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ABSTRACT

As the amount of genomic variation data increases,
tools that are able to score the functional impact of
single nucleotide variants become more and more
necessary. While there are several prediction servers
available for interpreting the effects of variants in the
human genome, only few have been developed for
other species, and none were specifically designed
for species of veterinary interest such as the dog.
Here, we present Fido-SNP the first predictor able to
discriminate between Pathogenic and Benign single-
nucleotide variants in the dog genome. Fido-SNP is
a binary classifier based on the Gradient Boosting
algorithm. It is able to classify and score the impact
of variants in both coding and non-coding regions
based on sequence features within seconds. When
validated on a previously unseen set of annotated
variants from the OMIA database, Fido-SNP reaches
88% overall accuracy, 0.77 Matthews correlation co-
efficient and 0.91 Area Under the ROC Curve.

INTRODUCTION

One of the major challenges in medical genetics is to identify
the functional effects of coding and non-coding single nu-
cleotide variants (SNVs) to develop personalized medicine
(1). For the human genome, several methods were imple-
mented to interpret and score the impact of genomic varia-
tions (2,3). Most methods need protein sequences and score
single amino acid changes (4). Few other methods also score
the impact of non-coding variants: CADD (5), FATHMM
(6) and PhD-SNP# (7).

Despite the numerous tools available for predicting the
impact of genomic variations in the human genome, only

few methods are available to score the effect of genomic
variants in other species (8,9) and none are specifically de-
signed for the dog genome. However, biology, disease pre-
sentation, and clinical response of many diseases in dog of-
ten mimic the human counterpart (10,11). Dogs in many
cases spontaneously develop diseases, such as tumors, at a
rate comparable to humans, as opposite to transgenic labo-
ratory animal models in which cancers have to be implanted
(10-13). This offers several advantages over other animal
systems for mapping genes relevant to human disease (10—
13). Here, we present Fido-SNP the first machine learning
classifier to predict the effect of SNVs in the dog genome.
Presentation of the methods and data sets as well as the as-
sessment of Fido-SNP performances are in agreement with
the guidelines reported in Vihinen 2012 (14).

METHOD OUTLINE

Fido-SNP is a method for predicting the impact of single
nucleotide variants (SNVs) in the dog genome. Fido-SNP
is not retrained on canine genome, but extends PhD-SNP¢,
which was previously developed (7) to accomplish the same
task in the human genome. PhD-SNP# is a binary classi-
fier based on machine learning, which classifies human ge-
nomic variants as either Pathogenic or Benign. It classi-
fies both coding and non-coding variants and it is based
on the Gradient Boosting method implemented through
the scikit-learn package (15). Fido-SNP inherits the trained
prediction model from PhD-SNP¢, which was trained on a
set of ~35,800 annotated human variants derived from the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/),
~68% of which are Pathogenic.

Like PhD-SNP¢, Fido-SNP only uses features derived
from DNA sequences and conservation scores. Fido-SNP
transforms each input SNV into a 35-element vector, of
which the first 25 elements encode the sequence window
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of five nucleotides (the generic base N is also considered)
around the SNV site (5 x 5 = 25 positions); the remaining
10 elements encode the PhyloP conservation scores for each
genomic position within the 5-nucleotide-long window (five
elements for the PhyloP4 and five elements for the PhyloP11
conservation scores) (16). With this input vector, Fido-SNP
predicts the probability that the SNV is Pathogenic.

No retraining was done to implement Fido-SNP method,
since it exploits PhD-SNP# predictor, previously trained on
human variation data. Fido-SNP extends PhD-SNP® to the
dog genome by implementing the two following adapta-
tions:

1. the computation of the conservation scores for each po-
sition of the dog genome
2. the optimization of the classification threshold.

The first step was achieved by computing the conserva-
tion scores through the PhyloP program for each position
of the dog genome. The threshold optimization task was
achieved by maximizing the discrimination between a set
of potentially pathogenic variants (1,479 human variants in
highly conserved loci) and a set of potentially neutral vari-
ants (~3 million variants from dbSNP) in the dog genome.

DATA SETS

A crucial point for the development of a machine learning
method for predicting the impact of genetic variants on a
specific organism is the selection of a gold standard data
set of annotated variants. Unfortunately, large and curated
data sets containing such information are only available for
few species, not including the dog. To overcome this lack of
information, we selected a set of common single nucleotide
variants (SNVs) in the human and the dog genomes that
are potentially Pathogenic in both species (hd-pathogenic)
assuming that Pathogenic SNVs in highly conserved loci
are more likely to be functionally deleterious across differ-
ent species. The data set initially contained ~24,000 human
Pathogenic variants annotated in the ClinVar database (17)
and used to train PhD-SNP2. From this set, we selected the
subset of highly conserved loci across a 5-nucleotide win-
dow sequence, which corresponds to the window sequence
taken as input by PhD-SNP#. Conservation is established
on the human 100-way alignment from UCSC. In detail,
the variants in the hd-pathogenic set are selected using the
following criteria:

1. the 5-nucleotide window sequence around the variant lo-
cus in human and dog are the same

2. the conservation of the reference allele in the variant lo-
cus is >95%

3. the average conservation of the nucleotides in the 5-
nucleotide window sequence around the variant locus is
greater than 95%

4. the alternative allele is not observed in the variant locus
for any species in the human 100-way multiple sequence
alignment

After this filtering procedure, we obtained a data set
consisting of 2,359 variants. From this set we selected the
variants for which the dog PhyloP11 conservation score is
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available, thus eliminating the genomic positions for which
the conservation score is not computable as there are not
enough aligned sequences. This second filter produced a set
of 1,479 possible pathogenic variants in the dog genome,
20% of which are in chromosome X (Figure 1A) .

A second data set (dog-omia) for the validation of Fido-
SNP was extracted from the Online Mendelian Inheritance
in Animals (OMIA) database (18). OMIA is a catalogue of
variations associated with genetic disorders in 244 animal
species, including the dog. From the 319 disease-associated
dog variants available in OMIA, we selected the 75 single
nucleotide variants (dog-omia) which trait is Pathogenic (It
is considered a to be defect) and for which the PhyloP11
conservation score is available. These 75 SNVs are found in
67 genes.

For the optimization and validation of Fido-SNP algo-
rithm we collected a set of possible Benign variants from
the dbSNP database (19). From the initial set of ~5.6 mil-
lion dog variants in the dbSNP build 146, we extracted ~4.6
million SNVs. Of these, the PhyloP11 conservation score is
available for ~3 million SNVs (dbsnp-benign).

The performance of Fido-SNP has been tested on a bal-
anced data set composed of the 75 Pathogenic dog SNVs
(dog-omia) and of an equal number of possible Benign vari-
ants, randomly selected from dbsnp-benign.

722Dogs is a data set derived from 722 dog whole
genomes available in the dog genome project (https://
research.nhgri.nih.gov/dog_genome). This data set pro-
vides us with 6,038,693 SNVs after mapping on our
multiple alignments and minor allele frequency filtering
(MAF=>5%). 722Dogs is used as a source of possible neu-
tral SN'Vs.

Finally, Lym168 is a manually curated data set of 168
SNVs associated to canine lymphomas from 85 dogs (nine
different breeds) (12), where a significant enrichment in
pathogenic variations is expected.

A summary of the data sets before and after filtering pro-
cedures is reported in Supplementary Table S1.

Method features and prediction output

Fido-SNP is an untrained tool based on the previously de-
veloped PhD-SNP¢, which is a program based on the Gra-
dient Boosting algorithm (7). The two methods differ in
two major aspects: (i) the reference genome (human versus
dog), (ii) the different prediction threshold used to define
pathogenicity. The input for Fido-SNP is the same as for
PhD-SNP¢, and includes features from the 5-nucleotide se-
quence centered on the variant locus. Briefly, the input con-
sists of a 35-element vector, of which 25 elements encode
for the sequence and variation and 10 elements encode for
the PhyloP4 and PhyloP11 conservation scores. These se-
lection parameters were established during the PhD-SNP¢
optimization, where different nucleotide window sizes were
tested (7).

For the implementation of Fido-SNP we computed the
PhyloP scores using an in-house computational facility to
assemble the pairwise alignments between the dog and
other species available online at the UCSC repository (fol-
lowing the instructions provided through personal commu-
nications by the UCSC team).
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Figure 1. (A) Distribution of the variants in the hd-pathogenic data set and an equal number of potentially benign SNVs from dbSNP (build 146) along
the dog chromosomes. (B) Schematic view of the Fido-SNP algorithm and its input features. (C) Distribution of the PhyloP11 score for the potentially
pathogenic mutated loci in the hd-pathogenic data set and a random set of variants from dbSNP. (D) Receiver Operator Characteristic (ROC) curve (black)
obtained on the validation data set (dog-omia) and Matthews correlation coefficient (MCC) at different classification thresholds (red).

The output returned by Fido-SNP is a probabilistic score
(s) between 0 and 1. This value is calculated by rescal-
ing the output of the PhD-SNP# core method by multi-
plying all the scores below 0.1 by 5 (hence expanding the
range of predicted benign SNVs) and multiplying all the
scores greater than 0.1 by 5/9 (hence reducing the range
of predicted pathogenic SNVs). This is necessary since the
model is transferred from the human to the dog genome
and hence is biased by the different number of aligned se-
quences, which compress the prediction output. The rescal-
ing factor restores the output signal. A schematic view of
Fido-SNP algorithm is shown in Figure 1B.

Conservation scores

Conservation scores for each position of the dog genome
were computed through the PhyloP program of the PHAST
package (16). This package computes conservation scores
on multiple sequence alignments of genome sequences. To
calculate the PhyloP scores in Fido-SNP, we considered
the genomes of 10 different species. We built two differ-
ent conservation scores, PhyloP4 and PhyloP11, which were
obtained by aligning the dog reference genome to 3 (hu-
man, rat and mouse) and 10 (Human, Chimpanzee, Mouse,
Rat, Cow, Panda, Marmoset, Cat, Horse and Opossum)
genomes from other species, respectively. These scores re-
place the PhyloP7 and PhyloP100 conservation indexes used
in PhD-SNP¢.

The multiple sequence alignments of the genomic se-
quences from these species were built using the TBA /Multiz
program (20) on the basis of the pairwise sequence align-
ments between the dog and the other species. We adopted
the alignment pipeline suggested by Kent and colleagues
(21), that is summarized at the following URL https://goo.
gl/vyrKTd. In the case of the canfam2 assembly, pairwise
alignments were downloaded from the UCSC repository,
whereas for the canfam3 assembly they were calculated
in-house though the LAST alignment program (http://last.
cbre.jp). All the genome sequences for the computation of
the alignments were downloaded from UCSC. To calculate
the multiple sequence alignments we assembled the pair-
wise alignments using a phylogenetic tree. A representation
of this tree is shown in Supplementary Figure S1. The tree
was derived from the phylogenetic tree used to calculate the
UCSC hg38 100-way alignment (https://goo.gl/deuFfM).
Finally, the dog 4-way and 11-way alignments were used to
calculate the PhyloP4 and PhyloP11 conservation scores. A
representation of the distributions of the PhyloP11 scores
for potentially pathogenic loci in the hd-pathogenic data
set and the randomly selected benign variant loci from the
dbsnp-benign data set is shown in Figure 1C. The align-
ment procedures were the most demanding computations of
this work: For each chromosome, the alignments required
about 12 hours of single core computations using 100GB
of RAM and 100GB of disk space for temporary files. The
total amount of computation required about one month of
computer time. The calculated PhyloP scores in bigWig for-
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mat are available online at http:/fidosnp.bca.unipd.it/ucsc
and http://snps.biofold.org/Fido-SNP/ucsc.

Method optimization and performance

The performance of the Fido-SNP algorithm is estimated
(without retraining) on a balanced data set consisting of (i)
SNVs associated or potentially associated with pathogenic
phenotypes in dogs and (ii) an equal number of potentially
benign variants randomly selected from dbSNP (dbsnp-
benign data set). For a better generalization of the predic-
tive models, we randomly sampled dog variants from the
dbsnp-benign data set 10 times. Thus, the Fido-SNP perfor-
mances are averaged on 10 balanced data sets, which differ
only in their subset of potentially benign variants. For each
data set, we calculated the performance measures defined in
the supplementary materials.

The lack of large data sets of annotated dog variants does
not allow for the training of a dog-specific algorithm. As-
suming that the basic mechanism of functional loss upon
nucleotide variation is common to all species, we optimized
the human model implanted in PhD-SNP® to predict the
impact of variants in the dog genome. It is worth noting
that no retraining of the original PhD-SNP# model was
performed, only output rescaling was applied to fine-tune
Fido-SNP. Rescaling was necessary since the difference be-
tween the human and dog genome alignments used for cal-
culating the conservation scores requires the calibration of
the prediction threshold. For this purpose, we used the /Ad-
pathogenic data set to find the optimal threshold for the bi-
nary classification task by maximizing the Matthews corre-
lation coefficient (Equation 2 in Supplementary Materials).
The optimal classification threshold was then used to score
the performance of Fido-SNP on previously unseen data ex-
tracted from the OMIA database (dog-omia). To verify the
robustness of our results we also performed a 3-fold cross-
validation procedure on a data set composed of the dog-
omia SNVs and an equal number of variants from dbsnp-
benign. With this procedure we determined the optimal clas-
sification threshold on 2/3 of the previous data set and ap-
plied this threshold to the remaining third of the SN'Vs.

The analysis of the results shows that in the optimiza-
tion process Fido-SNP achieved 87% overall accuracy and
0.77 Matthews correlation coefficient for a classification
threshold of 0.09 (Table 1). Approximating the classifica-
tion threshold to 0.10, we observed that Fido-SNP achieved
the same level of performance on the dog-omia and hd-
pathogenic data sets in terms of overall accuracy (Q»),
Matthews correlation coefficient (MCC), and area under
the Receiver Operating Characteristic curve (AUC) (22).
The AUCs on both data sets reached a value of 0.91. Consis-
tent results are obtained with a 3-fold cross validation pro-
cedure on the dog-omia data set. An example of the ROC
curve and Matthews correlation coefficient values obtained
on a balanced data set composed of dog-omia SNVs and an
equal number of randomly selected benign variants from
dbsnp-benign is shown in Figure 1D.

We performed two further tests on the 722Dogs and
Lyml68 data sets. On the 6,038,693 SNVs contained in
722Dogs, Fido-SNP predicts as pathogenic only 7.6% of
them. This is in line with the idea that most of these SVNs

Nucleic Acids Research, 2019, Vol. 47, Web Server issue W139

should be benign. Fido-SNP predictions on Lymi68 are re-
ported in Table 2, where for comparison we add the predic-
tions made with SIFT (23) on both Lym168 and dog-omnia
data sets. Fido-SNP predictions cover higher genome frac-
tions including non-coding regions at a good level of per-
formance.

SERVER DETAILS
Predicting the impact of single nucleotide variants

The Fido-SNP web-server predicts the impact of a sin-
gle nucleotide variant based on input provided in comma-
separated value (CSV) text or variant calling format (VCF).
For each SNV the CSV input is composed of four elements:
the chromosome, the position, and the reference and al-
ternative alleles. For example, the variation of a Guanine
to Adenine in chromosome 28, position 13,677,911 is rep-
resented by 28,13677911,G,A. Multiple SNVs can be pro-
vided by copy/pasting a list of variants as separate rows
in the input box. For formatting reasons, the VCF input
format should be provided by uploading a file containing
a header starting with a hashtag (#) and followed by the
identifiers of at least 5 columns (CHROM, POS, ID, REF,
ALT) separated by a tab character. After the header line,
each SNV is indicated in a separated row. If the variant’s
ID in the third column is missing or not available a dot sign
(.) can be used.

When the list of SNVs is provided, either in CSV or VCF
format, the server analyzes each variant and checks if the
reference allele corresponds to the allele reported in the se-
lected version of the dog genome (canfam?2 or canfam3).
This task is performed using the twoBitToFa program (24),
which quickly extracts a portion of the dog genome from a
sequence file in binary format. A window sequence of five
nucleotides centred around the variant locus is used to gen-
erate the 25-element vector encoding the sequence informa-
tion. If the nucleotide in the input matches the reference
allele, the server extracts the corresponding conservation
scores (PhyloP4 and PhyloP11) for the 5-nucleotide win-
dows. The pre-calculated conservation scores are collected
using the bigWigToBedGraph program (24). The PhyloP4
and PhyloP11 scores are used to generate a 10-element vec-
tor which contains the conservation features. After this step,
the 35-element vector encoding the sequence and conserva-
tion features is given as input to the Gradient Boosting algo-
rithm which returns the prediction output described above.
In the final step of the prediction task, the Fido-SNP server
annotates the input variants using Annovar (25). Annovar
finds the possible effect on the amino acid sequence of the
longest matching transcript corresponding to the variant re-
gion.

Input interface

The web interface of Fido-SNP consists of a ‘textarea’ box
where the SN'Vs are provided in either CSV or format. CSV
and VCF files, in either standard text or gzipped format, can
be uploaded using the ‘Browse’ button below the ‘textarea’
box. When the list of SNVs is provided, the appropriate in-
put format can be selected using the ‘Input Type’ buttons
(CSV or VCF). A second group of buttons (Assembly) is
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Table 1. Average performance of Fido-SNP on the hd-pathogenic and dog-omia data sets. All data contains pathogenic variants and an equal number of
potentially benign variants randomly selected from dbSNP. Optimized performance of Fido-SNP obtained maximizing the MCC on the hd-pathogenic set.
Performance on the validation set (dog-omia) considering a classification threshold of 0.1

Data set Threshold Q> TNR NPV TPR PPV MCC AUC

hd-pathogenic 0.09+0.02 0.87+0.04 0.91+0.04 0.86=+0.01 0.8540.01 0.91+0.04 0.77+0.04 0.91£0.01
dog-omia 0.10+£0.01 0.88+0.02 0.92+0.03 0.85+0.01 0.84+0.01 0.92+0.03 0.7740.04 0.91+0.01
dog-omia” 0.11+0.03 0.8740.04 0.9240.05 0.84+£0.05 0.82+0.07 0.92+0.05 0.75+0.08 0.9140.04

*Performance of Fido-SNP on the dog-omia data set using a 3-fold cross-validation procedure. The performance measures are defined in Supplementary

Materials. The values are computed using the canfam3 assembly.

Table 2. Comparison between Fido-SNP and SIFT predictions on dog-omia and Lym168 data sets

Data set Method Pathogenic Predicted SNVs

Lymli68 Fido-SNP 119 (78.8%) 168/168 (100.0%)
SIFT 70 (51.1%) 137/168 (70.8%)

dog-omia Fido-SNP 64 (85.3%) 75/75 (100.0%)
SIFT 43 (84.3%) 51/75 (68.0%)

used to indicate the dog reference genome (canfam? or can-
fam3) to which the SNVs are referred. An example of inputs
in CSV format can be found by clicking the ‘chr,pos,ref,alt’
hyperlink located at the top of the web interface. Although
an example of VCF-like input is linked in the ‘Help’ web
page, the usage of the ‘textarea’ box for the VCF input for-
mat is discouraged.

On the bottom of the Fido-SNP web page, the e-mail
box (optional) is available to receive Fido-SNP output by
e-mail.

Prediction output

Fido-SNP web server takes input in two different formats
(CSYV, VCF) containing the single nucleotide variants at the
DNA level. It returns an output containing the probability
that a given SNV is Pathogenic.

This probability is rescaled ~0.1 (Equation 1 in Supple-
mentary Materials) that represents the optimized threshold
for discriminating between Pathogenic and Benign SNVs
in the dog genome. In addition to the pathogenicity pre-
diction, Fido-SNP also returns the estimated False Discov-
ery Rate (FDR) and the PhyloP11 conservation score for
the dog genome. When the SNV is located in coding re-
gions, it also provides the RefSeq (26) code of the transcript
and the HGNC gene product (27) through the HUGO web-
site (https://genenames.org). This annotation process is per-
formed using Annovar tool (25).

CONCLUSIONS

Fido-SNP is the first web server that specifically predicts
the impact of single-nucleotide variations, both coding and
non-coding, in the dog genome. Fido-SNP achieves a very
good performance in the classification of pathogenic vari-
ants, limited only by the presence of unaligned regions in
the dog genome that prevent the calculation of the PhyloP11
conservation score. We estimate that, on average, Fido-SNP
returns predictions on ~68% of the SNVs in dbsnp-benign
data set. From a computational point of view, Fido-SNP
is light and fast and constitutes a very useful resource for
veterinary medicine applications. It can also be seen as a

proof-of-concept that the knowledge acquired through the
high level of annotation of the human genome can be trans-
ferred and exploited to boost prediction performances in
other species.

DATA AVAILABILITY

The Fido-SNP web server is freely available at: http://
fidosnp.bca.unipd.it/ and http://snps.biofold.org/fido-snp/
Fido-SNP scripts are available at https://github.com/
biofold/Fido-SNP. All the data sets used in this work are
available online at http:/fidosnp.bca.unipd.it/method.html
and http://snps.biofold.org/fido-snp/method.html

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Matteo Tuzzato for the technical support and
Morgan Smits for improving the English language of the
manuscript. EC acknowledge the Institute for Mathemat-
ical Modeling of Biological Systems at the University of
Disseldorf (Germany) for providing computational sup-
port.

FUNDING

SID-2017 from Padova University, delivered (to P.F);
FFABR grant from the Ministry of Education, Universities
and Research (MIUR) (to E.C.); Italian Ministry for Edu-
cation, University and Research under the programme ‘Di-
partimenti di Eccellenza 2018-2022’ [D15D 18000410001 to
P.F.]; L.M. has been supported by EBA-PRISM, an Israel-
Italy collaborative project between the Israel Ministry of
Science and Technology and the Italian Ministry of Foreign
Affairs and International Cooperation. Funding for open
access charge: SID-2017.

Conflict of interest statement. None declared.


https://genenames.org
http://fidosnp.bca.unipd.it/
http://snps.biofold.org/fido-snp/
https://github.com/biofold/Fido-SNP
http://fidosnp.bca.unipd.it/method.html
http://snps.biofold.org/fido-snp/method.html
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz420#supplementary-data

REFERENCES

1

10.

11

12.

13.

. Fernald,G.H., Capriotti,E., Daneshjou,R., Karczewski,K.J. and

Altman,R.B. (2011) Bioinformatics challenges for personalized
medicine. Bioinformatics, 27, 1741-1748.

. Niroula,A. and Vihinen,M. (2016) Variation interpretation

predictors: principles, types, performance, and choice. Hum. Mutat.,
37, 579-597.

. Capriotti,E., Nehrt,N.L., Kann,M.G. and Bromberg,Y. (2012)

Bioinformatics for personal genome interpretation. Brief. Bioinform.,
13, 495-512.

. Capriotti,E., Ozturk,K. and Carter,H. (2018) Integrating molecular

networks with genetic variant interpretation for precision medicine.
Wiley Interdiscip. Rev. Syst. Biol. Med., 11, e1443.

. Kircher,M., Witten,D.M., Jain,P., O’Roak,B.J., Cooper,G.M. and

Shendure,J. (2014) A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet., 46, 310-315.

. Shihab,H.A., Rogers,M.F., Gough.,J., Mort,M., Cooper,D.N.,

Day,L.N., Gaunt,T.R. and Campbell,C. (2015) An integrative
approach to predicting the functional effects of non-coding and
coding sequence variation. Bioinformatics, 31, 1536-1543.

. Capriotti,E. and Fariselli,P. (2017) PhD-SNPg: a webserver and

lightweight tool for scoring single nucleotide variants. Nucleic Acids
Res., 45, W247-W252.

. Gross,C., de Ridder,D. and Reinders,M. (2018) Predicting variant

deleteriousness in non-human species: applying the CADD approach
in mouse. BM C Bioinformatics, 19, 373.

. Reeb,J., Hecht,M., Mahlich,Y., Bromberg,Y. and Rost,B. (2016)

Predicted molecular effects of sequence variants link to system level
of disease. PLoS Comput. Biol., 12, e1005047.

Aresu,L., Ferraresso,S., Marconato,L., Cascione,L., Napoli,S.,
Gaudio,E., Kwee,l., Tarantelli,C., Testa,A., Maniaci,C. et al. (2018)
New molecular and therapeutic insights into canine diffuse large B
cell lymphoma elucidates the role of the dog as a model for human
disease. Haematologica, haematol.2018.207027.

. Hernandez,B., Adissu,H.A., Wei,B.R., Michael,H.T., Merlino,G. and

Simpson,R.M. (2018) Naturally occurring canine melanoma as a
predictive comparative oncology model for human mucosal and other
triple wild-type melanomas. Int. J. Mol. Sci., 19, E394.

Bushell,K.R., Kim,Y., Chan,F.C., Ben-Neriah,S., Jenks,A.,
Alcaide,M., Fornika,D., Grande,B.M., Arthur,S., Gascoyne,R.D.

et al. (2015) Genetic inactivation of TRAF3 in canine and human
B-cell lymphoma. Blood, 125, 999-1005.

Ostrander,E.A. and Kruglyak,L. (2000) Unleashing the canine
genome. Genome Res., 10, 1271-1274.

Nucleic Acids Research, 2019, Vol. 47, Web Server issue WI141

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26

27.

Vihinen,M. (2013) Guidelines for reporting and using prediction
tools for genetic variation analysis. Hum. Mutat., 34, 275-282.
Pedregosa,F., Varoquaux,G., Gramfort,A., Michel,V., Thirion,B.,
Grisel,O., Blondel,M., Prettenhofer,P., Weiss,R., Dubourg,V. et al.
(2011) Scikit-learn: machine learning in python. J. Mach. Learn. Res.,
12, 2825-2830.

Pollard,K.S., Hubisz,M.J., Rosenbloom,K.R. and Siepel,A. (2010)
Detection of nonneutral substitution rates on mammalian
phylogenies. Genome Res., 20, 110-121.

Landrum,M.J., Lee,J.M., Benson,M., Brown,G., Chao,C.,
Chitipiralla,S., Gu,B., Hart,J., Hoffman,D., Hoover,J. ez al. (2016)
ClinVar: public archive of interpretations of clinically relevant
variants. Nucleic Acids Res., 44, D862-D868.

Nicholas,F.W. (2003) Online Mendelian Inheritance in Animals
(OMIA): a comparative knowledgebase of genetic disorders and
other familial traits in non-laboratory animals. Nucleic Acids Res., 31,
275-2717.

Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L.,
Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database
of genetic variation. Nucleic Acids Res., 29, 308-311.

Blanchette,M., Kent,W.J., Riemer,C., Elnitski,L., Smit,A.F.,
Roskin,K.M., Baertsch,R., Rosenbloom,K., Clawson,H., Green,E.D.
et al. (2004) Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res., 14, 708-715.

Kent,W.J., Baertsch,R., Hinrichs,A., Miller,W. and Haussler,D.
(2003) Evolution’s cauldron: duplication, deletion, and
rearrangement in the mouse and human genomes. Proc. Natl. Acad.
Sci. US.A., 100, 11484-11489.

Baldi,P., Brunak,S., Chauvin,Y., Andersen,C.A. and Nielsen,H.
(2000) Assessing the accuracy of prediction algorithms for
classification: an overview. Bioinformatics, 16, 412-424.

Vaser,R., Adusumalli,S., Leng,S.N., Sikic,M. and Ng,P.C. (2016)
SIFT missense predictions for genomes. Nat. Protoc., 11, 1-9.
Kent,W.J., Zweig,A.S., Barber,G., Hinrichs,A.S. and Karolchik,D.
(2010) BigWig and BigBed: enabling browsing of large distributed
datasets. Bioinformatics, 26, 2204-2207.

Wang,K., Li,M. and Hakonarson,H. (2010) ANNOVAR: functional
annotation of genetic variants from high-throughput sequencing
data. Nucleic Acids Res., 38, e164.

. Pruitt,K.D., Tatusova,T. and Maglott,D.R. (2007) NCBI reference

sequences (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res., 35, D61-D65.
Gray,K.A., Yates,B., Seal,R.L., Wright, M.W. and Bruford,E.A.
(2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids
Res., 43, D1079-D1085.



