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Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

led to multiple drug repurposing clinical trials that have yielded largely uncertain out-

comes. To overcome this challenge, we used IDentif.AI, a platform that pairs experi-

mental validation with artificial intelligence (AI) and digital drug development to

rapidly pinpoint unpredictable drug interactions and optimize infectious disease com-

bination therapy design with clinically relevant dosages. IDentif.AI was paired with a

12-drug candidate therapy set representing over 530,000 drug combinations against

the SARS-CoV-2 live virus collected from a patient sample. IDentif.AI pinpointed the

optimal combination as remdesivir, ritonavir, and lopinavir, which was experimentally

validated to mediate a 6.5-fold enhanced efficacy over remdesivir alone. Additionally,

it showed hydroxychloroquine and azithromycin to be relatively ineffective. The

study was completed within 2 weeks, with a three-order of magnitude reduction in

the number of tests needed. IDentif.AI independently mirrored clinical trial outcomes

to date without any data from these trials. The robustness of this digital drug devel-

opment approach paired with in vitro experimentation and AI-driven optimization
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suggests that IDentif.AI may be clinically actionable toward current and future

outbreaks.
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1 | INTRODUCTION

Drug repurposing, or the use of approved and investigational thera-

pies for other indications, has been a widely implemented strategy

toward treating COVID-19. Examples include clinical studies of ritona-

vir (RTV) and lopinavir (LPV)1; hydroxychloroquine (HCQ) in combina-

tion with azithromycin (AZT)2; favipiravir (FPV) in combination with

tocilizumab (NCT04310228); remdesivir (RDV)3; and losartan (LST)

(NCT04312009); dexamethasone (DEX) (NCT04381936), among

others. In the SIMPLE trial with severe COVID-19 patients, RDV met

trial endpoints, reducing the median time to recovery from 15 to

11 days (p < 0.001), and has ultimately received regulatory authoriza-

tion for emergency use in severe COVID-19 patients in the United

States, Singapore, Taiwan, Japan, European Union, India, and

Australia.4 After demonstrating promising open-label study results in

China,5 FPV has been approved in India and Russia for treatment of

mild and moderate COVID-19 patients, with additional clinical trials

(NCT04402203 and NCT04402203) have been initiated for further

validation. The majority of trial outcomes are either pending or have

not shown clinical benefit over standard of care (SOC) or placebo. As

such, while drug repurposing enables rapid intervention against

COVID-19, thus far, it has not led to clarity with regard to how to best

treat this disease.

Traditional methods for implementing combination therapy and

monotherapy based on drug repurposing rely on mechanism of action

(MOA)-based drug selection and standard clinical dosing guidelines to

achieve drug synergy and therapeutic efficacy. For example, a preclini-

cal study showed that RDV as well as high-dose chloroquine

(CQ) were efficacious toward Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) in vitro.6 While this is an established

approach that has led to promising candidate therapies, many of these

regimens were not able to translate their in vitro outcomes into suc-

cessful clinical results. Therefore, optimal efficacy that is clinically rel-

evant is a different objective that presents substantial challenges to

traditional drug screening and repurposing methods. For example, if

candidate effective drugs are given in combination at suboptimal

respective doses, resulting efficacy is moderate or even absent. At the

same time, the relative doses between drugs within a combination can

substantially impact treatment efficacy and toxicity due to

unpredictable drug interactions. Another common hurdle is that rep-

urposed drugs in vitro demonstrate the desired antiviral activity only

at the high concentrations not achievable in a human body at safe

dosing regimens. Therefore, drug dosing has a critical role in

identifying which drugs belong in the optimal combination in the first

place, and optimizing treatment outcomes, particularly in combination

therapy, ultimately relies on simultaneously selecting the right drugs

at the right respective doses.7,8 Reconciling drug–dose parameters

also requires leveraging unpredictable drug interactions in order to

mediate maximal efficacy of combination therapies. Unfortunately,

simultaneously pinpointing these parameters is an extraordinarily

complicated task. For example, a parameter space of 1 trillion (1012)

possible combinations would be created from a pool of only 12 candi-

date therapies interrogated at 10 dose levels. This is an insurmount-

able barrier for traditional drug screening. Important studies have

previously sought to leverage drug synergy interactions to predict

multidrug combinations.9Other strategies have investigated higher

order drug interactions to develop antimicrobial drug combinations.10

Bridging these findings with clinical validation remains a challenge due

to the size of the experimental search space.

In this study, we sought to overcome these challenges in develop-

ing effective combination therapies against SARS-CoV-2 infection

using the IDentif.AI platform and an in vitro SARS-CoV-2 infection

model with a live virus derived from a patient sample. IDentif.AI har-

nesses a quadratic relationship between clinically relevant therapeutic

inputs (e.g., drug and dose) and biological outputs (e.g., quantifiable

measurements of efficacy, safety) to experimentally pinpoint clinically

relevant optimal combinations from large parameter spaces account-

ing for unpredictable interactions with a marked reduction in the num-

ber of required biological experiments (Figure 1).

IDentif.AI is not purely computational and does not use pre-

existing training datasets. Instead, it uses an orthogonally designed set

of calibrating regimens and in vitro experimentation to simultaneously

identify effective drugs, their unpredictable interactions and

corresponding, clinically relevant doses that optimize treatment out-

comes from prohibitively large drug–dose parameter spaces that can-

not be reconciled by brute force drug screening.7,11 In effect, IDentif.

AI leverages these calibrating regimens to crowdsource SARS-CoV-2

live virus responses to experimentally drive the efficacy toward an

optimal outcome. An earlier version of IDentif.AI was previously rap-

idly developed as a proof of concept strategy to pinpoint an optimal

combination for vesicular stomatitis virus.7 Here, we report a clinically

actionable IDentif.AI with a streamlined workflow that incorporates

clinically relevant dose design, an artificial intelligence (AI)-based strat-

egy that prospectively and experimentally crowdsources the patient-

derived live SARS-CoV-2 virus to drive the optimization process, as

well as a follow-on validation process that has resulted in a ranked list
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of drug combinations that are simultaneously optimized for drug com-

position and the dose of each respective therapy. This has resulted in

results that broadly and independently align with clinical trial out-

comes without requiring any data from these studies, thereby

resulting in a platform that can be used as a first-line approach toward

clinical decision support and therapeutic guidance with any number of

additional drug options to address the COVID-19 pandemic as well as

future outbreaks. In this study, this AI-driven digital medicine

approach was applied to a 12-drug set of candidate therapies added

to a cellular infection model to pinpoint unpredictable drug interac-

tions and clinically actionable combination therapy regimens against

the live SARS-Cov-2 virus isolated from a nasopharyngeal swab of a

patient in Singapore.12 The 12-drug set included a broad spectrum of

repurposed agents that were evaluated in clinical studies for treat-

ment of COVID-19 or were administered in conjunction with these

therapies, including RDV, FPV, RTV, LPV, oseltamivir phosphate

(OSV-P), DEX, ribavirin (RBV), teicoplanin (TEC), LST, AZT, CQ, and

HCQ. Noteworthy, the drugs' concentrations were clinically relevant,

that is, did not exceed one-tenth of the levels observed in the patient

blood in response to standard dosing. Based on prior studies of mini-

mal resolution experimental design, 3 clinically relevant dosing levels

were employed with these 12 drugs, creating a combinatorial space of

531,000 regimens.13 With a three-order of magnitude reduction in

required tests, we identified a clinically actionable list of two-, three-,

and four-drug combinations ranked based on viral inhibition efficacy

in vitro with accompanying safety data against kidney epithelial cells

(Vero E6), liver epithelial cells (THLE-2) and cardiomyocytes (AC16).

The identified drugs in the combinations were all at clinically relevant

concentrations, not higher than one-tenth of the drug levels in blood

in response to established clinical dosing. The top-ranked combination

was comprised of RDV, RTV, and LPV which mediated a 6.5-fold

increase in efficacy (viral inhibition %) compared to RDV alone due to

an unforeseen drug interaction. Further demonstrating the clinical act-

ionability of IDentif.AI, HCQ, and AZT combination was shown to be

a relatively ineffective regimen in vitro at clinically relevant doses,

mirroring recent clinical results. Importantly, the IDentif.AI-pinpointed

relative efficacy of the combinations and monotherapies at the clini-

cally relevant doses that did not use any preexisting antiviral clinical

data was independently confirmatory of many of the clinical trial end-

points to date. These outcomes, coupled with the fact that founda-

tional precursors to IDentif.AI have been clinically validated for

infectious disease, oncology, and organ transplantation human stud-

ies, support the potential application of IDentif.AI as a clinical decision

support platform for the optimized design of actionable combination

therapy regimens.14-16

2 | RESULTS

2.1 | Screening drug pool and experimental model

A pool of drug candidates was first chosen and evaluated for down-

stream IDentif.AI analysis and drug combination optimization. The

pool of candidate therapies for IDentif.AI-driven optimization con-

tained 11 drugs that were hypothesized to inhibit SARS-CoV-2 viral

infection via affecting: viral entry into the host cell—CQ, HCQ, AZT,

LST, TEC; viral replication—RTV, LPV; viral RNA synthesis—RDV, FPV,

RBV; viral release—OSV-P.17-20 To create combinations actionable

within the current clinical guidelines we aimed to investigate drug

interaction space between the antiviral and concomitant medications.

DEX has been proposed for treating acute respiratory distress syn-

drome resulting from COVID-19 (NCT04381936), LST is a common

hypertension drug whose dosing should not be paused while undergo-

ing COVID-19 treatment.21 TEC is a wide spectrum antibiotic pre-

scribed for pulmonary infections, potentially including those occurring

as COVID-19-related complications.22

IDentif.AI is a dynamic optimization AI-based platform that uti-

lizes orthogonal array composite design (OACD), consisting of a

resolution IV two-level (drug concentrations) factorial design and a

three-level orthogonal array, to efficiently screen for influential fac-

tors and determine optimal drug-dosage combinations within the

SARS-CoV-2 in vitro, cellular infectious disease model. Aliasing and

F IGURE 1 Project IDentif.AI workflow. Project IDentif.AI has
four phases: (1) clinically relevant concentrations are established for
each drug based on dose–response curves and maximal plasma
concentration (Cmax) of clinically administered dosages,
(2) combination therapies determined with an orthogonal array
composite (OACD) design are experimentally tested in an in vitro,
cellular infectious disease (ID) model, (3) IDentif.AI analysis of the

drug dose parameter space identifies drug–drug interactions and
ranks optimal, clinically relevant drug-dosage combinations, and
(4) biological validation of clinically relevant combinations designed by
IDentif.AI-designed or already in trials

BLASIAK ET AL. 3 of 16



confounding are addressed for each independent drug's linear,

bilinear (drug–drug interaction), and quadratic effects by the resolu-

tion IV design, factor screening, and deterministic nonlinear

relationships.11,13,23

IDentif.AI interrogates drug–dose relationships in order to pin-

point and experimentally validate unpredictable drug interactions and

the most efficacious drug combinations within defined, clinically rele-

vant drug concentration ranges. With the ultimate goal of clinical

implementation, drug–dose response in vitro experiments were per-

formed within concentration ranges that accounted for clinically

implemented concentrations and avoided clinically unrealistic drug

concentrations. The viral infection model was based on virus's cyto-

pathic effect (CPE) as a measure of the viral burden. Z'-factor, the

measure of the assay quality, across all experiments (N = 78) was

0.25, which indicated sufficient separation between the positive and

negative signal bands to perform the assessment.

2.2 | Experimental monotherapy assessment and
OACD dataset construction

The drugs with and without the addition of 100 tissue culture infec-

tious dose (TCID50) of SARS-CoV-2 virus were incubated with primate

kidney cell line Vero E6 for 72 h before measuring CPE inhibition and

cytotoxicity and generating the dose–response curves (Figure S1,

Supporting Information). Z'-factor of 0.5 for the viral plates in the

monotherapies experimental set (N = 12) indicated suitable quality of

the assay.

Only high concentrations (>1 μM) of RDV, LPV, CQ, and HCQ

achieved half maximal absolute effective concentration (EC50) for the

viral inhibition within the tested concentration ranges. High

concentrations (>20 μM) of RTV, LPV and CQ led to half maximal

absolute cytotoxic concentration (CC50) within the tested concentra-

tion ranges (Table 1). These results indicated low cellular effects of

the selected monotherapies at the tested concentrations. No effect of

the maximum vehicle concentration (0.1% DMSO) was detected on

viral CPE inhibition or on cytotoxicity (Student's t test, N = 12,

p > 0.05). The EC50 and CC50 of HCQ, CQ, RDV, FPV, and RBV were

different from previously reported values, attributable to differences

in the experimental conditions (e.g., SARS-CoV-2 strain, assays, incu-

bation periods).6,24 Regardless of the monotherapy antiviral activity,

all drugs were considered for the combinatorial optimization process

in order to identify possible unpredictable drug interactions that could

markedly impact treatment efficacy and safety.

Accounting for a common source of failure in translating in vitro

results to clinical trials, the high ratio of EC50 to maximum plasma con-

centration (Cmax) achieved in the human body,25 Cmax was included as

a crucial consideration for selecting drug concentrations at Levels

1 and 2 for each drug that ensure none of the drugs were overrepre-

sented in relation to other drugs and to human pharmacokinetics

(Table 1). Additionally, evidence has emerged that SARS-CoV-2 infec-

tion causes pathology of the vascular system and may require a treat-

ment maintaining sustained drug level in the blood.26,27

We examined Cmax for each drug as specified in clinical data after

reaching a steady state at an established dosing regimen given to a

population without drug metabolism impairment and at dosing regi-

mens listed on a drug label specified by a national regulatory body

(Food and Drug Administration [FDA] in the United States; European

Medicines Agency in European Union; and Pharmaceuticals and Medi-

cal Devices Agency [PMDA] in Japan) or literature. When the Cmax

information was available for multiple dosages, the dosage tested in

current clinical trials for COVID-19 was included in the considerations

TABLE 1 Clinically relevant drug concentrations in drug combinations. Absolute half efficacy (EC50) and absolute half cytotoxicity (CC50)
concentrations, and maximum plasma concentration (Cmax) and a reference for each drug. NCT number is provided for COVID-19 clinical trials
with drug dosages like those that where the basis for Cmax selection

Drug EC50 (μM) CC50 (μM)

Cmax

Level 0 (μM) Level 1 (μM) Level 2 (μM)Conc. (μM) Reference COVID-19 clinical trial

RDV 1.1 >100 9 27 NCT04292899 0 0.81a 0.9a

FPV >600 >600 331.83 28 NCT04310228 0 16.5915 33.183

RTV >100 97 20.39 30 — 0 0.50975b 1.0195b

LPV 17 26 19.56 32 NCT04330690 0 0.978 1.956

RBV >100 >100 17.3 33 NCT04276688 0 0.866 1.73

CQ 5.3 99 1.42 34 NCT04362332 0 0.071 0.142

HCQ 6.3 >100 5.6 35 NCT04261517 0 0.28 0.56

AZT >100 >100 0.32 36 NCT04329832 0 0.016 0.032

OSV-P >10 >10 0.18 37 NCT04255017 0 0.009 0.018

LST >100 >100 0.43 41 NCT04335123 0 0.01075b 0.0215b

TEC >50 >50 20.475 42 — 0 0.511875b 1.02375b

DEX >100 >100 0.63 43 — 0 0.0315 0.063

Note: Concentration Levels 1 and 2 were based on: a) absolute EC10 and absolute EC20 for RDV and b) 2.5 and 5% of Cmax for RTV, LST, and TEC; and 5
and 10% of Cmax for the rest of the drugs.
Abbreviations: AZT, azithromycin; CQ, chloroquine; DEX, dexamethasone; FPV, favipiravir; HCQ, hydroxychloroquine; LPV, lopinavir; LST, losartan;
OSV-P, oseltamivir phosphate; RBV, ribavirin; RDV, remdesivir; RTV, ritonavir; TEC, teicoplanin.
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for selecting Cmax. RDV administered at 200 mg intravenously, had a

reported Cmax of 9.0 μM on Day 1.28 High dose FPV, administered at

2000/400/400 mg on Day 1 and 400 mg thrice daily (tid) for Days

2–6, had a reported Cmax of 52.13 mg/L on Day 6.29 The reported Cmax

for RTV given at a high dose of 600 mg twice daily (bid), with and with-

out other antiviral drugs, varies between 11 and 14.7 mg/L.30-32 LPV

requires a pharmacokinetic enhancer. When given at 400/100 mg bid

LPV/RTV, reported Cmax for LPV reaches 12.3–12.9 mg/L.28,33 The

reported Cmax for RBV administered orally bid at a total daily dose of

800, 1000, or 1200 mg, was 4.23 mg/L at Week 4.34 The reported Cmax

for CQ was 0.73352 mg/L when given at an initial 450 mg dose

followed by two 300 mg doses.35 In accordance with the FDA label,

HCQ reaches a Cmax of 2.436 mg/L after a single intravenous high dose

of 310 mg.36 The FDA label reported steady-state Cmax of AZT is

0.24 mg/L at a standard once daily (qd) 250 mg dose, following a

500 mg initial dose.37 75 mg OSV-P bid or qd given to healthy and

obese populations resulted in a reported Cmax of 0.0594–0.0744 mg/

L.38-40 LST given for 7 days at 50 mg qd has a reported Cmax of

0.1976–0.224 mg/L.41,42 TEC requires dosing according to therapeutic

dose monitoring with the minimum effective plasma concentration of

10 mg/L.43 The Cmax adapted in our calculations was 35 mg/L. A single

dose of 20 mg DEX given orally is reported in the FDA label to result in

a Cmax of 0.247 mg/L.44

In order for IDentif.AI to determine optimized drug combinations

from this 12-drug set, 100 drug–dose combinations were generated

according to OACD (Table S1, Supporting Information) and, together

with drug monotherapies at concentration Levels 1 and 2, were evalu-

ated for their antiviral and cytotoxic activity on Vero E6 cells. The

upper bound (Level 2) for drug concentration selection was set as 10%

Cmax or EC20, whichever lower. To account for high binding levels

(>97%) to human plasma protein of RTV, LST, and TEC,31,45,46 we

decreased their upper concentration bound to 5% Cmax. Half of the

upper bound concentrations, 5% Cmax, EC10 or 2.5% Cmax, guided the

selection of the mid drugs concentrations (Level 1). Exclusion of the

drug from the combination (concentration 0 μM), served as Level 0

(Table 1). Drug combinations' cytotoxicity was additionally tested on

human cell lines: liver (THLE-2), and cardiac myocytes (AC16). Z'-factor

of 0.65 for the viral plates in OACD experimental set (N = 24) indicated

high quality of the assay. No effect of the maximum vehicle concentra-

tion (0.006% DMSO) was detected on viral CPE inhibition or on cell

cytotoxicity (Wilcoxon rank-sum test, N = 18, p > 0.05).

2.3 | IDentif.AI analysis and clinically relevant drug
combination optimization

Utilizing the single drug and OACD drug in vitro data, IDentif.AI analy-

sis determined unforeseen drug–drug interactions and pinpointed

RDV/RTV/LPV to be the most efficacious three-drug combination at

the clinically relevant doses. It was also present in all top 10 ranked

four-drug combinations. RDV/LPV was the top ranked two-drug com-

bination (Table 2). While RDV was identified as the most efficacious

single drug at a clinically relevant dose, in line with current clinical trial

outcomes, IDentif.AI analysis of the experimental data determined

that the three-drug combination of RDV/RTV/LPV is critical for

achieving maximal therapeutic efficacy without increasing the doses

beyond what is currently clinically established. IDentif.AI analysis

allows for comparative ranking of all possible combinations and drug–

drug interactions within the 12-drug set, including analysis of regi-

mens currently being clinically investigated but that are not observed

as top ranked optimized drug combinations. Both LPV/RTV (Kaletra)

and HCQ/AZT have been clinically evaluated as potential treatments

against SARS-CoV-2 infection with discouraging outcomes. IDentif.AI

analysis of our experimental data revealed that they were identified

to be suboptimal—LPV/RTV ranked 1261 and HCQ/AZT ranked 5161

among all 9968 drug combinations that include up to four-drugs, with

predicted viral CPE inhibition efficacies of 23% and 2%, respectively.

The aforementioned findings were based on the IDentif.AI quadratic

series assessing the %Inhibition experimental data with a close prox-

imity as indicated by adjusted R2 of 0.898 (Table S2, Supporting

Information).

Multiparameter IDentif.AI analysis of the experimental data

allowed cytotoxicity of ranked combinations to be interrogated as

well via deriving %Cytotoxicity quadratic series (Tables S3–S5,

Supporting Information). In interpreting cytotoxicity results, it is

important to note that %Cytotoxicity is calculated in relation to the

control cell culture luminescence and as such, it has a different scale

than %Inhibition, which is calculated in relation to the luminescence

dynamic range, and the two values should be interpreted indepen-

dently. The top ranked three- and four-drug RDV-based combinations

were determined to have similar %Cytotoxicity in the Vero E6 cells as

the experimentally measured single drug RDV treatments. IDentif.AI

analysis also determined low %Cytotoxicity for the top three-drug

combination, RDV/RTV/LPV in the AC16 cells and higher %Cytotox-

icity in the THLE-2 cells. This IDentif.AI-derived THLE-2 %Cytotoxic-

ity was predicted to decrease with the addition of DEX in the top

four-drug combination (Table 2). Outlier analysis performed for each

IDentif.AI quadratic series (Figures S2–S5, Supporting Information)

identified and excluded OACD combination 15 from the AC16 %

Cytotoxicity data set (Figure S4, Supporting Information) and combi-

nation 46 from the THLE-2 %Cytotoxicity data set (Figure S5,

Supporting Information). These data sets were subsequently rea-

nalyzed (Figures S6 and S7, Supporting Information). The plot of resid-

uals against fitted values (Figure S2, upper left panel, Supporting

Information) showed a tendency of points to cluster over the range of

0–50% inhibition; however, this distribution of fitted values follows

that of experimental data. Additionally, the probability plots and resid-

ual histograms (Figure S2, lower panels, Supporting Information) did

not reveal any obvious deviations from normality and

homoscedasticity.

Taken together, in vitro data analyzed with IDentif.AI pinpointed

RDV-based treatments to likely be the most effective therapies

against SARS-CoV-2 infections without the need to increase the drug

doses beyond clinically established regimens, with RDV/RTV/LPV

capable of achieving maximal efficacy with potential reductions in

overall toxicity if complemented with the fourth drug.
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2.4 | Experimental validation of IDentif.AI results

Selected data points derived from the OACD experimental set via the

IDentif.AI analysis were validated in the in vitro assay. Z'-factor of

0.61 for the viral plates in the validation experimental set (N = 3) indi-

cated high quality of the assay. Validation results were interpreted

considering not only the p-values, but also the logic, background

knowledge and specifics of the experimental design.47 The cellular

viral CPE inhibition experiments confirmed IDentif.AI ranking of RDV

in combination with LPV and RTV as the optimal combination of the

study, resulting in complete viral CPE inhibition (Figure 2(a) and

Table 3) at clinically actionable concentrations. This combination

resulted in a 6.5-fold increase in efficacy compared to RDV alone.

RDV at a clinically relevant concentration was confirmed as an essen-

tial driver of the antiviral efficacy in the optimized combinations, even

though it mediated only moderate antiviral effect on its own. These

cellular validation experiments were conducted following IDentif.AI

identification of top-ranked optimized RDV-based drug combinations

and comparative ranking of these combinations against other possible

combinations.

LPV and RTV are commonly administered together as RTV acts as

a pharmacokinetic enhancer of LPV. Of note, the high antiviral effects

of RDV/RTV/LPV were sustained when the RTV concentration was

decreased 20-fold, and the RTV/LPV concentrations reflected the

standard 100/400 mg bid dosing in its clinically administered formula-

tion (Kaletra). As such, RDV/RTV/LPV combination likely does not

require increasing RTV dose beyond what is commonly used clinically

and is readily clinically actionable upon an approval. RDV's cytotoxic-

ity, also reported clinically,28 was not enhanced in any of the combina-

tions (Figure 2(b)). In fact, the in vitro results suggest that RDV/RTV/

LPV may suppress RDV-induced cytotoxicity both on human cardiac

myocytes and human liver cell lines. The addition of DEX to the

F IGURE 2 Experimental
validation of the IDentif.AI-designed
at clinically relevant doses. (a) %
Inhibition of the optimal IDentif.AI
combination of RDV/LPV/RTV
(green), IDentif.AI designed
combinations (blue), and regimens in
clinical trials (red). (b) %Cytotoxicity
of Vero E6 (gray), AC16 (orange),

and THLE-2 (purple), of the optimal
IDentif.AI combination of RDV/LPV/
RTV, IDentif.AI designed
combinations, and regimens in
clinical trials. Data are shown as
mean ± propagated SD; N = 3.
Kruskal-Wallis test detected
statistically significant differences at
p<0.001 for the %Inhibiton and the
%Cytotoxicity groups, but the
pairwise comparisons with Dunn's
post hoc did not detect any
statistically significant differences
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RDV/RTV/LPV combination further reduced the cytotoxicity across all

three cell lines. Glucocorticoid exposure to epithelial cells—such as liver,

heart, and kidney—is known to lead to an antiapoptotic effect and the

DEX-mediated cytoprotection has been demonstrated in several cell

lines.48,49 We also observed the positive effect of DEX on cell growth in

the monotherapy experimental set. It is plausible that the observed reduc-

tions in drug-induced cytotoxicity in combinations with DEX are due to

DEX-mediated cytoprotection and requires further investigation. Notewor-

thy, the coadministration of DEX did not decrease the efficacy of the ant-

iviral treatment. Importantly, dose limiting and drug exclusion experiments

further deciphered the contribution of each drug toward overall

RDV/RTV/LPV antiviral activity at clinically relevant concentrations. RDV

was confirmed to have the greatest contribution, with LPV/RTV on its

own not mediating viral CPE inhibition in vitro. High concentrations of

LPV were critical to maximizing the RDV/RTV/LPV antiviral activity. While

the concentration of RTV was not a critical determinant of the resulting

efficacy of the combination, the presence of RTV was critical to RDV/

RTV/LPV achieving maximal viral CPE inhibition in vitro, at clinically rele-

vant concentrations. Further confirming the accuracy of IDentif.AI analysis,

validation of clinically trialed treatments against COVID-19, LPV/RTV

(Kaletra),1 HCQ/AZT,50,51 FPV (NCT04310228), and CQ (NCT04362332)

did not induce as much viral CPE inhibition as compared to RDV alone.

These data confirm that IDentif.AI can accurately reflect the unsatisfactory

outcomes observed in those clinical trials, without incorporating any prior

clinical data or drug mechanism assumptions as inputs.

Drug–drug interactions were investigated with an additional

IDentif.AI interaction reanalysis of the OACD experimental data. %

Inhibition IDentif.AI response surface plot mirrored well-documented

and experimentally confirmed synergy between RTV and LPV

(Figure 3(a)). In contrast, IDentif.AI identified an antagonistic interac-

tion between RTV and OSV-P (Figure 3(b)), a combination that is

currently being investigated in clinical trials (NCT04303299). It is

important to note that combining RDV with LPV only at clinically rele-

vant concentrations, which to our knowledge has not been explored

clinically as a registered trial, doubled their individual viral CPE inhibi-

tion when added together. Accordingly, the corresponding %Inhibition

IDentif.AI response surface plot identified a previously unknown syn-

ergistic interaction between RDV and LPV (Figure 3(c)). Further con-

firming IDentif.AI rankings and validation experiments, it is important

to note that the RDV/RTV interaction was not significant, but when

given in three-drug combination, RTV boosted the RDV/LPV interac-

tion almost two times (Figure 3(d)). These results further highlight the

ability of IDentif.AI to leverage unexpected drug–dose interactions to

identify optimal drug combinations at clinically relevant concentra-

tions from a massive drug–dose search space.

3 | DISCUSSION

This study harnessed the IDentif.AI platform, which paired an

AI-based digital medicine approach with experimental assays and

AI-based optimization on an in vitro infection model to interrogate a

12 drug–dose parameter space at clinically relevant concentrations

against the SARS-CoV-2 live virus to develop actionable and opti-

mized combination therapy regimens. IDentif.AI addresses several

important factors when designing multidrug regimens that are best

suited for clinical translation from in vitro validation, especially under

urgent scenarios like COVID-19. Importantly, IDentif.AI considers the

critical need for simultaneous reconciliation of drug composition at

clinically relevant concentrations and dosing within combination ther-

apy design. MOA-based drug selection alone followed by dose find-

ing, while an established method of combination therapy design,

F IGURE 3 Antiviral drug
interactions determined from the
IDentif.AI analysis of inhibition
in vitro experiments at orthogonal
array composite design (OACD)
concentration Levels 1 and
2. (a) IDentif.AI determined
synergistic interaction between
lopinavir and ritonavir (RTV).

(b) IDentif.AI determined an
antagonistic interaction between
RTV and oseltamivir phosphate. (c,d)
Synergistic interaction between
remdesivir and lopinavir (c) was
boosted by the presence of RTV (d)
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presents substantial barriers to the optimization process since drug

dosing also plays a role in determining which drugs belong in an ideal

combination. In lieu of validating a small number of MOA-based

potential drug combinations for efficacy which is commonly observed

in traditional workflows, IDentif.AI takes an MOA-agnostic approach

to experimentally test and analyze crowdsourced therapeutic

responses to the live virus following expansive drug–dose exposure to

both outline the drug–dose space and define resulting drug–dose

compositions of the optimal regimens.52 With these data, IDentif.AI is

able to leverage on unexpected dose-dependent drug interactions to

mediate improved treatment outcomes over MOA-based drug selec-

tion followed by dose finding.

Another critical aspect of IDentif.AI is that the in vitro drug dosing

parameter space interrogated in this study is a departure from tradi-

tional drug screening approaches. In traditional drug screening, com-

pounds that do not elicit at least a low micromolar EC50 treatment

response during drug dose–response evaluations are typically

removed from further consideration, thereby markedly reducing the

number of candidate therapies and possible drug combinations. The

removal of these drug candidates is a key driver of suboptimal treat-

ment responses as it ignores a broad spectrum of potential combina-

tions that can be assessed. Lack of monotherapy efficacy does not

preclude the use of these drug candidates from IDentif.AI's combina-

torial search space. Instead, IDentif.AI's approach allows for continued

evaluation of these drugs to determine if they are vital toward driving

previously unknown drug interactions that optimize combinatorial

treatment outcomes at clinically relevant concentrations. In addition

to being observed in this study, this phenomenon has also been

observed with our prior clinical studies in chronic infectious diseases

and blood and solid cancers, among other indications.7,10,11,53

The outcome of applying IDentif.AI toward combating SARS-

CoV-2 infection is an extensive list of combinations at clinically rele-

vant concentrations ranked by efficacy and/or safety that can be que-

ried by a clinician based on clinically actionable criteria. These include,

but are not limited to: highest ranked two-, three-, and four-drug com-

binations by efficacy; highest ranked combinations that do not contain

certain drugs due to supply shortages; highest ranked combinations

that do not contain certain drugs or contain lower dosages of certain

drugs due to patient comorbidities; and highest ranked combination

comprised of only approved therapies, among others (Table 3). In the

context of optimized regimen design, which assesses regimen perfor-

mance from the entire landscape of possible drug/dose parameters,

IDentif.AI-enabled comparative evaluation of the relative efficacy of a

broad spectrum of optimized regimens and clinically investigated regi-

mens also independently confirmed the reported outcomes of clinical

trials. This provides additional support for the potential application of

IDentif.AI as a clinical decision support platform.

For example, the relatively low efficacy exhibited by HCQ alone

(3.9% inhibition) or by HCQ and AZT (3% inhibition) in this study

aligned with recent reporting of clinical outcomes for this drug given

in mono- and combinatory therapy, currently demonstrating no evi-

dence of clinical benefit on antiviral efficacy (qualitative PCR assay for

SARS-CoV-2), time to intubation or death, and 28-day mortality

rate.50,51 The relatively low efficacy (3.9 and 5.2% inhibition) of RTV

and LPV combination when assessed by IDentif.AI at two different

dosing ratios also aligned with recently reported outcomes showing

no benefit over SOC.1 IDentif.AI also revealed a relatively low efficacy

of FPV monotherapy (4.2% inhibition) and in various combinations.

This was consistent with clinical findings of FPV being potentially clin-

ically effective, such as shorter viral clearance time and clinical

improvement, when administered with interferon-alpha, not included

within our drug library, and as a monotherapy administered to moder-

ate, severe, and critical COVID-19 patients. Of note, RDV alone

resulted in the highest relative efficacy for monotherapy (15.5%) in

this study. To date, compassionate use of RDV resulted in clinical

improvement of 68% of the patients, and RDV administration in the

SIMPLE-severe trial resulted in a statistically significant improvement

in median time to recovery from 15 to 11 days.4

Recent results from the RECOVERY trial recruiting moderate, severe,

and critical COVID-19 patients found that DEX reduced 28-day mortality

among COVID-19 patients who receiving invasive ventilation (DEX: 29%

vs. SOC: 40.7%) or supplemental oxygen (DEX: 21% vs. SOC: 25%) at the

time of randomization, but not among patients not requiring respiratory

support (DEX: 21.5% vs. SOC: 25%) (NCT04381936). DEX treatment

within our validation set had low effects in monotherapy (4.9%) with com-

parable CPE inhibition to HCQ (3.9%) and FPV (4.2%) monotherapies and

RTV/LPV (3.9%) combination. This discrepancy is likely because DEX's effi-

cacy demonstrated in the RECOVERY trial is predominantly attributed to

its suppression of immunopathology and not its antiviral properties.54 As

such, it does not directly relate to the viral CPE inhibition measured in our

experiments. Coadministration of DEX with RDV/RTV/LPV did not lower

the combinations antiviral properties (CPE inhibition: 101.8 vs. 115.1%

after addition of DEX), but lowered its cytotoxicity (Vero E6 cytotoxicity:

−14.3 to −30.5%; AC16 cytotoxicity: 5.0 to −3.7%; THLE-2 cytotoxicity:

23.4–11.4%, after an addition of DEX). These results potentially suggest

that the DEX treatment is not a contraindication for RDV/RTV/LPV and

the beneficial effects in four-drug combination warrant further exploration.

More comparisons between IDentif.AI and reported clinical trial results will

be possible with well stratified COVID-19 severity and unified outcome

reporting and definitions of clinical improvement, which is currently being

addressed by the international scientific community with the development

of theWHO core outcome set for COVID-19 clinical trials.55

The substantial difference in efficacy observed between sub-

optimal and optimal regimens highlights the importance of leveraging

platforms such as IDentif.AI to systematically design combination

therapies. This capability, along with the potentially predictive capac-

ity of IDentif.AI for clinical trial outcomes could provide clinicians with

an expanded arsenal of evidence-based candidate treatments and

important insights into which potential treatments to further evaluate

or potentially avoid under time-sensitive circumstances.

It is important to note that the results reported here are derived

from primarily an in vitro study that focuses on SARS-CoV-2 CPEs.

The relationship with other measures of viral burden can differ. Fur-

ther clinical validation of the outlined combinations in randomized

controlled trials will be needed. It should also be noted that, while

RDV did not mediate a significant clinical benefit in severe COVID-19
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patients, its efficacy in patients with varying disease burden severities

should be evaluated further. Furthermore, the mixed reported clinical

outcomes support the need for improved regimen design of RDV-

based treatment. In the event of downstream clinical validation of

IDentif.AI-designed combinations, the drug dosage ratios within the

combination may vary from those pinpointed by IDentif.AI. In addi-

tion, it is possible that the optimal drug combinations may vary

between patients due to their severity of infection, comorbidities, and

other factors. It is for these reasons that potential downstream trials

may be effective at determining the potential clinical benefit of the

IDentif.AI-designed combinations if the enrolled patients are stratified

by these aforementioned clinical parameters. The 12-drug search set

used in this study did not include every therapeutic option currently

under clinical investigation. Additional studies, including other rep-

urposed compounds, may yield additional highly ranked and effective

combination regimens. Also, as IDentif.AI can be applied to novel

small molecules, antibody therapies, and other classes of interven-

tions, their inclusion into the drug pool would add further insight into

other potentially actionable regimens. Furthermore, given the rapid

mutagenicity of RNA viruses like SARS-CoV-2, future studies with dif-

ferent drug candidates and different SARS-CoV-2 strains may yield

different combinations. However, the efficiency and deterministic

nature of IDentif.AI allows it to, based on prospective experimental

data, derive a ranked list of optimal regimens from a given set of drug

candidates against a defined in vitro infectious disease model within

2 weeks. This further supports its potential application as a clinical

decision support platform for the optimized design of combination

therapy regimens against multiple SARS-CoV-2 strains as well as

future unknown pathogens that will again require rapid mobilization

and clinical guidance for effective treatment options.

4 | MATERIALS AND METHODS

4.1 | Design of drug combinations

Drug combinations for 12 drugs at three concentration levels (0, 1, 2)

were generated using an OACD as described by Xu et al.23 The OACD

combines resolution IV two-level factorial design and a three-level

orthogonal array to provide the least number of combinations required

for factor screening of each independent drug's linear, bilinear (drug–drug

interaction), and quadratic effects.11,13,23 The resolution IV OACD used

for this study had 100 combinations: 36 combinations based on the

orthogonal array combined with 64 combinations based on the factorial

design (Table S1, Supporting Information).

4.2 | SARS-CoV-2 virus

All experiments involving live virus were performed in a biosafety

level-3 (BSL-3) laboratory. SARS-CoV-2 was isolated from a nasopha-

ryngeal swab of a patient in Singapore with ethics approval and con-

sent as described in Reference 12, approved under Domain Specific

Review Board study number 2012/00917, additional OSHE/iORC

protocol 2020-00494, and propagated using Vero E6 C1008 cells in

minimum Eagle's medium (MEM; Gibco) supplemented with 2% heat-

inactivated fetal bovine serum (HI-FBS; Gibco). Virus stock was

maintained at −80�C. Virus titer was determined by a standard

TCID50 endpoint dilution assay using Viral ToxGlo Assay (Promega).

Briefly, the reagent was added into each well and incubated for

10 min at room temperature prior to measurement of luminescence

readout using microplate reader (Tecan).

4.3 | Cell cultures

African green monkey kidney Vero E6 cells (C1008) were plated at 2 × 104

cells/well density in opaque (white) tissue culture 96-well plates (Greiner

Bio-One) at the same time as the addition of the drug treatments and virus

treatments and cultured in MEM (Gibco) supplemented with 2% HI-FBS.

Human liver epithelial THLE-2 cells (CRL2706, ATCC) were plated at

3 × 103 cells/well density in 96-well plates coated with bronchial epithelial

cell growth (BEBM) complete mediumwith fibronectin (0.01 mg/ml; Biolog-

ical Industries), bovine collagen Type I (0.03 mg/ml; Stem Cell Technologies)

and bovine serum albumin (0.01 mg/ml; Sigma-Aldrich). The BEBM com-

plete medium consisted of BEGM Bullet Kit (Lonza) excluding gentamicin/

amphotericin and epinephrine but additionally supplemented with EGF

(5 ng/ml), phosphoethanolamine (70 ng/ml), and 10% FBS (Biowest).

Human cardiomyocyte AC16 cells (SCC-09, Millipore) were plated at

2 × 103 cells/well density in 96-well uncoated plates and cultured in com-

plete AC16 medium—DMEM/F12 (Life Technologies) supplemented with

L-glutamine (2 mm; Life Technologies), 12.5% FBS (Biowest), and 1%

penicillin–streptomycin (Life Technologies). All cell cultures were incubated

in a humidified atmosphere, at 37�C with 5% CO2 atmosphere.

4.4 | Drugs

RDV (MedChem Express, HY-104077), FPV (MedChem Express, HY-

14768), (RTV (Selleck Chemicals, S1185), LPV (Selleck Chemicals, cat.

no. S1380), RBV (Selleck Chemicals, S2504), AZT (Selleck Chemicals,

S1835), LST (Selleck Chemicals, S1359), and DEX (Selleck Chemicals,

S1322) were dissolved in DMSO (MP Biomedicals). CQ diphosphate

(Selleck Chemicals, S4157), HCQ sulfate (Selleck, S4430), OSV-P

(MedChem Express, HY-17016), and TEC (Selleck Chemicals, S1399)

were dissolved in sterile-filtered water.

4.5 | Viral inhibition and cell cytotoxicity of drug
monotherapies

All virus infection experiments were performed in a BSL-3 laboratory.

The drugs were diluted in Vero E6 culturing media before dispensing into

wells of 96-well plates. The laboratory staff performing the subsequent

experimental work was blinded to the well content arrangement on the

plates. The Vero E6 cells (2 × 104 cells/well) and media with and without
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SARS-CoV-2 treatment (100 TCID50) were added to the plates containing

the drugs and the controls. The drug concentrations ranged between:

1.536 × 10−3 μM to 600 μM for FPV, 2.56 × 10−5 μM to 10 μM for

OSV-P, 1.28 × 10−4 μM to 50 μM for TEC, and 2.56 × 10−4 μM to

100 μM for the remaining drugs. Vehicle controls were 0.1% DMSO and

media only. After 72 h incubation, cell viability was determined by

luminescence-based ATP activity measurement with Viral ToxGlo

(Promega, G8941) as per manufacturer's instructions. The Viral ToxGlo

assay quantifies viral-induced CPEs in host cells by using cellular ATP as a

surrogate marker of host cell viability. Upon viral infection, the decrease

in cellular ATP detected is proportional to the number of viable host cells

in culture, hence, correlating viral CPE with viral burden.

Z'-factor has been calculated to assess the assay quality across all

experiments and in each viral experimental set to ensure it can generate

reliable information. Z'-factor is a statistical coefficient that incorporates

dynamic range and data variability of the positive and negative controls:

Z0 =1−
3σc+ + 3σc−
μc+ −μc−j j ð1Þ

where σc+ and μc+ represent the SD and mean of the luminescence sig-

nal of the positive control (control cells) and σc- and μc- represent the

SD and mean of the luminescence signal of the negative control (cell

+ virus control), respectively. 0 < Z' < 0.5 represents a “do-able assay”

and 0.5 ≤ Z' < 1 represents an “excellent assay.”56

Luminescence data were normalized to the average readout from

the vehicle control cells on the same plates. Cytotoxicity and viral

CPE inhibition were calculated as follows57,58:

%Cytotoxicity,T =
μc+ −E +

μc+
×100 ð2Þ

%Inhibition, I=
E− −μc−
μc+ −μc−

×100 ð3Þ

where μc+ and μc- represent the mean of the luminescence signal of

the positive control (control cells) and negative control (cells + virus

control) and E+ and E− represent the luminescence signal of each

experimental replicate without virus (cells + drugs) and with virus

(cells + drugs + virus), respectively. To mitigate the confounding effect

of the high cytotoxicity on the viral CPE inhibition calculations, the

inhibition values corresponding to drug concentrations resulting in

cytotoxicity above 25% were excluded from the analysis. GraphPad

Prism 8.2 software (GraphPad Software) was used to plot dose–

response curves and to derive efficacy and cytotoxicity concentra-

tions (respectively) at 10, 20, and 50% absolute levels.

4.6 | Viral inhibition and cell cytotoxicity of drug
combinations

All virus infection experiments were performed in a BSL-3 laboratory.

Drug concentrations Levels 1 and 2 for each drug were derived from

dose–response curves and clinically relevant values. The drugs in mono-

therapies and in combinations were dispensed into 96-well white plates

by the automated liquid dispensing system, Mini Janus (PerkinElmer).

The laboratory staff performing the subsequent experimental work was

blinded to the well content arrangement on the plates. The Vero E6 cells

(2 × 104 cells/well) and media with and without SARS-CoV-2 treatment

(100 TCID50) were added to the plates containing the drugs and the

controls. The drug combinations and concentrations were prepared

according to the OACD table. Vehicle controls were 0.006% DMSO and

cells with media only. After 72 h incubation, cell viability was deter-

mined by luminescence-based ATP activity measurement with Viral

ToxGlo (Promega, G8941) as per manufacturer's instructions.

Drug cytotoxicity was additionally measured in THLE-2 human

liver and AC16 human cardiomyocyte cell lines. THLE-2 and AC16

cells were cultured for 24 h prior to treatment with the same drug

combinations as those used on Vero E6 cells. After 72 h incubation,

THLE-2 and AC16 cell viability were determined with luminescence-

based ATP activity measurement with CellTiter-GLO (Promega,

G7570) as per manufacturer's instructions.

For validation experiments, selected drug combinations from the

IDentif.AI analysis were tested on VeroE6, THLE-2, and AC16 cells

using the same methods as described above. IDentif.AI top ranked

combinations, top combinations with and without RDV; combinations

exploring drugs and doses interaction space in RDV/RTV/LPV; treat-

ments corresponding to combinatory and monotherapies under cur-

rent clinical investigation; and RDV/RTV/LPV interaction space with

concomitant medications were all interrogated in validation experi-

ments. The %Inhibition confirmed the IDentif.AI-derived ranking, simi-

lar trends were observed in the %Cytotoxicity in THLE-2 and AC16

cells (Figure 2 and Table 3). No effect of the maximum vehicle concen-

tration (0.006% DMSO) was detected on viral inhibition or on cell

cytotoxicity (Wilcoxon rank-sum test, N = 3, p > 0.05).

4.7 | IDentif.AI analysis

IDentif.AI, a dynamic optimization AI-based platform, identifies the

drug–dose parameter space by harnessing the quadratic relationship

between biological responses to external perturbations, such as drug/

dose inputs.59 IDentif.AI analysis of the drug–dose parameter space

identifies drug–drug interactions and ranks optimal drug-dosage com-

binations. This study aimed to use IDentif.AI to determine effective

optimal drug-dosage combinations from a diverse set of 12 drugs cur-

rently being explored in clinical trials to combat the COVID-19 dis-

ease. The concentration levels of the 12 drugs for the in vitro IDentif.

AI experiments were determined from EC50, CC50, and Cmax for

corresponding clinically administered dosages. From the in vitro

experiment data, IDentif.AI analyses were performed to identify drug

combinations from this pool of candidates that were effective against

the SARS-CoV-2 virus.

Luminescence data for each well were normalized to the average

readout from the DMSO vehicle controls on the same plates. Vero E6,

AC16, and THLE-2 %Cytotoxicity and viral activity %Inhibition (Vero
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E6) were calculated using the same formulae as for the drug mon-

otherapy analysis. %Inhibition calculations used cell and media only

control wells. The resulting %Cytotoxicity and %Inhibition calculations

were used as inputs in IDentif.AI analysis.

IDentif.AI analysis correlated drug combinations experimental

results into a second-order quadratic series. Each independent drug com-

bination inhibition and monotherapy inhibition replicate was used in the

optimization process. The second-order quadratic model is as follows:

y = β0 + β1x1 + � � �+ βnxn + β12x1x2 + � � �βmnxmxn + β11x
2
1 + � � �+ � � �+ βnnx2n

ð4Þ

where y represents the desired biological response output (%Inhibi-

tion), xn is the nth drug concentration, β0 is the intercept term, βn is

the single-drug coefficient of the nth drug, βmn is the interaction coef-

ficient between the mth and nth drugs, and βnn is the second-order

coefficient for the nth drug, while m ≠ n. This second-order quadratic

analysis and parabolic response surface plot analysis were conducted

using the built-in “stepwiselm” function in MATLAB R2020a

(MathWorks, Inc.). IDentif.AI derived four quadratic series using bidi-

rectional elimination approach with the p value from the F-statistic as

the selection criterion for the experimental results: %Inhibition, %

Cytotoxicity, %Cytotoxicity AC16, and %Cytotoxicity THLE-2.

Residual-based outlier analysis was performed for all four IDentif.AI

series. Single replicates identified as outliers remained in the data set

to account for biological variation. The combinations with all repli-

cates identified as outliers were excluded from the data set and the

IDentif.AI analysis was repeated.

IDentif.AI analysis yielded both drug–drug interaction plots and

optimized drug combinations. The optimized drug combinations were

ranked according to corresponding %Inhibition from the correlated

second-order quadratic series with the %Cytotoxicity of the cell-lines

(Vero E6, AC16, and THLE-2) serving as qualitative indicators for con-

sideration. The predictive power was also calculated via adjusted R2

to establish the robustness of IDentif.AI optimization considering the

number of drug and drug–drug interaction terms. Correlation coeffi-

cients were derived from the experimental output values and projec-

ted output values for the corresponding drug combinations.

4.8 | Statistical analysis

All experiments were performed in at least triplicate biological

repeats. To account for uncertainties propagated in the process of

normalization, %Inhibition and %Cytotoxicity are presented as

mean ± propagated SD, with the propagated SD derived from the fol-

lowing equation60:

σ2T =
∂T
∂c+

� �2

σ2c+ +
∂T
∂E +

� �2

σ2E +
ð5Þ

σ2I =
∂I
∂E−

� �2

σ2E−
+

∂I
∂c−

� �2

σ2c− +
∂I
∂c+

� �2

σ2c+ ð6Þ

where and σT and σI represent the propagated SD for the mean value

of %Cytotoxicity and %Inhibition, and σc+, σc− and σE+, σE− represent

the SD of the luminescence signal of the positive control (control

cells), negative control (cells + cells + virus control), and the experi-

mental replicates without virus (cells + drugs) and with virus (cells

+ drugs + virus), respectively. Shapiro–Wilk normality test was used

to determine if samples were from normally distributed populations.

Variance equality was tested with Bartlett's test. The Kruskal–Wallis

test by ranks was used for multiple comparisons, followed by Dunn's

post hoc test for pairwise comparisons. Student's two-tailed t test and

Wilcoxon rank sum test were used for comparing individual samples

from normally and non-normally distributed populations, respectively.

Bonferroni post hoc correction was applied to account for multiple

comparisons. Statistical analyses for coefficient estimation in the

IDentif.AI analyses were performed using sum of squares F-test.

Alongside the p-values, the results were interpreted in the light of

logic, background knowledge and the specifics of the experimental

design.47

4.9 | Code availability

IDentif.AI analyses were conducted using the built-in “stepwiselm”

function in MATLAB R2020a (MathWorks, Inc.), with example,

MATLAB code provided in Supplementary Software as published

previously.11,53

5 | CONCLUSIONS

Following the emergence of SARS-CoV-2, a global effort to clinically

assess a broad spectrum of repurposed and novel compounds was ini-

tiated. In order to fully optimize the development of a treatment regi-

men against SARS-CoV-2 or any future epidemic/pandemic, it is

important to move beyond traditional drug selection approaches,

since mechanism-of-action-based drug selection alone will unlikely

yield sufficient efficacy for broadly favorable clinical outcomes. This is

because globally optimized combination design will rely on simulta-

neously optimal drug and dose identification, which is a major chal-

lenge for traditional drug screening and repurposing approaches due

to an insurmountably large drug–dose parameter space. This work has

addressed this challenge using IDentif.AI, an AI-based digital drug

development platform that rapidly crowdsourced the patient-derived

live virus to experimentally pinpoint and validate ranked combinations

within 2 weeks. Unpredictable drug interactions were harnessed by

IDentif.AI to pinpoint unforeseen, top-ranked combinations, and the

IDentif.AI rankings independently aligned with broadly reported clini-

cal trial outcomes without requiring data from these studies. There-

fore, IDentif.AI can be potentially deployed as a first line of defense to

rationally pinpoint optimal drug–dose combination therapy regimens

for rapid clinical validation while also potentially deterring the assess-

ment of regimens that are unlikely to yield suitable clinical outcomes.

Collectively, these capabilities may serve as a foundation for global
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accessibility to clinically actionable and optimized therapeutic

responses to current and future pandemics.
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