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Abstract

Motivation: The convolutional neural network (CNN) has been applied to the classification problem

of DNA sequences, with the additional purpose of motif discovery. The training of CNNs with dis-

tributed representations of four nucleotides has successfully derived position weight matrices on

the learned kernels that corresponded to sequence motifs such as protein-binding sites.

Results: We propose a novel application of CNNs to classification of pairwise alignments of

sequences for accurate clustering of sequences and show the benefits of the CNN method of input-

ting pairwise alignments for clustering of non-coding RNA (ncRNA) sequences and for motif

discovery. Classification of a pairwise alignment of two sequences into positive and negative

classes corresponds to the clustering of the input sequences. After we combined the distributed

representation of RNA nucleotides with the secondary-structure information specific to ncRNAs

and furthermore with mapping profiles of next-generation sequence reads, the training of CNNs

for classification of alignments of RNA sequences yielded accurate clustering in terms of ncRNA

families and outperformed the existing clustering methods for ncRNA sequences. Several interest-

ing sequence motifs and secondary-structure motifs known for the snoRNA family and specific to

microRNA and tRNA families were identified.

Availability and implementation: The source code of our CNN software in the deep-learning frame-

work Chainer is available at http://www.dna.bio.keio.ac.jp/cnn/, and the dataset used for perform-

ance evaluation in this work is available at the same URL.

Contact: yasu@bio.keio.ac.jp

1 Introduction

A couple of pioneering studies (Alipanahi et al., 2015; Zhou and

Troyanskaya, 2015), followed by several studies (Kelley et al., 2016;

Lanchantin et al., 2016; Zeng et al., 2016), have come up with the

idea that a convolutional neural network (CNN) can be applied to

extraction of a sequence motif specifically conserved among target

sequences. A motif is a sequence pattern that occurs repeatedly in a

set of target sequences and is usually represented as a position

weight matrix that describes the score (probability) of each nucleo-

tide at each position in the conserved pattern. If one-hot coding rep-

resentation of four DNA nucleotides is employed, then a kernel

(filter) with a one-dimensional convolution operation applied tem-

porally over a sequence can be considered a position weight matrix

for representing a motif. The kernels are learned by training CNNs

on positive and negative samples of sequences such as those

obtained in experiments on chromatin immunoprecipitation with

high-throughput sequencing (ChIP-seq) (Zeng et al., 2016). Here, a

‘one-dimensional’ convolution operation for sequences is interpreted

as scanning the input sequence only in one direction along the se-

quence with a kernel of the same width (dimension) as that of the

distributed representation of input (see Fig. 1). Of note, the motifs

are acquired by a gradient descent during the training of CNNs,

while the existing well-known motif identification methods such as

MEME (Bailey et al., 1994) use a more computationally expensive

calculation such as Gibbs sampling.

On the other hand, a sequence motif may sometimes contain

insertions and deletions among conserved sequences. Nonetheless,

the existing motif discovery methods involving one-dimensional

CNNs cannot deal with such insertions and deletions in the motifs.

To accommodate such operations, we need alignments as input to

the one-dimensional CNNs. An alignment calculation for a pair of

biological sequences such as DNA, RNA and protein sequences is a

fundamental and robust method of sequence analysis (Durbin et al.,

1998). The pairwise alignment of biological sequences is achieved

according to insertions, deletions and match operations so that the

two sequences are aligned at the same column length. The first
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major aim of this study is to identify a motif in pairwise alignments

of sequences with gaps, called an alignment motif, by applying the

one-dimensional CNN to the input of pairwise alignments.

The similarity score of an alignment is calculated in accordance

with the predefined scores for insertions, deletions and matches, and

the similarity scores between two sequences in the alignment are

next used for clustering the input sequences into several groups of

similar sequences. After calculation of the similarity score matrix for

all pairs of the input sequences, some clustering algorithm such as

agglomerative hierarchical clustering or k-means clustering is

applied to obtain a set of clusters composed of similar sequences.

Nevertheless, there is a limitation to the clustering of a set of sequen-

ces based only on this scalar value of similarity. The second major

aim of this study is to improve the clustering accuracy by identifying

alignment motifs and by classifying pairwise alignments into two

classes, positive and negative, via training the one-dimensional

CNNs in a supervised learning manner (Fig. 2). Here, a pair of

sequences in the pairwise alignment is defined as a positive class if

the pair belongs to the same family (true cluster) and as negative if

the pair does not belong to the same family. If we regard the matrix

(shown on the right-hand side of Fig. 2) that contains the positive-

class label ‘1’ and the negative label ‘0’ for all pairs of non-coding

RNA (ncRNA) sequences as an adjacency matrix for graph repre-

sentation, then each complete subgraph (that is, fully connected sub-

graph, called a clique) corresponds to a cluster. Thus, the

classification of a pairwise alignment of two sequences into positive

and negative classes and the extraction of cliques in the derived

graph can be regarded as exact clustering of the input sequences.

In this study, we developed a novel method, called CNNclust,

for applying one-dimensional CNNs to classification of pairwise

alignments of ncRNA sequences. Furthermore, we combined the

distributed representation of RNA nucleotides with the secondary-

structure information specific to ncRNAs and with mapping profiles

of next-generation sequence reads. One of the advantages of apply-

ing a one-dimensional convolution operation in CNNs to the ana-

lysis of biological sequences is that multiple types of molecular

information such as primary sequences and secondary structures can

be easily integrated, and the effective features that combine these

multiple datasets can be automatically discovered by representation

learning (Bengio et al., 2013). When applied to ncRNAs, the repre-

sentation learned on a kernel is a motif of sequences and secondary

structures. We demonstrated that training of one-dimensional

CNNs with input of pairwise alignments outperforms the existing

clustering methods for ncRNA sequences and succeeds in the discov-

ery of several sequence motifs and secondary-structure motifs

known for the small nucleolar RNA (snoRNA) family and specific

to microRNA (miRNA) and transfer RNA (tRNA) families.

2 Materials and methods

2.1 Distributed representations of nucleotides,

secondary structure and an alignment column
The input to our one-dimensional CNNs is a distributed representa-

tion of a pairwise alignment with gaps of two sequences. Each col-

umn in the pairwise alignment is represented by a pair of one-hot

codings of four nucleotides ‘A’, ‘C’, ‘G’ and ‘U’ and the gap symbol

‘-’, that is, a five-dimensional vector (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0,

0, 1, 0, 0), (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1), respectively, as shown in

Figure 3.

Another distributed representation for RNA (DNA) sequences is

the word2vec method (Mikolov et al., 2013) to convert subsequen-

ces into n-dimensional vectors; word2vec is a technique for convert-

ing words into vectors that are mainly used in the field of natural

language processing. A couple of studies (Asgari and Mofrad, 2015;

Ng, 2017) using word2vec for biological sequence analysis were

reported. In the case of RNA (DNA) sequences, each k-mer (that is,

RNA subsequence of length k) is considered a word and converted

into a vector by word2vec. Learning of word2vec was carried out

via the dataset prepared for performance experiments. There are

two types of word2vec models: continuous bag-of-words and skip-

gram. For this study, a skip-gram was selected. The dimension size

of the feature vector of word2vec was set to 12, and the otherFig. 1. One-hot coding representation of four DNA nucleotides, a kernel (filter)

with a one-dimensional convolution operation that is considered a position

weight matrix for representing a motif

Fig. 2. Classification of pairwise alignments of two sequences. (Left) A score

matrix consisting of scores on similarity between every pair of sequences.

(Right) A matrix (called a classification matrix) consisting of classification to

the positive-class label ‘1’ and to the negative label ‘0’ for all pairs of sequen-

ces. Clustering is yielded from the classification matrix

Fig. 3. Distributed representations for a pairwise alignment: a pair of one-hot

codes of four nucleotides of RNA and the gap symbol and a three-dimension-

al vector for representing secondary-structure information specific to

ncRNAs. The parentheses ‘(’ and ‘)’ represent the left side of a base pair and

the right side of a base pair, respectively (This dot-bracket notation is a con-

venient way of representing secondary structure originally used in the Vienna

RNA package (Hofacker, 2003).)
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hyperparameters were left at default values. The size of the k-mer

as input to word2vec was examined at following three values: 3, 4

and 5.

In addition, a three-dimensional vector for representing

secondary-structure information specific to ncRNAs is added as

shown in Figure 3. The folding of an ncRNA into a functional mol-

ecule is governed by the formation of the standard Watson-Crick

base pairs A–U and C–G, and such base pairs constitute secondary

structures of ncRNAs. The base-pairing probability pij that the ith

and jth nucleotides in an RNA sequence form a base pair can be cal-

culated by the McCaskill algorithm (McCaskill, 1990), and subse-

quently, for each position i, we categorize the base-pairing

probabilities into three kinds of sums: left-side base-pairing

probability pleft
i ¼

P
j>i pij that a pair is formed with one of the

downstream nucleotides, right-side base-pairing probability pright
i ¼

P
j< i pji that a pair is formed with one of the upstream nucleotides,

and unpaired probability punpaired
i ¼ 1� ðpleft

i þ pright
i Þ that the nu-

cleotide is unpaired. Therefore, the three-dimensional vector for rep-

resenting secondary-structure information in column i consists of

left-side base-pairing probability pleft
i , right-side base-pairing prob-

ability Pright
i and unpaired probability punpaired

i .

2.2 CNN architecture
The model of a CNN used in this study consists of a three-layer fully

connected network with one hidden layer following two convolu-

tion layers and two pooling layers as illustrated in Figure 4. The out-

put of each unit in the convolution layer is the result of a

convolution operation by each kernel. In the pooling layer, max

pooling is carried out to output the maximum value across the

whole input sequence. In this study, we used local max pooling,

which yields the maximum value from each small subregion in the

whole input sequence. During learning the CNN, six hyperpara-

meters (convolution kernel size, the number of kernels, pooling size,

the number of units in the hidden layer and the learning algorithm)

were tuned. The ranges within which each hyperparameter was

tuned are listed in Table 1. Batch normalization was conducted with

a minibatch of size 128, and Dropout was employed for prevention

of overfitting. The CNNs were implemented by means of the Chain

class of Chainer (Tokui et al., 2015).

2.3 Generating clusters from CNN predictions for pairs

of ncRNAs
After the classification of pairwise alignments is obtained for all

pairs of ncRNA sequences, finally, the clustering procedure is neces-

sary to generate a set of clusters. A matrix called classification ma-

trix (shown on the right-hand side of Fig. 2) that contains the

positive-class label ‘1’ and the negative label ‘0’ for all pairs of

ncRNA sequences can be regarded as an adjacency matrix for graph

representation. Theoretically, each complete maximal subgraph

extracted from the entire graph represented by the adjacency matrix

corresponds to a cluster including similar ncRNA sequences, and

hence extraction of every complete subgraph corresponds to the

clustering operation. Although several algorithms for finding max-

imal cliques have been proposed, we chose a rather simple method

of clustering the classification matrix of size N�N for finding al-

most complete maximal subgraphs (pseudo cliques), where N is the

number of ncRNA sequences in the test dataset. We applied the

k-means clustering algorithm to clustering rows of the classification

matrix by regarding each row of an N-dimensional vector as a clus-

ter indicator.

2.4 CNNs with alignment of read mapping profiles
Another useful piece of information about an ncRNA sequence is

the transcript information on the ncRNA sequence.

Deep sequencing of transcripts of regulatory ncRNA sequences

generates footprints of post-transcriptional processes (Chen and

Heard, 2013 ). After sequence reads are obtained, the short reads

are mapped onto a reference genome and specific mapping

patterns in the ncRNA sequences can be detected, which are called

read mapping profiles (Tsuchiya et al., 2016). These patterns

reflect the maturation processes that produce shorter RNA

sequences called derived RNAs (Fig. 5 (left)). For example, the

so-called tRNA-derived RNA fragments are derived from

processing at the 50 or 30-end of mature or precursor tRNAs

(Lee et al., 2009). These sequences constitute a class of short

RNAs that are the second most abundant type of RNA after

miRNAs.

To incorporate a read mapping profile into the distributed repre-

sentation for the input of CNNs, the distributed representation of

the read mapping profile is coded as follows. A set of sequence reads

generated by high-throughput RNA sequencing (RNA-seq) data for

ncRNAs is mapped onto the reference genome with standard map-

ping tools such as BWA (Li and Durbin, 2009). The read coverage,

i.e. the number (count) of mapped reads, at each position in an

Input

Convolution

Max pooling

Fully
connected

Convolution

Max pooling

positive negative

Fig. 4. CNN architecture for the input of pairwise alignments

Table 1. The list of hyperparameters in CNNs to be tuned

Hyperparameter Range

Kernel size for convolution 3, 7, 15, 20, 30, 40, 50

Number of kernels (in two

convolution layers)

6:13, 13:26, 19:38, 32:64,

45:90, 64:128, 128:256

Pooling method Max pooling, average pooling,

Pooling in second layer Global max pooling,

local max pooling

Number of units in hidden layer

(ratio to input layer)

1/3, 1/2, 2/3, 3/4, 1

Learning algorithm Adam, AdaGrad, AdaDelta,

Momentum SGD
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annotated ncRNA region is calculated from the output of the map-

ping tool [see Fig. 5 (right)]. Normalized read coverage ci at each

position i in the ncRNA sequence is quantized to a 10-dimensional

vector where each dimension represents a real-value interval. This

10-dimensional vector is combined with the distributed representa-

tion of the ncRNA sequence and secondary structure.

2.5 Comparison with CNNs involving input of a single

sequence
To demonstrate a possible advantageous effect of the input of pair-

wise alignments to CNNs, the conventional method involving one-

dimensional CNNs with input of a single sequence is compared with

our method in the solution of the family prediction problem. This

conventional method is exactly the same as the existing one-

dimensional CNN method for classification of sequences (Kelley

et al., 2016).

In this setting, the input to one-dimensional CNNs is the distrib-

uted representation of a single sequence, and the label of each se-

quence in the training data is positive if the sequence belongs to the

target family and negative if it does not. Thus, the one-dimensional

CNNs with input of single sequences classify the input sequences

into two classes: positive and negative. In our experiments on clus-

tering ncRNA sequences in multiple families, the multitask (multila-

bel) learning is applied using one-dimensional CNNs with the same

(multiple) number of output nodes as the number of ncRNA

families.

2.6 Datasets and accuracy evaluation
In this section, details of the dataset tested in performance analysis

are described. The sequence data of an ncRNA provided by Ensembl

is integration of the sequence data of ncRNA present in multiple

databases such as Rfam and HUGO Gene Nomenclature Committee

(HGNC) databases (RNA family databases). Because the sequence

data on tRNA are not included in the data provided by Ensembl,

they were retrieved from the Genomic tRNA Database (GtRNAdb).

We are testing nine ncRNA families in performance analysis, and

the number of genes for each family included in the dataset is shown

in Table 2.

For 10-fold cross-validation experiments, six families—snRNA,

snoRNA C/D box, snoRNA H/ACA box, miRNA, YRNA and

tRNA—shown in Table 2 were used. One hundred ncRNA genes

were randomly chosen from each of the six families. Ninety genes

among the 100 chosen in each family are employed for training

data, and the remaining 10 genes are used for test data. The cross-

validation process is then repeated 10 times. Every pair of ncRNA

sequences in the training data is labeled as a positive class if two

sequences of the pair belong to the same RNA family and as a nega-

tive class if the two sequences belong to two different families. Every

pair of ncRNA sequences in the test data is then labeled in the same

manner.

In addition to the 10-fold cross-validation experiment, as a more

difficult task and for the more practical purpose of finding new

ncRNA families, the ncRNA families for generating the training

data were chosen to be different from the ones for the test data. This

experiment, called unknown-family validation, may evaluate the

capacity of our one-dimensional CNN method for accurate cluster-

ing of ncRNA sequences of unknown families that do not exist in

the training data.

The performance of each method was evaluated as follows. For

classification accuracy, given the prediction of one-dimensional

CNN for a pair of ncRNA sequences in the test data, the prediction

is defined as true positive (TP) if the pair is labeled as the positive

class and the prediction is positive. In the same manner, false posi-

tives (FPs), true negatives (TNs) and false negatives (FNs) are

defined if the pair is labeled as the negative class, but the prediction

is positive, the pair is labeled as the negative class and the prediction

is negative, or the pair is labeled as the positive class but the predic-

tion is negative, respectively.

For clustering accuracy, given the set of clusters generated by a

clustering method for ncRNA sequences in the test data, a pair of

ncRNA sequences is defined as TP if the pair is labeled as the posi-

tive class and both sequences of the pair are included in the same re-

sultant cluster. In the same manner, FPs, TNs and FNs are defined if

the pair is labeled as the negative class, but both sequences of the

pair are included in the same resultant cluster, the pair is labeled

as the negative class and the two sequences are included in different

resultant clusters, or the pair is labeled as the positive class, but

the two sequences are included in different resultant clusters,

respectively.

On the basis of the above definitions of TP, FP, TN and FN, we

apply two measures, Accuracy and F-value calculated as follows:

Accuracy ¼ #TPþ #TN

#TPþ #FPþ #TNþ #FN

Precision ¼ #TP

#TPþ #FP

Recall ¼ #TP

#TPþ #FN

F � value ¼ 2Recall � Precision

Recallþ Precision

where #TP; #FP; #TN and #FN represent the numbers of TPs, FPs,

TNs and FNs, respectively.

Fig. 5. (Left) Schematic illustration of a derived RNA fragment and the map-

ping pattern obtained from sequencing. (Right) The read coverage calculation

from the mapped reads

Table 2. The number of ncRNA genes per family included in the sequence dataset of ncRNA

snRNA snoRNA C/D snoRNA H/ACA scaRNA miRNA YRNA Vault RNA 5S rRNA tRNA

2053 322 160 56 1890 831 11 29 631
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3 Results

3.1 Performance on classification of pairwise

alignments of ncRNA sequences
A pairwise alignment input to the one-dimensional CNN was gener-

ated by two software packages: DAFS (Sato et al., 2012) for the sim-

ultaneous aligning and folding of ncRNA sequences that

incorporates secondary structures, and Clustal Omega (Sievers

et al., 2014) for pairwise alignment based only on primary-sequence

information. Although Clustal Omega generates a sequence align-

ment with gaps, DAFS generates a sequence alignment and predicted

secondary structure specific to ncRNA that is called structural align-

ment. We will see the effects of the two types of input alignment on

the prediction accuracy of CNNs.

The prediction accuracy of the one-dimensional CNN in the clas-

sification of pairwise alignments among different types of align-

ments and different distributed representations is summarized in

Table 3 for the 10-fold cross-validation.

The CNN with input of DAFS pairwise structural alignment and

of the word2vec distributed representation yielded the best and al-

most perfect predictions in terms of both Accuracy and F-value.

Between the two different distributed representations, word2vec

showed better performance than one-hot coding. Between the two

types of alignment, the DAFS structural alignment showed better

performance than did the Clustal-Omega sequence alignment. On

the other hand, the input of only secondary-structure information

was not enough to obtain an accurate prediction.

3.2 Performance on clustering of ncRNA sequences
We compared the performance on clustering accuracy of our one-

dimensional CNN with three existing clustering methods for

ncRNA sequences: RNAclust (Engelhardt et al., 2010),

Ensembleclust (Saito et al., 2011) and spectral clustering based on

the DAFS structural alignment score. Although DAFS is a program

that performs pairwise alignment, we conducted spectral clustering

by regarding the alignment score as a metric of similarity of two

ncRNAs. Likewise, because Ensembleclust calculates similarity be-

tween two ncRNAs, spectral clustering was applied to perform clus-

tering based on similarity.

The comparison of clustering accuracy rates is summarized in

Table 4. For the unknown-family validation, we examined two cases

for the training data: when three families—snoRNA H/ACA box,

miRNA and YRNA—are used, and when six families—snoRNA H/

ACA box, miRNA, YRNA, scaRNA, vault RNA and 5S rRNA—are

employed for the training data. For the test data, three families—

snRNA, snoRNA C/D box and tRNA—were chosen.

In 10-fold cross-validation, the CNN-based methods outper-

formed three existing methods on both Accuracy and F-value and in

particular yielded a significantly superior F-value than the existing

methods did. In the unknown-family validation, the CNN-based

method involving six families as training showed the highest

Accuracy, higher than that of the CNN-based method involving

three families. F-values were comparable between Ensembleclust

and the CNN-based method based on six families.

3.3 Performance on the input sequences with flanking

regions
In practical situations, we know neither the exact boundaries of the

coding regions of unannotated ncRNAs nor transcripts mapped to

the reference genome. To simulate such situations, we concatenated

sequences 5 bp in length with both ends of ncRNA sequences and

named them the ‘plus flanking regions’ dataset (Saito et al., 2011).

The 5-bp-long sequences were extracted from the upstream and

downstream regions adjacent to the annotated ncRNAs in the refer-

ence genome sequence. The flanking regions were concatenated

with 25% of the ncRNA sequences in the test dataset. The result is

presented in Table 5.

Accuracy levels and F-values of three methods slightly

decreased for the ‘plus flanking regions’ dataset except for 10-fold

cross-validation of RNAclust. This result indicated that the effect

of the ‘plus flanking regions’ was limited for all clustering

methods.

Table 3. Performance on classification accuracy of one-dimensional

CNNs

Method Accuracy F-value

CNN with DAFS (word2vec) 0.980 0.931

CNN with DAFS (one-hot coding) 0.971 0.901

CNN with DAFS (only secondary structure) 0.943 0.803

CNN with Clustal Omega (one-hot coding) 0.958 0.850

Note: ‘CNN with DAFS (word2vec)’ represents one-dimensional CNN

with input of DAFS alignments and word2vec distributed representation,

‘CNN with DAFS (one-hot coding)’ denotes the one with input of DAFS

alignments and one-hot coding distributed representation, ‘CNN with DAFS

(only secondary structure)’ represents the one with input of only secondary

structure information, and ‘CNN with Clustal Omega (one-hot coding)’

denotes the one with input of Clustal-Omega alignments and one-hot coding

distributed representation.

Table 4. Performance comparison on clustering accuracy for

ncRNA families

Method Accuracy F-value

10-fold CV

CNN with DAFS (word2vec) 0.957 0.868

CNN with DAFS (one-hot coding) 0.939 0.824

CNN with DAFS (only secondary structure) 0.910 0.731

CNN with Clustal Omega (one-hot coding) 0.927 0.784

RNAclust 0.890 0.580

Ensembleclust 0.887 0.654

Spectral clustering based on DAFS 0.855 0.554

Unknown family

CNN with DAFS (word2vec, six families) 0.752 0.646

CNN with DAFS (word2vec, three families) 0.717 0.586

CNN with DAFS (one-hot coding) 0.685 0.560

RNAclust 0.707 0.208

Ensembleclust 0.711 0.650

Spectral clustering based on DAFS 0.664 0.588

Table 5. Clustering accuracy on the ‘plus flanking regions’ dataset

Method Accuracy F-value

10-fold CV

CNN with DAFS (word2vec) 0.945 0.834

RNAclust 0.900 0.616

Ensembleclust 0.867 0.592

Unknown family

CNN with DAFS (word2vec, six families) 0.700 0.573

RNAclust 0.697 0.157

Ensembleclust 0.695 0.598
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3.4 Comparison with the input of a single sequence
The prediction accuracy of the CNN with input of pairwise align-

ments was compared with the prediction accuracy of the conventional

CNN with input of a single sequence to elucidate possible advantages

of the input of pairwise alignments to CNNs. The result is presented

in Table 6. The CNN with input of a single sequence involved the dis-

tributed representation of one-hot coding and secondary structures.

The CNN with input of a DAFS pairwise alignment gave better

predictions than did the CNN with input of a single sequence in

terms of both Accuracy and F-value, thereby proving the advantage

and usefulness of inputting pairwise alignments.

3.5 Performance with additional information, i.e.

transcriptome data
First, we generated a sequence-read dataset in an RNA-seq experi-

ment for LNCaP cells, that is, an androgen-sensitive human prostate

adenocarcinoma cell line. The small RNAs extracted from cultured

LNCaP cells were sequenced on the next-generation sequencer MiSeq

(Illumina) with a sequence-read length of 295 bp, which enabled gen-

eration of complete sequences of most small-RNA families. A total of

33.3 million (M) sequence reads with a length of 295 bp for small

ncRNAs was generated. After quality filtering, 29.1M reads were

mapped onto the human reference genome GRCh38 by means of

BWA. From the output in BAM format, normalized read mapping

profiles for ncRNAs in families snRNA, snoRNA C/D box, snoRNA

H/ACA box, miRNA and tRNA were obtained. Because the number

of expressed ncRNAs was insufficient in the family YRNA, this family

was eliminated from the following analysis.

A pairwise alignment for a pair of read mapping profiles of

ncRNAs with primary sequences and secondary structures was cal-

culated in software called SHARAKU developed in our previous

work (Tsuchiya et al., 2016). When read mapping profiles for a pair

of ncRNAs are obtained, SHARAKU fundamentally aligns two read

mapping profiles by inserting gaps so that the sum of the differences

of coverages at all positions between the two profiles is minimized.

Simultaneously, SHARAKU takes information on the sequence and

secondary structures of RNAs into account when aligning read map-

ping profiles via integration with DAFS.

The result is presented in Table 7. CNN with input of a

SHARAKU pairwise alignment of sequences, secondary structures

and read mapping profiles showed slightly better accuracy than did

the one with a DAFS structural alignment. Thus, the additional in-

formation, i.e. read mapping profiles, helped to improve the cluster-

ing performance for ncRNA families.

4 Discussion

The clustering accuracy of CNNclust can be ranked in the following

ascending order: Clustal Omega sequence alignment and DAFS

structural alignment involving distributed representation of one-hot

coding and structural alignment involving word2vec distributed rep-

resentation. Furthermore, in 10-fold cross-validation, CNNclust

outperformed three existing methods on both Accuracy and F-value.

Because RNAclust, Ensembleclust and the spectral clustering algo-

rithm are unsupervised methods, they do not require training data

for clustering the test data. In this sense, CNNclust utilizes more in-

formation for clustering the test data in a supervised manner, and

hence the conditions for these supervised and unsupervised methods

are not equivalent for the performance comparison. On the other

hand, when advanced information about the target domain such as

the training data is available, the supervised method can show sig-

nificantly higher performance than the unsupervised method can. In

unknown-family validation, the CNNclust based on six families as

training data showed the highest Accuracy: higher than that of the

CNNclust using three families. This result implies that more ncRNA

families were available as the training data, and more accurate clus-

tering of ncRNA sequences of unknown families was achieved by

CNNclust.

The additional information, i.e. read mapping profiles, helped to

improve the clustering performance for ncRNA families. This find-

ing indicates that the read mapping profile representing post-

transcriptional processes such as splicing is also useful information

to capture some characteristic of each ncRNA family for the family

classification. For example, a read mapping pattern depicted in

Figure 6a may present the expression of a mature miRNA processed

at the 30-end from pre-miRNA and (b) may present 50-end process-

ing in tRNA.

Several interesting sequence motifs and secondary-structure

motifs known for the snoRNA family and specific to miRNA and

tRNA families were identified. The sequence motif depicted in

Figure 7a is the typical motif ‘UUCGA’ found in the T-loop of

tRNA (Laslett and Canback, 2004), and the motif is concretely pre-

sented in tRNA-Arg-CCT as illustrated in Figure 7b. The motif

‘UUCGA’ with a secondary-structure motif of three base pairs ‘G–C’

is highlighted in Figure 7b. The motif depicted in Figure 7c is the

typical motif ‘ACA’ present in the snoRNA H/ACA box; and the

motif presented in Figure 7d is the typical motif ‘CUGA’ present in

the snoRNA C/D box (Ganot et al., 1997; Samarsky et al., 1998).

Table 6. Performance comparison with one-dimensional CNNs

with input of a single sequence

Method Accuracy F-value

CNN with input of single sequence 0.913 0.734

CNN with DAFS alignment 0.939 0.824

Table 7. Performance comparison on clustering accuracy by means

of read mapping profiles as additional information

Method Accuracy F-value

CNN with SHARAKU (one-hot coding) 0.907 0.815

CNN with DAFS (one-hot coding) 0.903 0.811

Spectral clustering based on SHARAKU 0.747 0.516

Note: ‘CNN with SHARAKU (one-hot coding)’ represents one-dimension-

al CNN with input of SHARAKU alignments of sequences, secondary struc-

tures and read mapping profiles with one-hot coding; ‘spectral clustering

based on SHARAKU’ represents spectral clustering based on the SHARAKU

alignment score.

Fig. 6. Two examples of read mapping patterns observed in our RNA-seq ex-

periment for LNCaP. (a) A read mapping pattern observed in miRNA

(MIR200A) and (b) a read mapping pattern observed in tRNA (tRNA-Val-TAC).

The X-axis denotes the position (loci) of an ncRNA gene and the Y-axis indi-

cates the count of mapped reads
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Besides, a secondary-structure motif representing the stacking

regions often present in tRNA and miRNA was found as shown in

Figure 7e. A motif containing some gaps was also identified as

shown in Figure 7f. Thus, the motif identification in pairwise align-

ments by training CNNs may be considered the construction of an

iterative multiple alignments from pairwise alignments. Note that

those motifs were extracted from the learned kernels in CNN with

input of DAFS alignments and one-hot coding distributed

representation.

In this study, we dealt only with annotated ncRNAs.

Nevertheless, CNNclust can also be applied to the clustering of

novel and unannotated regions by employing tools such as block-

buster (Langenberger et al., 2009) to determine the expressed block

regions in the reference genome from RNA-seq reads. As shown in

the experiment involving the ‘plus flanking regions’ dataset,

CNNclust can tolerate ambiguous boundaries of unannotated

ncRNA transcripts in clustering performance. Another important

issue that we have not addressed is the computational complexity of

clustering algorithms. The alignment-free approach such as

GraphClust (Heyne et al., 2012) and RNAscClust (Miladi et al.,

2017) was proposed to accelerate the clustering task of ncRNA

sequences. The alignment-free method avoids the computationally

heavy alignment process and is applied to clustering very large sets

of ncRNA sequences while keeping the comparable accuracy. The

basic idea of CNNclust could be extended to the alignment-free ap-

proach to gain the practically fast computational time. These issues

will be addressed in our future work.

5 Conclusion

With the aim of applying a one-dimensional CNN to accurate clus-

tering of ncRNA sequences in a supervised learning manner, we

developed a new CNN-based method for classification of pairwise

alignments of ncRNA sequences. Two types of distributed represen-

tation, word2vec and one-hot coding, were combined with the

secondary-structure information specific to ncRNAs and further-

more with mapping profiles of next-generation sequence reads. As a

result, the training of one-dimensional CNNs for classification of

alignments of ncRNA sequences outperformed three existing cluster-

ing methods in terms of clustering ncRNA sequences and the con-

ventional one-dimensional CNN with input of a single sequence for

the family prediction. Furthermore, several sequence motifs and

secondary-structure motifs known for the snoRNA family and spe-

cific to miRNA and tRNA families were identified.

Our one-dimensional CNN method with input of pairwise align-

ments is general enough to be applicable to not only ncRNA sequen-

ces but also other biological sequences such as DNA and proteins

with the aim of finding conserved domains.
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