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Abstract

The preterm infant gut microbiota develops remarkably predictably1–7, with pioneer species 

colonizing after birth, followed by an ordered succession of microbes. The gut microbiota is vital 

to preterm infant health8,9 yet the forces underlying these predictable dynamics remain unknown. 

The environment, the host, and microbe-microbe interactions are all likely to shape microbiota 

dynamics, but in such a complex ecosystem identifying the specific role of any individual factor 
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has remained a major challenge10–14. Here we use multi-kingdom absolute abundance 

quantitation, ecological modelling, and experimental validation to overcome this challenge. We 

quantify the absolute bacterial, fungal, and archaeal dynamics in a longitudinal cohort of 178 

preterm infants. We uncover, with exquisite precision, microbial blooms and extinctions and reveal 

an inverse correlation between bacterial and fungal loads in the infant gut. We infer 

computationally and demonstrate experimentally in vitro and in vivo that predictable assembly 

dynamics may be driven by directed, context-dependent interactions between specific microbes. 

Mirroring the dynamics of macroscopic ecosystems15–17, a late-arriving member, Klebsiella, 

exploits the pioneer, Staphylococcus, to gain a foothold within the gut. Remarkably, we find that 

interactions between kingdoms can influence assembly, with a single fungal species, Candida 
albicans, inhibiting multiple dominant gut bacteria. Our work unveils the centrality of simple 

microbe-microbe interactions in shaping host-associated microbiota, critical for both our 

understanding of microbiota ecology and targeted microbiota interventions.

Humans are colonized by vast communities of microbes, particularly within the 

gastrointestinal tract, that play key roles in host health8,9. Infants are generally born 

uninhabited and their gut microbiota gradually assembles after birth1–7. Remarkably, this 

developmental process occurs in a predictable manner, with specific bacterial taxa 

establishing at distinct points in infant life18–22. The early life microbiota is critical to infant 

health, with microbiota composition linked to a range of diseases, morbidity and mortality, 

particularly within preterm infants1,23–27. Yet despite the importance of the infant 

microbiota, we do not understand what drives the patterned progressions of the infant gut 

community11–13. Gestational age, delivery mode, host epithelial and immune ontogeny, diet, 

antibiotics, and the interactions between individual microbes may each influence microbiota 

composition2,18–22,28–30. But with such complexity, the impact of any individual factor upon 

microbiota development has remained unclear. Indeed, disentangling how and why 

microbial communities change over time remains a major challenge both for human 

microbiota and for host-associated and environmental microbiomes more broadly.

Our ability to identify drivers of microbiota development has been hampered by the 

complexity of microbial ecosystems and also by fundamental limitations in how we quantify 

community composition10–13. First, while next-generation sequencing (NGS) has provided a 

comprehensive map of bacterial diversity within the human gut31,32, we still know little of 

the other microorganisms, such as fungi and archaea, that colonize the infant 

microbiota33–35, constraining our ability to identify inter-kingdom interactions driving 

ecosystem dynamics36. Second, NGS data typically chart only the relative abundances of 

taxa, providing the proportion of different microbes within a community, but not absolute 

amounts. If a species increases in relative abundance over time we cannot determine whether 

that species is blooming or others are dying out (Fig. 1a). The compositional nature of 

relative abundance data can thus mask community dynamics, undermining our ability to 

identify biotic and abiotic forces shaping microbiota change37–39. Here we used a scalable 

multi-kingdom quantitation method to map absolute microbiota dynamics in a longitudinal 

cohort of preterm infants. Combining ecological models, and in vitro and in vivo validation, 

we reveal that within and between-kingdom microbial interactions shape the predictability 

of early-life microbiome assembly.
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NGS pipeline quantifies multi-kingdom abundances

To identify drivers of change within any microbial community one must quantify the 

absolute changes in community members over time. To achieve this, we developed a cell-

based multiple kingdom spike-in method (MK-SpikeSeq) that quantifies the absolute 

abundances of bacteria, fungi and archaea simultaneously within any given microbiome 

(Fig. 1b, Supplemental Text). Specifically, we add to each sample defined numbers of 

exogenous microbial cells of each kingdom and perform kingdom-specific rDNA amplicon 

sequencing to obtain relative abundances in each kingdom. The spike-in cells serve as 

internal controls for sample processing and, as spike-in cell abundances are known, we can 

then back-normalize and calculate absolute abundances of all community members (Fig. 1b, 

Supplementary Fig. 1). As our primary objective was to study mammalian microbiota, our 

spike-in contained the bacterium Salinibacter ruber40, the fungus Trichoderma reesei and the 

archaeon Haloarcula hispanica, selected based on their absence or rarity in mammalian 

microbiomes (Supplemental Table 2). However, our approach can be adapted via spike-in 

choice to target any host-associated or environmental microbiome and can be combined with 

shotgun metagenomics to capture viruses and enable strain-level quantification. We 

validated MK-SpikeSeq’s ability to measure absolute abundances using a series of defined 

mock communities, then compared MK-SpikeSeq’s performance against existing 

approaches for absolute abundance quantification (total DNA, cytometry-based imaging, 

quantitative PCR and DNA-based spike-in) using a set of test samples (Supplemental Text, 

Extended Data Fig. 1–5). Together, these demonstrated that MK-SpikeSeq generates highly 

sensitive and robust absolute abundance measurements for individual taxa across multiple 

kingdoms, a key requisite for identifying drivers of microbiota dynamics.

Multi-kingdom dynamics during infant gut assembly

Having validated MK-SpikeSeq we built a high-resolution multi-kingdom picture of infant 

microbiota dynamics. Specifically, we assembled a prospective cohort of 178 preterm infants 

from a tertiary-care neonatal intensive care unit (NICU). The assembly of the preterm 

microbiota differs substantially from that of term infants. Most preterm infants are born via 

C-section and thus are seeded with skin and hospital-associated microbes, and devoid of key 

maternally derived bacteria7,21,29. The preterm microbiota also displays “delayed” maturity 

with prolonged membership of facultative anaerobic bacteria compared to that of the 

predominantly strict anaerobic community of term infants7,21,29. We focused on preterm 

infants due to their clinical relevance and because they are amenable to high-frequency 

longitudinal sampling with readily available clinical metadata. These features render the 

preterm gut an important and tractable system for establishing a proof-of-principle 

understanding of microbiota assembly. We sampled each infant within our cohort on 

approximately their first, 14th, 28th, and 42nd day of life, and for 13 infants we gathered 

nearly-daily stools for their first 6 weeks of life (940 samples in total). Together, this cohort 

enabled us to build a high-resolution picture of microbiota development within the preterm 

infant gut.

Consistent with previous studies18–23, we observed that preterm infant gut bacterial 

communities cluster primarily into four distinct community states, characterized by 
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domination of one of four genera: Staphylococcus, Klebsiella, Escherichia or Enterococcus 
(Fig. 2a). In contrast to full-term infants, these microbiome clusters were independent of diet 

or delivery mode (Extended Data Fig. 6). Importantly, the bacterial community within our 

preterm cohort, as previously observed18–23, developed in a predictable and highly dynamic 

manner over time. Most infants were initially dominated by Staphylococcus, then 

transitioned to a state dominated by Klebsiella, Enterococcus or Escherichia as infants aged 

(Fig. 2a, b, Extended Data Fig. 6), with total bacterial load in the infant gut gradually 

increasing over time (Fig. 2f, g, Extended Data Fig. 8). Comparing the absolute and relative 

abundances of these dominant genera illustrated how compositional data can misattribute 

both how and when communities change. In several infants, relative abundances initially 

masked blooms in Klebsiella and Escherichia, and showed Staphylococcus and 

Enterococcus collapsing in the community when their abundances were instead 

comparatively stable (Fig. 2c, Supplementary Fig. 2–16). Such comparisons also indicated 

that, though the bacterial communities within our cohort were typically dominated by just 

one genus, often the other major genera remained stable at high levels within the preterm 

infant gut (Supplementary Fig. 2–16).

In contrast to the predictable dynamics of bacterial communities, we uncovered diverse but 

unpredictable fungal communities within the preterm infant gut. On average, fungal 

dynamics were noisier and exhibited less temporal structure than bacterial communities, 

with no clear correlation between fungal community composition or load and infant age 

(Fig. 2d, e, Extended Data Fig. 7). Notably, though rare in adults33, Cryptococcus was the 

dominant fungal genus in approximately 5% of samples; while despite being a common 

inhabitant of the adult gut, Saccharomyces species33 were detected in only 5 infants. As with 

bacterial communities, MK-SpikeSeq uncovered fungal blooms and collapses masked by 

relative abundances. For example, in several infants Candida stably maintained a high 

relative abundance, despite dropping multiple orders of magnitude in absolute load over time 

(Fig. 2c, Supplementary Fig. 4–18). However, though the fungal dynamics were themselves 

unpredictable, a linear mixed-effects model that accounted for infant age, anti-bacterials and 

anti-fungals, uncovered a weak negative correlation between bacterial and fungal loads 

(normalized effect size: −0.060, 95% Wald CI: [−0.119, −0.001], Fig. 2f, Extended Data Fig. 

8). That is, when accounting for clinical covariates, samples with higher fungal loads tended 

to have lower bacterial loads. This inverse relationship led us to wonder whether cross-

kingdom interactions might be influencing preterm microbiota dynamics.

Archaea were notably rare within our cohort, with most samples showing no archaeal signal. 

However, we detected a weak positive trend in both the frequency of archaeal detection (Chi 

Squared test for trend, p=0.002) and total archaeal load over time (Spearman’s R=0.13, 

p=0.002), with higher archaeal abundances generally detected in later weeks of life (Fig. 2g, 

h, Extended Data Fig. 8).

Ecological drivers of microbiota assembly

Having generated a high-resolution multi-kingdom map of infant microbiota assembly, we 

next sought to identify factors driving the predictable dynamics observed. To achieve this, 

we used Bayesian regularized regression to fit our longitudinal data to an extended 
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generalized Lotka-Volterra (gLV) model, an approach only possible with absolute 

abundances. The gLV model assumes the growth rate of an individual taxon depends upon 

the taxon’s intrinsic growth rate and interaction with kin, the effect of clinically-

administered antimicrobials, and interactions between the focal taxon and other community 

members (Fig. 3a, Supplemental Text)41–43. Specifically, the model allows microbes to 

interact in a number of different ways, from bidirectional competition (−/−) such as nutrient 

competition, to exploitation (+/−) wherein one microbe takes advantage of another, or not 

interact at all (0/0). The model also allows each clinically-administered antimicrobial agent 

to inhibit, promote or have no effect on each microbe. Together this yields a highly 

parameterized model of community dynamics, which we fit to our data using a conservative 

regularization framework. By doing so, we were able to identify those microbe-microbe or 

antibiotic-microbe interactions playing a strong, consistent role in shaping community 

dynamics – while avoiding overfitting and filtering weak interactions that do not influence 

community dynamics. This approach thus enabled us to disentangle the effects of different 

biotic and abiotic interactions on microbiota assembly, independently of missing community 

members (e.g. viruses), or underlying host variability.

Our ecological inference predicted that strong intra- and inter-kingdom interactions between 

specific microbial genera play a pivotal role in shaping infant gut assembly (Fig. 3b, 

Extended Data Fig. 9, Supplemental Text). Remarkably, we inferred that the early colonizing 

Staphylococcus enhanced growth of Klebsiella within the infant gut but was itself inhibited 

by Klebsiella. Thus our model suggests the characteristic transition from Staphylococcus to 

Klebsiella domination observed in preterm infants (Fig. 2a, b) is shaped, in part, by 

Klebsiella exploiting the early colonizer. We also inferred that Klebsiella itself was inhibited 

by another dominant genus Enterococcus, suggesting the distinct domination states of these 

two genera may be partly driven by one excluding the other. Most strikingly, consistent with 

the inverse correlation between bacterial and fungal loads, our analyses suggested that 

between-kingdom interactions play a key role in community dynamics. Specifically, we 

inferred that the fungal genus Candida inhibited both Klebsiella and Escherichia, but was 

itself inhibited by Staphylococcus. These results suggested that not only do preterm infants 

harbor diverse fungal communities, but that members of these communities play a role in 

influencing overall community dynamics.

Notably, we discovered that a substantial proportion of the interactions shaping preterm 

infant assembly are exploitative (+/−), with these asymmetric interactions comprising over 

20% of inferred microbe-microbe interactions (Extended Data Fig. 9c). The importance of 

these directed, asymmetric interactions in shaping microbiota assembly underlines the power 

of our absolute abundance-based inference. Without absolute abundances, ecological 

inferences are limited to correlational analyses. These analyses identify positive or negative 

correlations between taxa, but cannot determine directionally who is interacting with whom, 

nor identify asymmetric interactions37,44–46. As a consequence, these cannot identify 

exploitative, commensal, or amensal interactions. Indeed, when applied to our dataset, 

correlational relative abundance analyses47 erroneously inferred that Staphylococcus 
inhibited Klebsiella and promoted Candida (Extended Data Fig. 9d). In other words, relative 

abundances and correlation analysis not only misrepresented the dynamics of infant 

Rao et al. Page 5

Nature. Author manuscript; available in PMC 2021 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiome assembly (Fig. 2), but also misclassified the ecological processes underlying 

these dynamics.

Validation of interactions shaping assembly

Our ecological inference indicated that microbe-microbe interactions are central to 

predictable infant microbiome assembly. However, though we employed a conservative 

regularization framework to ensure robustness to spurious correlations, our predictions may 

still be vulnerable to unobserved confounding factors not incorporated in the model, such as 

diet, viruses, or the host. Indeed, though a number of studies have used similar modelling 

approaches to infer interactions, few predictions have been experimentally validated43,48,49. 

We therefore sought to determine whether we could reproduce our inferred interactions in a 

reductionist experimental system. Focusing first on our predicted within-kingdom 

interactions, we isolated Staphylococcus, Klebsiella, Escherichia and Enterococcus strains 

from five infants in our cohort, capturing several distinct species of each genus 

(Supplemental Table 13). We then performed monoculture and pairwise co-culture of these 

strains and used colony forming units (CFU) to determine the pairwise fitness effects of 

strains upon one another (Supplemental Table 14). Remarkably, we were able to reproduce 

in vitro all of the inhibitory interactions predicted by our model, with growth effects largely 

conserved within genera (Fig. 3c). Klebsiella strongly inhibited Staphylococcus, reducing 

Staphylococcus yields by over 1000-fold, while Enterococcus variably but consistently 

inhibited Klebsiella (Fig. 3c). Importantly, as predicted, Klebsiella showed no effect on 

Enterococcus, consistent with this interaction being amensalism rather than bi-directional 

competition, validating the directionality of our inference.

In contrast to our predictions that Staphylococcus benefitted Klebsiella during microbiome 

assembly, we did not observe a positive effect of Staphylococcus on Klebsiella in vitro (Fig. 

3c). Given the strength of the predicted Klebsiella-Staphylococcus exploitation, we 

hypothesized that this interaction may be context dependent. That is, we hypothesized that, 

due to differing environments in vitro versus in vivo, Klebsiella might only benefit from 

Staphylococcus within the gut. To investigate this, we used two co-resident NICU isolates, 

Klebsiella pneumoniae and Staphylococcus epidermidis, to test if Klebsiella benefited from 

Staphylococcus in vivo in the mammalian gut, using a mouse model of intestinal 

colonization (Fig. 3d). Specifically, using CFU counts and MK-SpikeSeq we measured the 

fitness of K. pneumoniae in mice pre-colonized with or without S. epidermidis (Fig. 3d, 

Extended Data Fig. 10a, c). Strikingly, as predicted, S. epidermidis significantly enhanced 

the ability of K. pneumoniae to colonize the mouse gut, with K. pneumoniae exhibiting 

faster colonization if the gut was pre-colonized with S. epidermidis (Fig. 3d). Moreover, 

mice colonized with K. pneumoniae had significantly reduced levels of S. epidermidis than 

those without K. pneumoniae, with S. epidermidis declining alongside the rise in K. 
pneumoniae (Fig. 3d). These in vivo data recapitulated the dynamics observed in infant 

assembly (Fig. 2c) and suggested that the predictable patterns in infant microbiome 

assembly may indeed be due to exploitation of an early pioneer by a late colonizer. These 

data also underlined the importance of context when studying microbiota interactions; 

illustrating how taxa may interact differently in vitro versus within a host.
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Having validated our inferred within-kingdom interactions, we sought to validate the 

between-kingdom interactions predicted to influence preterm gut assembly (Fig. 3e). Again 

using infant isolates, each of our predicted between-kingdom interactions could also be 

reproduced within our in vitro system (Fig. 3e). As predicted, Candida members caused a 

~100–1000-fold inhibition of each Enterobacteriaceae and experienced a ~10–100-fold 

reduction in growth when co-cultured with Staphylococcus, consistent with previous 

observations50. Notably though, we observed a bimodal distribution in the strength of 

inhibition of different Candida isolates by Staphylococcus (Fig. 3e), with the two modes 

corresponding to two Candida species, C. albicans and C. parapsilosis. Moreover, these two 

species also exerted differing inhibitory effects on Enterobacteriaceae; overall C. albicans 
both resisted Staphylococcus and inhibited Enterobacteriaceae more than C. parapsilosis 
(Fig. 3e). To examine if this species-specific inhibition of Enterobacteriaceae by Candida 
occurred in vivo, we pre-colonized mice with either C. albicans, C. parapsilosis or vehicle 

control, then introduced K. pneumoniae and measured microbial colonization dynamics. We 

observed a significantly reduced colonization of K. pneumoniae in the presence of C. 
albicans, compared to vehicle-control or C. parapsilosis pre-colonization, validating both the 

species-specificity in the fungi-bacteria interaction and its occurrence within the mammalian 

gut (Fig. 3f, Extended Data Fig. 10b, d). Together, our data demonstrated a novel species-

specific cross-kingdom interaction that appears to shape the preterm infant microbiota.

Discussion

The de novo assembly of the infant gut microbiome is remarkably ordered, with pioneer 

microbes colonizing first, followed by predictable waves of other microbes. To date, the 

forces driving these predictable transitions have remained elusive. Priority effects, diet and 

antibiotics, and the developing immune system are all thought to impact microbiota 

dynamics. However, with multiple interacting factors at play, disentangling the role of any 

individual process has remained a formidable task. Here we demonstrate the power of 

combining multi-kingdom absolute abundance quantitation, ecological modelling, and 

experimental validation to overcome this challenge. We have demonstrated that the 

predictable patterns of preterm infant gut assembly can be driven by direct, context-

dependent interactions between microbes. Our findings suggest a common mechanism of 

assembly between the infant microbiota and macroscopic ecological succession. Just as in 

macroscopic ecosystems15–17, microbes may exploit one another to establish within the 

infant gut, and direct interactions between kingdoms appear to play a central role in 

community dynamics. The reducibility of gut microbiota assembly to simple, pair-wise 

interactions has profound implications for understanding and ultimately manipulating 

microbial ecosystems in health and disease.
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Extended Data

Extended Data Figure 1. MK-SpikeSeq reliably measures absolute abundances across kingdoms.
A set of single-kingdom mock communities with a fixed composition of 10 bacterial (a) or 

10 fungal (d) species and variable total microbial loads (indicated by the pie chart 

schematics underneath), were quantified using MK-SpikeSeq for relative composition 

(colored bars) and absolute abundance (black/grey bars). b, e, Correlations between 

expected (based on initial microbial densities and known dilution factors) and MK-

SpikeSeq-measured total absolute abundances show that MK-SpikeSeq reliably detects 

absolute abundances of bacteria and fungi. Note that for e, as exact rDNA copy numbers per 

fungal cell are undefined, the expected total ITS1 abundances are only estimates (here using 

200 rDNA copies per fungal cell). c, f, Absolute abundance changes for individual members 

(color coded same as a, d) in the bacterial and fungal mock communities are largely 

consistent with known dilution factors. g, A set of serial dilutions of a human fecal sample 

Rao et al. Page 8

Nature. Author manuscript; available in PMC 2021 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was quantified using MK-SpikeSeq for relative composition (colored bars, shown are the 

phylum level taxa) and absolute abundance (empty bars). h, Absolute abundance changes for 

individual OTUs (color coded in phyla same as g) across kingdoms are largely consistent 

with known dilution factors.

Extended Data Figure 2. MK-SpikeSeq reliably captures key ecological dynamics in multi-
kingdom mock communities.
Two sets of defined multi-kingdom consortia, including ten bacteria and ten fungi (left 

panels, color coded same as Extended Data Fig. 2a/d), were assembled to model a “true” (a) 

and a “false” (b) negative interaction between one focal bacterium and one focal fungus, by 

varying the abundances of either these focal species or other background members. The 

MK-SpikeSeq quantitations of focal species highlight either consistent (a) or distinct (b) 
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patterns between relative abundance and absolute abundance (middle panels). Relative 

abundance data may lead to a false prediction of cross-kingdom interaction between the 

focal species, while absolute abundance data measured by MK-SpikeSeq could disentangle 

these distinct mock ecological dynamics (right panels).

Extended Data Figure 3. MK-SpikeSeq outperforms other quantitation methods in cross-
kingdom specificity.
A set of 40 test samples including human stools and soil samples were used to compare 

kingdom-specific absolute abundance quantifications. a, MK-SpikeSeq compared with total 

DNA yields. Pearson correlation tests show that total DNA yields mostly only reflect 

bacterial community abundances. b, MK-SpikeSeq compared with flow cytometry cell 

enumerations using gating strategies targeted for either prokaryotes or fungi. For prokaryotic 
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enumerations, two soil samples are highlighted due to their high archaeal loads that cannot 

be distinguished from bacterial counts by flow cytometry. For fungi enumerations, shown 

are results using one gating strategy; attempts using two additional gating strategies show 

similar over-estimation of fungal counts (Supplemental Table 4). c, MK-SpikeSeq compared 

with kingdom-specific qPCR. Horizontal dashed lines show the limit of detection using 

qPCR, based on the negative control (DNA extraction of water); vertical dashed line shows 

the limit of detection using MK-SpikeSeq, based on minimal one non-spike-in arch16S read 

normalized against the average arch16S sequencing depth. Samples below limit of detection 

are excluded from correlational tests. Note that some samples with arch16S below MK-

SpikeSeq limit of detection showed arch16S qPCR signals higher than the negative control, 

likely due to bacterial signals bleeding into archaea-specific qPCR. For a-c: Pearson 

correlation r and two-sided p values were shown (no adjustment for multiple comparisons); 

ns, not significant. d, Comparison of 16S genus-level profiles sequenced with (s) or without 

(ns) spike-in shows largely unaltered community compositions having exogenous spike-in. 

e, f, Flow cytometry gating strategies used in prokaryote and fungi cell counting (b), with 

green showing bacterial and fungal cells and purple showing microsphere particles provided 

in the bacteria counting kit. Note that higher voltage settings were used in flow cytometry 

for prokaryote cell counting than for fungi cell counting.
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Extended Data Figure 4. MK-SpikeSeq outperforms qPCR in the sensitivity of detection and 
robustness to sample background.
a, Comparison of sensitivity between MK-SpikeSeq and qPCR using 10-fold serial dilutions 

of E. coli and C. albicans. MK-SpikeSeq showed 100~1000-fold increased sensitivity over 

qPCR in low bacterial abundance samples (detecting as few as 10 bacterial cells). For MK-

SpikeSeq of E. coli samples, two levels of spike-in were used to cover the whole range of 

detection under the sequencing depth of 10~100k reads per sample. For qPCR, horizontal 

dashed lines indicate the negative control (DNA extraction of water) and vertical dashed line 

shows the threshold below which pooled 16S sequencing yielded <100 reads (sequencing 

failed likely due to too low signal). b, Comparison of robustness to host cell background 

between MK-SpikeSeq and qPCR using test samples with fixed amount of E. coli and C. 
albicans and variable number of Caco-2 colonic cells. MK-SpikeSeq detected consistent (< 
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2-fold variations) microbial abundances in samples with high host-cell background whereas 

qPCR under-measured microbial abundances by 10-fold (deltaCt > 3.3). n=2 for the 106 host 

cells group, n=1 for the other groups.

Extended Data Figure 5. MK-SpikeSeq identifies errors in sample processing of fungal 
communities.
a, In our first phase of NICU sequencing (see Supplemental Text), we identified a number of 

samples, highlighted in red dots, that failed to yield >1k ITS1 reads per sample post quality 

filtering (red dashed line). Many of these sequencing-failed samples showed much lower (>5 

deltaCt) ITS1 qPCR signals than the spike-in control (green dashed line), indicating poor 

DNA extractions of fungi in these samples. Shown next to the axes are frequency histograms 

of measurements. b, Reprocessing of 10 of these sequencing-failed samples led to increased 
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ITS1 qPCR signals, indicating improved DNA extractions. c, These reprocessed samples 

also yielded desired >10k ITS1 reads, passing our rDNA sequencing criteria. For b/c, two-

tailed paired student’s t test. d, Eight of the reprocessed samples showed non-zero fungal 

communities, and only two had no detectable fungal signal. Shown are the composition 

(colored bars) and total abundance (empty bars) of fungal communities in these reprocessed 

samples.

Extended Data Figure 6. Bacterial samples cluster based on composition and infant age, but not 
diet, delivery mode, or gender.
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a, Principle Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarities of bacterial 

community composition between samples (genus level). Samples colored by dominant taxa 

or white when diversity is high (IS>4). b, PCoA colored by infant age. c, PCoA colored by 

infant diet close. d, PCoA with samples colored by infant gender. e, PCoA with samples 

colored by delivery mode. f, PCoA with samples colored by cluster membership, calculated 

using DBSCAN algorithm. g, Stacked bars represent distribution of dominant genus within 

each cluster and dot plots illustrate average day of life of samples within each cluster. 

Kruskal-Wallis test with Bonferroni correction showed statistically significant differences in 

day of life of samples between clusters (Chi square = 254, p-value << 0.0001, df = 3), error 

bars show mean +/− standard deviation. h, Stacked bars indicate the proportion of genera 

exhibiting each noise type per infant. Dark noise indicates increasing temporal dependence, 

with white noise suggesting temporal dynamics are entirely random.
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Extended Data Figure 7. Fungal community composition does not map to infant age, diet, gender 
or delivery mode.
a, Principle Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarities of fungal 

community composition between samples (genus level). Samples colored by dominant taxa 

or white when diversity is high (IS>4). b, PCoA colored by infant age. c, PCoA colored by 

infant diet close. d, PCoA with samples colored by infant gender. e, PCoA with samples 

colored by delivery mode. f, PCoA with samples colored by cluster membership, calculated 

using DBSCAN algorithm. g, Stacked bars represent distribution of dominant genus within 

each cluster and dot plots illustrate average day of life of samples within each cluster. 

Kruskal-Wallis test with Bonferroni correction showed no statistically significant differences 

in day of life of samples between clusters (Chi square = 3.06, p-value = 0.69, df = 5), error 
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bars show mean +/− standard deviation. h, Stacked bars indicate the proportion of genera 

exhibiting each noise type per infant. Dark noise indicates increasing temporal dependence, 

with white noise suggesting temporal dynamics are entirely random. Notably, 5 infants’ 

mycobiomes could not be classified.

Extended Data Figure 8. Trends in total microbial loads for all three kingdoms.
Scatter plots of rDNA-based total abundances of bacteria (a), fungi (b) and archaea (c) 

against infant day of life (DOL), measured by MK-SpikeSeq in the first phase Nextseq 

sequencing. The red lines denote the linear regression fit and the 90% confidence bands of 

the best-fit line of absolute abundances in log scale. Spearman correlations show that 

bacterial and archaeal, but not fungal, loads are positively associated with infant age. 
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Samples with undetectable kingdom-specific rDNA signal are not plotted. For archaea that 

show scarce signal in the cohort (c, left), a separate presence/absence plot and chi-square 

test of binned samples (c, right) also show a positive correlation between archaeal loads and 

infant age. d, Diagnostics for linear mixed effects model.

Extended Data Figure 9. Microbe-microbe interactions are predominantly asymmetric, while 
inferring interactions from relative abundance data generates misleading results.
a, Heatmap plotting interactions inferred by the gLV model. Each row of the heatmap 

illustrates the effect upon the target genera by other members of the gut community (left 

columns) or documented usage of antimicrobials according the clinical metadata (right 

columns). b, Histogram of individual antibacterial (purple) or antifungal (green) interaction 

strengths, split by kingdom. Antibacterials primarily inhibit bacteria, and antifungals 

primarily inhibit fungi, however there is not a significant bias in the likelihood of either 

antimicrobial inhibiting their target kingdom (exact binomial tests, H0: P(Inhibition) = 0.5, 

p>0.05). c, Stacked bar illustrates the proportion of different interaction types occurring 

between genera. Over 80% of interactions are asymmetric, being either exploitative (+/−), 

commensal (+/0), or amensal (-/0). d, To confirm the value of our absolute abundance 

Rao et al. Page 18

Nature. Author manuscript; available in PMC 2021 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods, we inferred inter-genus interactions from relative abundance data alone using the 

FastSpar47 algorithm. This approach robustly identifies co-occurrence relationships between 

different microbial taxa in a manner that accounts for the compositional nature of relative 

abundance data. Notably, correlation networks cannot infer asymmetric interactions thus this 

approach cannot detect the exploitation of Staphylococcus by Klebsiella. It also erroneously 

infers that Staphylococcus increases the growth of Candida, and cannot detect the inhibition 

of Klebsiella by Candida or Enterococcus. e, Steady-state bacterial relative abundances of 

those subcommunities predicted to be feasible and/or linearly asymptotically stable. f, 
Steady-state fungal relative abundances of those subcommunities predicted to be feasible 

and/or linearly asymptotically stable.
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Extended Data Figure 10. MK-SpikeSeq measurement and repeat experiments of in vivo 
colonization.
a/b, Biological replicate samples of mouse stools characterized by CFU counting of strains 

of interest in Fig. 3d/f were subjected to MK-SpikeSeq to determine rDNA-based absolute 

abundances of the specified strains. c/d, Repeat in vivo colonization experiments. Error bars 

denote the standard error of the mean (SEM); * p<0.05, ** p<0.01, ns not significant, by 

two-tailed student’s t test. For panel c: n=5 per group. For panel d: n=4 for C. albicans/K. 
pneumoniae group, n=3 for the other two groups; t test of K. pneumoniae CFU between C. 
albicans and C. parapsilosis groups. See Supplemental Table 15 for exact p-values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multiple Kingdom SpikeSeq (MK-SpikeSeq) enables robust quantitation of absolute 
abundances.
a, Schematic illustrating how relative abundance data can mask underlying community 

dynamics, rendering it challenging to distinguish different ecological scenarios. b, Overview 

of the MK-SpikeSeq pipeline. Prior to DNA extraction, defined amounts of each spike-in 

cell (bacteria (B), fungi (F) and archaea (A)) are added to each microbiome sample. Relative 

abundances of each microbial kingdom are then quantified using standard kingdom-specific 

rDNA amplicon sequencing. As the absolute abundances of each spike-in cell’s rDNA are 

known, these quantities can be used as back-normalization factors to calculate the absolute 

abundances of all other organisms present in each sample. The spike-in cells also serve as 

internal controls for the entire sample processing procedure, rendering the absolute 

quantification robust to factors such as sample-to-sample variability in DNA extraction 

efficiency.
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Figure 2. The preterm infant gut exhibits rich bacterial and fungal community dynamics.
a, Principle Coordinate Analysis (PCoA) plot of Bray-Curtis dissimilarities between 

bacterial samples at the genus level. Each dot represents a sample, colored by the dominant 

genus present or white if diversity was high (Inverse Simpson index > 4). b, The same PCoA 

as panel a with samples instead colored by infant day of life, illustrating how bacterial 

community composition changes predictably over time. c, Microbiota dynamics of a single 

representative infant, highlighting the importance of gathering absolute abundances when 

studying microbiome ecology. Stacked bars represent total community composition (for full 

color schemes, see Extended Data Figs 3, 4). Line plots illustrate the relative (colored) and 

absolute (grey) abundances of individual genera. d-e, PCoA plots of fungal community 

composition colored by dominant genus (d) or infant age (e), indicating fungal community 

composition does not correlate with infant age. f, Effects of clinical and microbial factors on 
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total bacterial load, quantified by a linear mixed effects model, suggesting a potential 

relationship between kingdoms within the preterm infant gut (centers and error bars indicate 

estimated fixed effects and 95% confidence intervals respectively). g, Total abundances of 

bacteria, fungi and archaea over time. h, Proportion of samples in which archaea could be 

detected during each week of life. For panels a/b/g left, number of samples n = 934, for d/

e/g center n=772, for f n=770, for g right, h n = 596.
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Figure 3. Pairwise intra- and inter-kingdom interactions drive predictable patterns of infant 
microbiome assembly.
a, Schematic illustrating the generalized Lotka-Volterra (gLV) model used to identify 

causative drivers of bacterial and fungal dynamics within the infant gut. This model assumes 

the growth rate of each taxon, 
dXi
dt  is determined by its own intrinsic growth rate ri, its 

interaction with other community members aijXj, and any environmental perturbation ϵikEk. 

b, The gLV model identified a network of microbe-microbe interactions occurring between 

dominant members of the preterm gut that are predicted to affect microbiota dynamics. c, in 
vitro growth effects of infant isolates upon one another using monoculture and pairwise co-
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culture, testing the predicted within-kingdom interactions. d, CFU counts quantifying 

microbial fitness in vivo in a specific pathogen free (SPF) mouse model, reproducing the 

predicted exploitation of Staphylococcus by Klebsiella. Gavage 2 indicates day of 

inoculation with K. pneumoniae. e, in vitro growth of infant isolates when growing alone 

and in co-culture, testing the predicted cross-kingdom interactions. Black and grey dots 

indicate co-cultures with C. albicans and C. parapsilosis respectively. f, CFU counts 

quantifying microbial fitness in vivo in a SPF mouse model, reproducing the species-specific 

differences in the cross-kingdom inhibition observed in vitro. Gavage 2 indicates day of 

inoculation with K. pneumoniae. For panels c/e: each dot denotes one unique pair of strains 

of the indicated genera, with each pair replicated at least once (Supplemental Table 14a). For 

panels d/f: Klebsiella was undetected at time 0 upon gavage; n=5 per group, error bars 

denote the SEM; * p<0.05, ** p<0.01, ns not significant, by two-tailed student’s t test; see 

Supplemental Table 15 for exact p-values; see repeat in vivo experiments in Extended Data 

Fig 10c–d.
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