the ER to the mitochondrion, to facilitate the exchange of phospholipids [193].
It is possible DOAP1 performs a similar function for diatom LDs.

Since the seminal work of Nojima et al. (2013), later attempts to sequence diatom LD proteins
yielded 5, 86, and 32 total proteins, using variations of generally similar isolation methods [37,38,40].
P. tricornutum has a homologue of DOAP1, named PtLDP1, which contains a WD40/YVTN repeat
domain and a proline-rich hydrophobic C-terminal domain [191]. Although WD40 repeats are a
common motif, they are found in proteins which regulate and localize to LDs in animals [194–196].
PtLDP1 was identified by MS of isolated LDs and its in vivo localization on LDs was confirmed with
an EYFP-fusion construct [191]. Over-expression of PtLDP1 resulted in the upregulation of genes
encoding the TAG biosynthesis enzymes DGAT2 and GPAT and the fatty acid biosynthesis enzymes
FABI and FABG, increased TAG content, total lipid content and LD size [191]. Knock-down of PtLDP1
by RNA silencing had the inverse effects.

Another LD protein, StLDP was identified by LC/MS of LDs isolated from P. tricornutum [37,38,147]
and later in vivo localization to LDs was confirmed with an EGFP-fusion construct [197]. StLDP
expression was shown to correlate with LD surface area [37]. Although over-expression of StLDP did
not induce LD formation, it did result in higher neutral lipid accumulation during N starvation, as well
as the accumulation of larger and more LDs per cell compared to WT [197]. The operational mechanism
of StLDP remains unclear, particularly since it bears no homology to LD proteins from the Viridiplantae
or Opisthokonta. However, Yoneda et al. (2016) [37] did identify a hydrophobic motif conserved among
other stramenopiles that was enriched with prolines and predicted to form transmembrane helices.
The abundance and consistency of StLDP identification on LDs indicates that it would be a good
candidate as an organelle marker protein, at least for LDs formed during N starvation.

5.4. Protein Chaperones, Storage and Degradation

The heat shock protein, Hsp70, has also been identified in multiple diatom LD proteomic
studies [37–39,147] and has been verified to localize to LDs in other unrelated organisms [198].
In HepG2 cells, over-expression of Hsp70 resulted in increased accumulation of LDs and upregulation
of lipogenic enzymes, while knock-down had the opposite effect [199]. In the Naviculales however,
suppression of Hsp70 by the inhibitor VER-155008 resulted in larger LDs during both TAG synthesis
and lipolysis [39]. Such evidence suggests that the operational mechanism of Hsp70 extends beyond
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nebulously functioning as a chaperone. In eukaryotes, transmembrane alpha-helices are typically
inserted into membranes during post-translation or co-translational translocation, involving the Sec61
translocon, ribosomes and BiP [200–202]. BiP is a member of the Hsp70 protein family and has also been
identified in LD proteomic studies in diatoms [38,147] and other organisms [17,203,204]. The plant LD
protein oleosin has been shown to require the Sec61 translocon for insertion to the ER membrane prior
to LD translocation in yeast [205]. The trans-kingdom demonstration of this targeting mechanism by
Beaudoin et al. [26] suggests that it may also be conserved and therefore operating in diatoms. Such a
mechanism would be consistent with the close associations observed between the ER and LDs and may
also help explain why ribosomal proteins are also consistently identified in LD proteomics experiments.

Lupette et al. [38] suggest BiP may be functioning as part of the ER-associated degradation
(ERAD) pathway, which would also be consistent with the identification of several other ERAD
and proteasomal proteins in the LD proteome. Indeed, ERAD has been shown to be a conserved
mechanism that regulates LD proteins in other eukaryotes [206]. During nitrogen starvation, diatoms
undergo large-scale degradation of proteins [85]. Partially unfolded proteins can aggregate, causing
cytotoxicity [207] and disruption of proteasomal degradation [208]. ERAD directs misfolded proteins
to the proteasome [209]. It has been previously proposed that LDs function as an “escape hatch” for
misfolded proteins to exit the ER during ERAD [210] and could perhaps serve as a physical highway
to the proteasome for membrane-embedded ERAD proteins that are insoluble in the cytosol. In other
eukaryotes, LDs co-ordinate their functions with both proteasomal and autophagic activity and can
serve as a convergence site for both [211–215]. This functions to prevent the formation of cytotoxic
protein aggregates and mitigates ER stress [216–218]. In diatoms, specialized machinery derived from
ERAD, termed symbiont-specific ERAD-like machinery (SELMA), facilitates protein translocation
across the periplastidial membrane [219]. Interestingly, SELMA involves ubiquitination and the APTase
Cdc48, which, as mentioned previously, regulate LD lipolysis in other eukaryotes. The relationship
between diatom LDs and ERAD may be complex and warrants further investigation.

LDs may also sequester functional proteins. For example, too few, too many or free histones can
have various cytotoxic effects, such as increasing DNA damage sensitivity [220,221]. In Drosophila
embryos, LDs sequester functional histones to modulate histone content during critical stages of
development [222]. LD-sequestered histones also form an anti-bacterial defense system [223]. Histones
have also been identified in diatom LD proteomics experiments [38,147], although whether they have
a similar function to those in Drosophila is yet to be determined. The temporary storage of functional
proteins could also help explain the presence of many unexpected proteins in diatom LD proteomics
experiments, such as components of the photosynthetic apparatus. This could perhaps facilitate faster
recovery from stress conditions by more rapid reassembly of photosynthetic machinery.

Since LDs may sequester proteins for a variety of purposes not directly related to lipid metabolism
and LDs may be functionally connected to multiple compartments, robust experimentation will
be required to fully characterize the precise functions, regulatory mechanisms and spatiotemporal
partitioning of all LD proteins. It could take decades of work to gain a comprehensive understanding
of a single model species, let alone the entire Bacillariophyceae. The progress in recent years warrants
enthusiasm but is only the beginning of a long and tedious road of discovery.

6. LD Biotechnology

Diatoms have gained interest as photosynthetic sources of nutraceutical lipids, biofuels, isoprenoids
and aquacultural feed [224–226]. The development of industrial scale microalgal cultivation has been
constrained by low yields not yet competitive with alternative sources, such as fossil fuels, chemical
synthesis, plants or heterotrophic organisms. However, diatoms and other algae have the potential
benefit of simultaneously sequestering CO2, not taking up arable land and the ability to be cultivated
with saline or waste water [227–229]. In this context, numerous metabolic engineering efforts have
been undertaken to enhance TAG accumulation in diatoms. Such studies can also provide novel
insights into fundamental aspects of diatom lipid metabolism.
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A classical problem of metabolic engineering has been the avoidance of pleiotropic effects.
Metabolic pathways are immensely complex systems that involve overlapping, competing, branched
and redundant regulatory mechanisms which have evolved by natural selection over the course
of hundreds of millions of years [230]. Early attempts at metabolic engineering either modulated
singular key enzymatic steps within a pathway or the first committed step in the target pathway to
sequester necessary precursors [231]. Unfortunately, such strategies tend to result in pleiotropic effects,
such as genetic co-suppression, depletion of precursor pools, allosteric regulation or other undesired
biochemical and phenotypic effects [231]. To solve these issues, ideally one would be able to sequester
a desired metabolite in a protective pocket that would shield the rest of the cell from its accumulation.
That is in fact the very function that LDs have evolved to perform.

In plants, use of sink organs to sequester metabolites, such as fruit, has been proposed as a
promising strategy to avoid pleiotropic effects while enhancing isoprenoid content [232]. It is also
possible to modify specific organelles to create a metabolic sink at an intracellular level. For example,
increasing the size and number of plastids in tomato fruit resulted in an increase in isoprenoid
content [232,233]. In an effort to increase TAG content in leafy plant tissues, a metabolic engineering
strategy has been devised, termed “push, pull, package and protect” [234,235]. “Push” referring to the
upregulation or over-expression of upstream reactions, such as fatty acid synthesis, “pull” referring
to increasing the expression of the TAG synthesis pathway, “package” referring to the sequestration
of TAG within LDs by expressing proteins involved in LD biogenesis, lipid trafficking to LDs or
maintaining LD structural stability. Finally, “protect” the accumulated TAG by blocking access to
lipases or suppression of downstream catabolic reactions, such as lipolysis or beta-oxidation.

Recently, LD formation was induced in Nicotiana plastids in an attempt to sequester terpenoids [236].
However, plastids are components of central metabolism and as such, enhancement or modulation
risks affecting cell growth rate, mortality and so forth. Furthermore, any LDs accumulated within
plastids will be constrained by the size of the plastid. Cytosolic LDs offer the benefit of less direct
impact on central metabolism and having greater room for expansion. In Nicotiana, terpenoids
were successfully sequestered to cytosolic LDs simply by over-expressing genes responsible for
LD biogenesis and sesqueterpene synthesis [237,238]. Furthermore, fusion of terpenoid synthesis
enzymes with the Nannochloropsis LD protein NoLDSP, resulted in the localization of terpenoid
synthesis to LDs and sequestration therein [239]. Unlike in plant leaf tissues, metabolic engineering
of diatom TAG accumulation benefits from the existence of LD biogenesis and regulatory systems
already in place. Various steps within the “push, pull, package, protect” paradigm have already
has been accomplished in diatoms by over-expression of enzymes implicated in fatty acid and
TAG biosynthesis [114,117,240–242], modulating the acyl-CoA pool [243] or repression of lipid
catabolism [124,125,244]. A deeper understanding of the mechanisms by which proteins are targeted
to LDs could facilitate the engineering of LD-localized enzymes or metabolic pathways, which could
allow for the customization of LD contents.

LDs may not be the ultimate solution to the challenges facing diatom cultivation. The main
disadvantage is of course that the lipids still exist within the cell itself, which not only requires
more investment in harvesting technique but also requires killing the algae to get at the product
inside. The alternative to this is what has been called “milking,” that is, the extracellular secretion of
lipids [245,246]. This could be accomplished either by the secretion of free lipids or extracellular vesicles.
Genetic engineering is also not necessarily the ultimate answer to overcoming the challenges of diatom
biotechnology and the key may lie in identifying an ideal species for cultivation by bioprospecting.
Although we do not know the absolute number of extant diatom species, estimates range from tens of
thousands to one or two hundred thousand species [247,248]. Given such a wealth of species diversity,
it can be assumed that suitable oleaginous species are out there, waiting to be discovered.
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7. Conclusions

LDs operate at the nexus of multiple metabolic pathways and intracellular systems, as well as at the
nexus of multiple sub-disciplines, including biochemistry, ecophysiology, and evolution. Recent decades
have seen a massive increase in research about both lipid droplets and diatoms. Synthesis between these
two niche fields is in a nascent stage, but holds immense promise for myriad biotechnological applications.
Yet, there remain many outstanding questions that beckon to be answered. What are the precise functions
and relationships of LDs, and their associated proteins? How many proteins are directly involved
in LD functions? Are proteins identified in isolated LDs representative of active functional proteins,
stored functional proteins, stored proteins en route to degradation pathways, evidence of inter-organelle
membrane bridges, or simply contaminants? What are the specific steps in LD biogenesis, turnover and
degradation in diatoms? What are the differences between different strains, species, and genera? Can LD
protein targeting mechanisms be manipulated to empower metabolic engineering? It is our hope that this
review will be helpful to the next generation of scientists seeking to understand this curious organelle,
serving as a roadmap towards past and future advances.

Author Contributions: B.L. and I.K.-G. conceived this study. B.L. wrote the manuscript; S.B. supervised the
project and contributed by obtaining funding. I.K.-G. supervised the project, edited, reviewed and approved the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the Israel Science Foundation, (grant number 1958/18).

Acknowledgments: The authors are indebted to A. Zarka, Z. Adler-Agnon and S. Leu for valuable insights into
the LD proteome of Phaeodactylum tricornutum.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Thiam, A.R.; Farese, R.V., Jr.; Walther, T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol.
Cell Biol. 2013, 14, 775–786. [CrossRef]

2. Walther, T.C.; Farese, R. V Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81,
687–714. [CrossRef] [PubMed]

3. Welte, M.A. Proteins under new management: Lipid droplets deliver. Trends Cell Biol. 2007, 17, 363–369.
[CrossRef] [PubMed]

4. Pick, U.; Zarka, A.; Boussiba, S.; Davidi, L. A hypothesis about the origin of carotenoid lipid droplets in the
green algae Dunaliella and Haematococcus. Planta 2019, 249, 31–47. [CrossRef] [PubMed]

5. Fujimoto, T.; Parton, R.G. Not just fat: The structure and function of the lipid droplet. Cold Spring Harb.
Perspect. Biol. 2011, 3, 1–17. [CrossRef] [PubMed]

6. Murphy, D.J. The dynamic roles of intracellular lipid droplets: From archaea to mammals. Protoplasma 2012,
249, 541–585. [CrossRef] [PubMed]

7. Goodman, J.M. The gregarious lipid droplet. J. Biol. Chem. 2008, 283, 28005–28009. [CrossRef]
8. Gao, Q.; Goodman, J.M. The lipid droplet—A well-connected organelle. Front. Cell Dev. Biol. 2015, 3, 1–12. [CrossRef]
9. Schuldiner, M.; Bohnert, M. A different kind of love–lipid droplet contact sites. Biochim. Biophys. Acta-Mol.

Cell Biol. Lipids 2017, 1862, 1188–1196. [CrossRef]
10. Kory, N.; Farese, R.V.; Walther, T.C. Targeting fat: Mechanisms of protein localization to lipid droplets.

Trends Cell Biol. 2016, 26, 535–546. [CrossRef]
11. Maeda, Y.; Nojima, D.; Yoshino, T.; Tanaka, T. Structure and properties of oil bodies in diatoms. Philos. Trans.

R. Soc. London B Biol. Sci. 2017, 372, 20160408. [CrossRef] [PubMed]
12. Wältermann, M.; Hinz, A.; Robenek, H.; Troyer, D.; Reichelt, R.; Malkus, U.; Galla, H.; Kalscheuer, R.;

Stöveken, T.; Von Landenberg, P.; et al. Mechanism of lipid-body formation in prokaryotes: How bacteria
fatten up. Mol. Microbiol. 2005, 55, 750–763. [CrossRef] [PubMed]

13. Wilfling, F.; Thiam, A.R.; Olarte, M.J.; Wang, J.; Beck, R.; Gould, T.J.; Allgeyer, E.S.; Pincet, F.; Bewersdorf, J.;
Farese, R.V.; et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the
ER for protein targeting. Elife 2014, 2014, 1–20. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrm3699
http://dx.doi.org/10.1146/annurev-biochem-061009-102430
http://www.ncbi.nlm.nih.gov/pubmed/22524315
http://dx.doi.org/10.1016/j.tcb.2007.06.004
http://www.ncbi.nlm.nih.gov/pubmed/17766117
http://dx.doi.org/10.1007/s00425-018-3050-3
http://www.ncbi.nlm.nih.gov/pubmed/30470898
http://dx.doi.org/10.1101/cshperspect.a004838
http://www.ncbi.nlm.nih.gov/pubmed/21421923
http://dx.doi.org/10.1007/s00709-011-0329-7
http://www.ncbi.nlm.nih.gov/pubmed/22002710
http://dx.doi.org/10.1074/jbc.R800042200
http://dx.doi.org/10.3389/fcell.2015.00049
http://dx.doi.org/10.1016/j.bbalip.2017.06.005
http://dx.doi.org/10.1016/j.tcb.2016.02.007
http://dx.doi.org/10.1098/rstb.2016.0408
http://www.ncbi.nlm.nih.gov/pubmed/28717018
http://dx.doi.org/10.1111/j.1365-2958.2004.04441.x
http://www.ncbi.nlm.nih.gov/pubmed/15661001
http://dx.doi.org/10.7554/eLife.01607
http://www.ncbi.nlm.nih.gov/pubmed/24497546


Biology 2020, 9, 38 13 of 23

14. Li, C.; Luo, X.; Zhao, S.; Siu, G.K.; Liang, Y.; Chan, H.C.; Satoh, A.; Yu, S.S. COPI–TRAPPII activates Rab18
and regulates its lipid droplet association. EMBO J. 2017, 36, 441–457. [CrossRef]

15. Ozeki, S.; Cheng, J.; Tauchi-sato, K.; Hatano, N.; Taniguchi, H.; Fujimoto, T. Rab18 localizes to lipid droplets
and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 2005, 118,
2601–2611. [CrossRef]

16. Liu, P.; Bartz, R.; Zehmer, J.K.; Ying, Y.S.; Zhu, M.; Serrero, G.; Anderson, R.G.W. Rab-regulated interaction of
early endosomes with lipid droplets. Biochim. Biophys. Acta-Mol. Cell Res. 2007, 1773, 784–793. [CrossRef]

17. Bartz, R.; Zehmer, J.K.; Zhu, M.; Chen, Y.; Serrero, G.; Zhao, Y.; Liu, P. Dynamic activity of lipid droplets: Protein
phosphorylation and GTP-mediated protein translocation. J. Proteome Res. 2007, 6, 3256–3265. [CrossRef]

18. Brighouse, A.; Dacks, J.B.; Field, M.C. Rab protein evolution and the history of the eukaryotic endomembrane
system. Cell. Mol. Life Sci. 2010, 67, 3449–3465. [CrossRef]

19. Schledzewski, K.; Brinkmann, H.; Mendel, R.R. Phylogenetic analysis of components of the eukaryotic vesicle
transport system reveals a common origin of adaptor protein complexes 1, 2 and 3 and the F subcomplex of
the coatomer COPI. J. Mol. Evol. 1999, 48, 770–778. [CrossRef]

20. Chernikova, D.; Motamedi, S.; Csürös, M.; Koonin, E.V.; Rogozin, I.B. A late origin of the extant eukaryotic
diversity: Divergence time estimates using rare genomic changes. Biol. Direct 2011, 6, 1–18. [CrossRef]

21. Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The new tree of eukaryotes. Trends Ecol. Evol. 2020, 35,
43–55. [CrossRef] [PubMed]

22. Baurain, D.; Brinkmann, H.; Petersen, J.; Rodriguez-Ezpeleta, N.; Stechmann, A.; Demoulin, V.; Roger, A.J.;
Burger, G.; Lang, B.F.; Philippe, H. Phylogenomic evidence for separate acquisition of plastids in Cryptophytes,
Haptophytes and Stramenopiles. Mol. Biol. Evol. 2010, 27, 1698–1709. [CrossRef] [PubMed]

23. Stiller, J.W.; Schreiber, J.; Yue, J.; Guo, H.; Ding, Q.; Huang, J. The evolution of photosynthesis in chromist
algae through serial endosymbioses. Nat. Commun. 2014, 5, 5764. [CrossRef] [PubMed]

24. Allen, A.E.; Obornik, C.L.D.M.; Horak, A.; Nunes-Nesi4, A.; McCrow, J.P.; Zheng, H.; Johnson, D.A.; Hu, H.;
Fernie, A.R.; Bowler, C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms.
Nature 2011, 473, 203–207. [CrossRef]

25. Sorhannus, U. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleontol.
2007, 65, 1–12. [CrossRef]

26. Brown, J.W.; Sorhannus, U. A molecular genetic timescale for the diversification of autotrophic Stramenopiles
(Ochrophyta): Substantive underestimation of putative fossil ages. PLoS ONE 2010, 5, 1–11. [CrossRef]

27. Sims, P.A.; Mann, D.G.; Medlin, L.K. Evolution of the diatoms: Insights from fossil, biological and molecular
data. Phycologia 2006, 45, 361–402. [CrossRef]

28. Berger, W.H. Cenozoic cooling, Antarctic nutrient pump and the evolution of whales. Deep Sea Res. Part II
Top. Stud. Oceanogr. 2007, 54, 2399–2421. [CrossRef]

29. Mock, T.; Kroon, B.M.A. Photosynthetic energy conversion under extreme conditions—I: Important role
of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms.
Phytochemistry 2002, 61, 41–51. [CrossRef]

30. Czabany, T.; Wagner, A.; Zweytick, D.; Lohner, K.; Leitner, E.; Ingolic, E. Structural and biochemical properties
of lipid particles from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2008, 283, 17065–17074. [CrossRef]
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