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Abstract: COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which has many variants that accelerated the spread of the virus. In this study, we investigated the
quantitative effect of some major mutants of the spike protein of SARS-CoV-2 binding to the human
angiotensin-converting enzyme 2 (ACE2). These mutations are directly related to the Variant of
Concern (VOC) including Alpha, Beta, Gamma, Delta and Omicron. Our calculations show that five
major mutations (N501Y, E484K, L452R, T478K and K417N), first reported in Alpha, Beta, Gamma
and Delta variants, all increase the binding of the S protein to ACE2 (except K417N), consistent with
the experimental findings. We also studied an additional eight mutations of the Omicron variant that
are located on the interface of the receptor binding domain (RDB) and have not been reported in
other VOCs. Our study showed that most of these mutations (except Y505H and G446S) enhance the
binding of the S protein to ACE2. The computational predictions helped explain why the Omicron
variant quickly became dominant worldwide. Finally, comparison of several different computational
methods for binding free energy calculation of these mutants was made. The alanine scanning method
used in the current calculation helped to elucidate the residue-specific interactions responsible for
the enhanced binding affinities of the mutants. The results show that the ASGB (alanine scanning
with generalized Born) method is an efficient and reliable method for these binding free energy
calculations due to mutations.

Keywords: SARS-CoV-2; SARS-CoV-2 variants; spike protein; protein–protein interaction; ASGB;
binding free energy; alanine scanning

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the human
body by binding to the human angiotensin-converting enzyme 2 (ACE2) with its receptor-
binding domain (RBD) of the spike protein [1–6]. Thus, the interface residues play key
roles in the spike protein’s binding to ACE2. At present, the most severe cause of infection
is from some Variant of Concern (VOC): Alpha, Beta, Gamma, Delta and Omicron [7–16].
Especially, the Omicron variant is currently a dominant cause of the resurgence of infection
in many countries [14]. These variants are reported to contribute to increased transmission
of the virus with some mutations on their S protein [11,17–20].

The Alpha variant was found in the UK in September 2020, the Beta variant was found
in North Africa in May 2020 and Gamma variant was found in Brazil [7–9,11]. As shown
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in Table 1, these three variants have one point in common—that is, the N501Y mutation,
which was reported to accelerate the spread of virus [7,20] through stronger binding with
ACE2. As for E484K mutation, both Beta and Gamma variants contain it, but the Alpha
variant does not [11]. The K417N was found in the Beta variant [11]. The Delta variant
received a lot of attention, and the L452R and T478K mutations are considered to be one of
the main reasons for the accelerating spread of the virus [19,21–23].

Table 1. Major single point mutations in Alpha, Beta, Gamma, Delta and Omicron variants of
SARS-CoV-2 in the RBD that are studied in this work.

Mutation Sites Alpha Beta Gamma Delta Omicron

K417N
√ √

N440K
√

G446S
√

L452R
√

S477N
√

T478K
√ √

E484A
√

E484K
√ √

Q493K
√

G496S
√

Q498R
√

N501Y
√ √ √ √

Y505H
√

Computational studies of mutations of these VOCs have been reported by many
groups [24–28]. This paper focuses on these single residue mutations in these VOCs. We
first focus on five specific mutations (N501Y, E484K, L452R, T478K and K417N) that were
found in Alpha, Beta Gamma and Delta variants [4,7–11,17–21,29], and these mutations are
all located on the RBDs of the SARS-CoV-2/ACE2 complex. These five residue mutations
have experimental data, so we first analyze these five mutations. In order to analyze the
difference in binding affinity between the wild type and the mutants, we performed MD
simulations and calculated binding free energies for these complexes based on the ASGB
method as well as several different methods. The ASGB method was developed in recent
years and has been applied to calculate binding free energies in protein–ligand [30,31]
and protein–protein interactions [32–38]. In this work, we calculated average results from
five trajectories for each complex to reduce standard errors from MD simulations. Our
calculation results are generally consistent with the available experimental results. We
elucidate the molecular mechanism of enhanced binding affinity based on structural in-
formation and the contribution of specific residues. For comparison, we also used the
MM/GBSA, ASGB-T, TI (thermodynamics interaction) and machine learning methods
to calculate the differences in binding free energies between the wild type and the mu-
tants. Recently, a new VOC named Omicron has been reported, which quickly spread to
many countries.

The Omicron variant contains 11 mutations in the RBD of SARS-CoV-2. We cal-
culated the ∆∆G values with respect to these mutations. Since no experimental values
of binding affinity are available for these Omicron mutations, our result serves as the
theoretical prediction.

2. Theoretical Method
2.1. Molecular Dynamics Simulations

The wild-type X-ray crystal structures of the SARS-CoV-2 RBD/ACE2 (pdbid: 6M0J) [3]
were downloaded from the Protein Data Bank (PDB) [15]. The structures of mutated S-
protein RBDs that bind with ACE2 are not reported in the experiment, and we built
these complex structures based on the wild-type crystal structure (pdbid: 6M0J) by using
Rosetta [39]. We used pmemd.cuda in Amber18 [40] with the ff14SB force field [41] for
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MD simulations with TIP3P-explicit water molecules, and the truncated octahedron box
was 12 Å away from the solute atoms. Chloride ions were added to neutralize the sys-
tem at standard salt concentration (150 mM NaCl). The initial system was minimized for
2000 steps and then heated to 300 K in 200 ps with the protein backbone constrained with
10 kcal·mol−1·Å−2. In the production stage, we performed five 40 ns long simulations in the
NPT ensemble with 2 fs time-step for each system. A total of 200 snapshots were extracted
at an interval of 100 ps from the 20 ns to 40 ns trajectory for calculating. Temperature
and pressure were controlled using a Langevin thermostat with a collision frequency of
1.0 ps−1 and a Berendsen barostat with a pressure relaxation time of 1.0 ps. The particle
mesh Ewald (PME) [42] method was used to treat the long-range electrostatic interactions.
The non-bonded interactions were truncated with a 12 Å cutoff. The SHAKE [43] algorithm
was used to constrain the bonds involving hydrogen atoms. A total of five MD trajectories
were used to calculate binding free energies for each system.

2.2. Hotspot Prediction by ASGB Method

In our present ASGB method, residues within the 8 Å range of the protein–protein
interaction interface were mutated into alanine, and the result was calculated using trajec-
tories extracted between 20 and 40 ns. This method uses alanine scanning with MM/GBSA
to calculate protein–ligand and protein–protein interactions by quantitatively analyzing the
contribution of individual residues. The dielectric constants 1, 3, 5 were used for nonpolar,
polar and charged residues, respectively [30,33,34,37,44]. We calculated the binding free
energy difference between the wild type (x amino acid) and the mutant (a amino acid) in
protein A by the following equation [30,32,36,37,45,46]:

∆∆GAx→Aa

bind = ∆∆GAx→Aa

gas + ∆∆GAx→Aa

sol (1)

where
∆∆GAx→Aa

gas ≈ ∆∆HAx→Aa

gas ≈ ∆∆EAx−B
vdw + ∆∆EAx−B

ele (2)

The ∆EAx−B
vdw and ∆EAx−B

ele are, respectively, the differences in van der Walls inter-
action and electrostatic interaction energies between the alanine mutant and the wild
type in protein B. We used the MM/GBSA method to calculate the solvation component
in Equation (1):

∆∆GAx→Aa

sol = (GAaB
sol − GAx B

sol )− (GAa

sol − GAx

sol ) (3)

where ∆GAaB
sol ∆GAx B

sol ∆GAa

sol and ∆GAx

sol are the solvation free energies of the protein–protein
complex AxB, protein–protein complex AaB, protein Ax and protein Aa, respectively. In
this paper, the protein A and protein B are the S protein and ACE2, respectively, and the
protein Ax and protein Aa represent the S protein before and after the alanine scanning,
respectively. The solvation free energy (∆Gsol) was calculated by:

∆Gsol = ∆Ggb + ∆Gnp (4)

where Ggb and Gnp are the electrostatic solvation free energy and the nonpolar solvation
free energy, respectively. Gnp is given by an empirical solvent-accessible surface area
(SASA) formula:

Gnp = γSASA + β (5)

The γ and β values we used here were the standard values of 0.00542 kcal/(mol·Å2)
and 0.92 kcal/mol.

For a general mutation from amino acid x to y in protein A, we calculated the difference
in binding free energy between two alanine mutations by the relation:

∆∆GAx→Ay

bind ≈ ∆∆GAy→Aa

bind − ∆∆GAx→Aa

bind (6)
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where ∆∆GAx→Aa

bind or ∆∆GAy→Aa

bind is obtained by Equations (1)–(3). In this work, we mainly
discuss the effect of mutated residues in S protein, so the Ax and Ay are the wild type and
the mutants of S protein, respectively.

3. Results and Discussion
3.1. ASGB Analysis for Single Point Mutations in Alpha, Beta, Gamma and Delta

Here, we performed independent MD simulations for different systems and calculated
binding free energy contributions of the mutated residues respectively by using the ASGB
method. The calculated results of binding affinity for interface residues on the wild type
and five mutants are shown in Figure 1. The results were obtained by averaging over
five independent trajectories of each system. We can note that the specific contributions
of N501Y, E484K, L452R and T478K are higher than that of wild type, and the specific
contribution of K417N is lower than that of wild type. The calculated results are consistent
with experimental results. Here, we analyze each mutation according to our calculation
results and structural information.
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3.1.1. N501Y

The N501Y mutation exists in Alpha, Beta and Gamma variants. As shown in Figure 1a,
the binding contribution of N501Y residue (7.7 kcal/mol) is significantly higher than N501
(3.4 kcal/mol). In Table 2, the computational ∆∆G of N501Y is 4.3 kcal/mol, in which the van
der Waals interaction contributed to 3.8 kcal/mol and that is the main reason for the large
binding free energy calculated. According to the local structure in Figure 2, a π–π interaction
was formed between ACE2 residue Y41 and N501Y but not with N501. We consider that the
π–π interaction between Y501 and Y41 is the main reason of the enhanced binding affinity.
Although the calculated value is larger than the experimental data, we believe that such
overestimation is related to the overestimation of the van der Waals interaction energy.
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mutated E484K. The wild-type L452 and mutated L452R. The wild-type T478 and mutated T478K.
The wild-type K417 and mutated K417N.
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Table 2. Calculated binding energy differences between specific single point mutants and the wild-
type SARS-CoV-2 S protein in binding to ACE2 by the ASGB method. The energy values are in
kcal/mol.

Mutation ∆∆Evdw ∆∆Eele ∆∆Egb ∆∆Enp ∆∆Gcal ∆∆Gexp
a

N501Y 3.8 0.4 −0.1 0.3 4.2 1.3
E484K 0.1 84.8 −80.7 −0.1 4.0 0.2
L452R 0.3 32.4 −30.6 0.1 2.2 0.4
T478K 0.9 10.1 −9.7 0.1 1.4 0.5
K417N −0.5 −56.8 54.3 −0.2 −3.0 −0.8

a Experimental values were converted using the relation ∆Gexp = −RTInKD at T = 298K where the KD values
for the wild type and mutant are from [11,19–21].

3.1.2. E484K

The E484K mutation is also reported to enhance the binding affinity of the S protein
to ACE2, and this mutation exists in Beta and Gamma variants. Our calculation result
also shows that the E484K mutation enhances the binding. We notice that the energy
contribution of E484 is −2.2 kcal/mol. and that of E484K is 1.8 kcal/mol., as shown in
Figure 1b. In Table 2, the ∆∆Eele and ∆∆Egb change in E484K mutation and resulted in
an increased binding affinity. The change in electrostatic interaction is mainly due to the
fact that electrostatic repulsion exists between E484 and E35 of ACE2 in the WT, while the
mutant E484K creates electrostatic attraction with E35 (shown in Figure 2).

3.1.3. L452R

The Delta variant spread rapidly all over the world. The L452R mutation was found
in Delta variants, which is considered to be one of the reasons for the accelerating spread
of variants. In Figure 1c, the calculated binding free energy of L452R (2.4 kcal/mol) is
larger than the wild type. In order to explore the specific reasons for this difference, we
show the detailed data of binding free energy in Table 2. The change in the electrostatic
interaction (∆∆Eele + ∆∆Egb) is the main reason for the change in the binding free energy
contribution of L452(R) because the positively charged L452R and negatively charged E35
of ACE2 produce electrostatic attraction, while the WT L452 does not (Figure 2).

3.1.4. T478K

The Delta variant also contains a T478K mutation, and the van der Waals interaction
is the main reason for the change in binding affinity (in Figure 1 and Table 1). Although
lysine is a positive residue, there is no negative residue on ACE2 that closely interacts with
T478K (Figure 2), so the electrostatic interaction (∆∆Eele + ∆∆Egb) changes little. The van
der Waals interaction plays a key role in increasing binding free energy; the van der Waals
interaction of T478K is 0.9 kcal/mol. larger than that of T478.

3.1.5. K417N

The K417N mutation was found in the Beta variant, and it is thought to cause immune
escape [47]. In Table 2, the decrease in electrostatic interaction (∆∆Eele + ∆∆Egb) is the main
reason for the decrease in binding free energy of the K417N complex. Our calculation results
were supported by structural information. We note that the mutant K417N destroyed the
salt bridge that exists between ACE2 residue D30 and K417 (shown in Figure 2). We believe
that this is the reason for the weakening of binding affinity in K417N system.

3.2. Comparison of Results Using Different Methods

In order to analyze these mutations more systematically, we used different methods
(MM/GBSA, ASGB-T, TI and Mutabind2) to analyze the differences in the binding free
energy of these mutations.
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3.2.1. MM/GBSA Method

We calculated wild-type and mutants binding free energy by the MM/GBSA
method [48–50]. A total of 200 snapshots were selected from final 20 ns trajectories at
an interval of 100 ps, and the calculated complex binding free energy is the average of
five independent trajectories (shown in Table 3). According to Figure 3, the results of the
MM/GBSA method are generally overestimates of the ASGB method. Compared with
MM/GBSA method, the data of the ASGB method are closer to experimental results. Al-
though the MM/GBSA method can obtain qualitative calculation results of protein–protein
interaction binding free energy, the quantitative results are not satisfactory. In this view,
the ASGB method is more suitable than MM/GBSA method.

Table 3. Calculated binding energy differences between specific mutations and the wild-type SARS-
CoV-2 S protein in binding to ACE2 using different methods.

Systems ASGB ASGB-T MM/GBSA TI Mutabind2 ∆∆Gexp
a

N501Y 4.2 4.3 8.5 3.1 −0.6 1.3
E484K 4.0 3.7 9.9 1.9 −0.2 0.2
L452R 2.2 3.0 7.3 2.4 0.8 0.4
T478K 1.4 2.2 7.1 2.3 −0.1 0.5
K417N −3.0 −4.2 −5.6 −1.8 −0.6 −0.8

a Experimental values are converted using the relation ∆Gexp = −RTInKD at T = 298K where the KD values for
the wild type and mutant are from [11,19–21]
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by using different methods. The yellow, purple, orange, blue, red and green bars represent the
MM/GBSA method, ASGB-T method, ASGB method, TI method, Mutabind2 method and experi-
mental results, respectively.

3.2.2. ASGB-T Method

In the ASGB method used in this paper, only the effect of a single point mutation
from the WT to alanine is evaluated. In the ASGB-T (ASGB-Total) method [30,33,34,37], we
calculate their complex binding affinity by summing over binding free energy contributions
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of the interface residues, which are shown in Figure 1. Compared with the ASGB method,
the ASGB-T method takes into account the overall impact of residue mutations:

∆∆GAx→Ay

bind ≈∑ ∆∆GAy→a
bind −∑ ∆∆GAx→a

bind (7)

By using the ASGB-T method, the complex binding free energy of mutants is higher
than that of the wild type, and these results are averaged from five independent trajectories
for each complex (shown in Table 3). We can note that among these mutants, the binding
free energy of the n501y complex is the highest (4.4 kcal/mol). In the experimental results,
the contribution of n501y mutation is also the largest among the five mutations. The E484K
mutation was found in Beta and Gamma variants with higher binding affinity than wild
type. In our calculation, the E484K increased the binding free energy contribution with
3.7 kcal/mol, which is overestimated relative to the experimental data. The calculated
∆∆G of the L478R mutation is 3.0 kcal/mol, the T478K’s is 2.2 kcal/mol and K417N’s is
−4.2 kcal/mol. In Figure 3 and Table 3, we can note that our calculated value of these five
mutations are all overestimated by the ASGB-T method, mainly due to the overestimation
of the van der Waals interaction. Compared with the ASGB-T method, the calculated data
of ASGB are closer to the experimental results.

3.2.3. TI Method

In addition, the thermodynamic integration method was also used in calculating
the binding free energy of wild type and mutants. The preparation and equilibration
steps of mutated structures are similar to the above MD simulations with the AMBER-TI
model [51–54]. We set a total of 11 λ windows range 0.0 to 1.0 with an interval of 0.1.
For each window, we ran a 1 ns simulation by using pmemd (CPU) for the equilibration
of the complex. After the CPU equilibration, we performed 20 ns simulations for each
window by using pmemdGTI (GPU). The final result ∆G was obtained based on the TI
gradient (dV/dL) integration from the last 15 ns simulations by using the script from the
Amber tutorial (http://ambermd.org/tutorials/advanced/tutorial9/index.html#analysis
(accessed on 8 March 2022)) (shown in Table 3). In our TI calculation, the contribution of
N501Y (3.1 kcal/mol) is the largest among all mutants that is consistent with experimental
results. The binding free energy values of E484K (1.9 kcal/mol), L452R (2.4 kcal/mol) and
T478K (2.3 kcal/mol) are not different, and the experimental values corresponding to these
mutations are also very similar. Of course, our calculations are often overestimated. The
binding affinity of the K417N mutation (−1.8 kcal/mol) was close to the experimental data
(−0.8 kcal/mol). In addition, although the calculation accuracy of the ASGB method is
slightly worse than that of TI method (as shown in Figure 3), the calculation cost of the TI
method is one order of magnitude higher than that of ASGB method.

3.2.4. Mutabind Method

Recently, there are many works that have been reported for predicting the binding
free energy effects of residues mutation in protein–protein interaction by a machine learn-
ing method, such as PPI, FoldX and Mutabind. In this work, we predicted the effects of
these five mutations by using Mutabind2, which was published in February 2020. We sub-
mitted the relevant information on the website (https://lilab.jysw.suda.edu.cn/research/
mutabind2/ (accessed on 8 March 2022)) and obtained the computational results (in Table 3).
For N501Y, E484K and T478K, the results of Mutabind2 are contrary to the experimental
phenomenon. Machine learning methods may not be effective in dealing with untrained
problems. Due to the limitations of machine learning methods, the method based on a
physical model may be more suitable for this work.

We also performed the scatter diagram of experimental and calculated values of
various methods and the correlation between them (shown in Figure 4). We note that
the correlation value of the TI method is the highest among these methods and that the
Mutabind2 method is the worst, failing to give the correct prediction of direction. The

http://ambermd.org/tutorials/advanced/tutorial9/index.html#analysis
https://lilab.jysw.suda.edu.cn/research/mutabind2/
https://lilab.jysw.suda.edu.cn/research/mutabind2/
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correlations of ASGB, ASGB-T and GBSA methods are quite similar, with the GBSA method
overestimating the relative binding affinity most.
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3.3. ASGB Analysis for Single Point Mutations in Omicron Variants

The SARS-CoV-2 Omicron variant has emerged in many countries and contains
11 mutations on the interface of SARS-CoV-2 RBD/ACE2 [14,16]. According to the re-
ported experimental data, the Omicron variant binds to ACE2 with enhanced affinity
relative to wild type.

Among these 11 mutations, 8 mutations have not been reported in the previous
variants of interest (VOCs). We used the ASGB method to calculate the effect of these eight
mutations on the binding free energy of the complex. The calculation results of the binding
affinity of interface residues on wild type and eight mutants are shown in Figure 5. Here,
we analyze each mutation according to the calculation results and structural information.
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over 5 trajectories separately). (a–h) show the specific binding affinity contributions of interface
residues on S protein for wild type and Y505H, Q498R, Q493K, E484A, G496S, S477N, G446S and
N440K complex.

3.3.1. Y505H

The calculated ∆∆G of Y505H is −2.2 kcal/mol (Figure 5a), and the decreased van der
Waals interaction is −1.5 kcal/mol (shown in Table 4). The aromatic side chains of Y505
participate in the van der Waals interaction with E37 and R393, but Y505 was mutated into
Y505H (Figure 6), which decreased the van der Waals interaction with E37 and R393.

Table 4. Calculated binding energy differences between specific single point mutants (Y505H, Q498R,
Q493K, E484A, G496S, S477N, G446S and N440K) and the wild-type SARS-CoV-2 S protein in binding
to ACE2 by the ASGB method. The energy values are in kcal/mol.

Mutation ∆∆Evdw ∆∆Eele ∆∆Egb ∆∆Enp ∆∆Gcal

Y505H ↓ −1.5 −1.0 0.3 −0.2 −2.3
Q498R ↑ 2.2 61.2 −60.1 0.5 3.8
Q493K ↑ −2.1 62.8 −58.1 0.1 2.7
E484A ↑ −0.1 −37.1 39.2 −0.1 2.3
G496S ↑ 0.7 0.4 −0.5 0.2 0.8
S477N ↑ 0.9 0.1 0.2 −0.1 1.1
G446S = 0.1 0.1 −0.2 0 0
N440K ↑ 0.5 45.5 −44.7 0.2 1.5
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Figure 6. The local interaction structures of the wild type (above figures) and mutants (below figures)
in SARS-CoV-2 S-protein/ACE2 complexes. The wild-type Y505 and mutated Y505H. The wild-
type Q498 and mutated Q498R. The wild-type Q493 and mutated Q493K. The wild-type E484 and
mutated E484A. The wild-type G496 and mutated G496S. The wild-type S477 and mutated S477N.
The wild-type G446 and mutated G446S. The wild-type N440 and mutated N440K.

3.3.2. Q498R

According to Figure 5b and Table 4, the binding free energy contribution of Q498R
(8.9 kcal/mol) is larger than Q498′s (5.1 kcal/mol), and the electrostatic interaction of
Q498R is stronger than that of the Q498 system. This view is also revealed in the salt bridge
between D38 and Q498R is not available in the Q498 system (shown in Figure 6).
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3.3.3. Q493K

The situation of Q493K is similar to that of Q498R, in that the salt bridge between
Q493K and E35 are not existent in the wild-type complex (shown in Figure 6). The difference
in electrostatic interaction (∆∆Eele + ∆∆Egb) is shown in Table 4, which increased the binding
free energy of the complex. We can also note that the difference in van der Waals interaction
is −2.1 kcal/mol, which is decreased after Q493K mutation, while the strong electrostatic
interaction caused the Q493K and E35 to get too close, decreasing the van der Waals
interaction.

3.3.4. E484A

The E484A mutation increased the complex binding free energy for 2.3 kcal/mol
in our calculated data (shown in Figure 5d and Table 4). In the wild-type complex, the
E484 repelled the E35 by electrostatic repulsion, and the higher affinity is due to the
disappearance of electrostatic repulsion between E35 and E484 (Figure 6).

3.3.5. G496S

The van der Waals interactions from the G496 provide lower binding affinity (shown
in Figure 5e and Table 4), and G496 was mutated into G496S (shown in Figure 6), which
increased the van der Waals interaction with ACE2.

3.3.6. S477N

The contribution of the S477N mutation is larger than that of the wild-type S477 by
1.1 kcal/mol (shown in Figure 5f), and the main cause is the difference in the van der Waals
interaction (Table 4). This result is consistent with the experiment result, and the change in
the van der Waals interaction is mainly because S477N contains a longer side chain than
S477 (shown in Figure 6).

3.3.7. G446S

The binding free energy of both G446 and G446S contributes almost little to the SARS-
CoV-2/ACE2 complex (Figure 5g and Table 4). The mutated structure situation of G446S
is similar to G496S’s (shown in Figure 6), and the differences in their binding free energy
contribution are not significant.

3.3.8. N440K

Compared with wild-type system, the residue of N440 was mutated to N440K, which
interacted with E329 (shown in Figure 6), resulting in the stronger electrostatic interaction
between N440K and E329 (Table 4). We think that this is the reason for the increased
contribution of the N440K system.

These mutations (Y505H, Q498R, Q493K, E484A, G496S, S477N, G446S and N440K)
have not been reported in previous Variants of Concern (VOCs). We performed MD simu-
lations and calculated the ∆∆G of these mutations by the ASGB method and demonstrated
the influences of these mutations based on our calculated data at the molecular mechanism
level. We predicted that mutations Q498R, Q493K, E484A, G496S, S477N and N440K would
enhance the binding affinity.

Many effective neutralizing antibodies have been found to bind to RBD. Here, we
analyzed a total of 13 mutations on the RBD interface. These mutations were found in
five VOCs, which may affect the binding of antibodies to the S protein, thus affecting the
effectiveness of the vaccines. We analyzed the effect of these mutations on the binding free
energy of the SARS-CoV-2/ACE2 complex by theoretical calculation, which is helpful in
the design of new antibodies.

4. Conclusions

In this work, we performed MD simulations and calculated the binding free energies
of the S protein to ACE2 for some major mutations (a total of 13 mutations) present in the
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RBD interface region of the S protein in Alpha, Beta, Gamma, Delta and Omicron variants.
Our calculations show that these mutations can enhance the binding affinity of the complex,
except for K417N and Y505H mutations. The calculations provide service for new antibody
design and also provide insight on the molecular mechanism of these mutations, while
revealing the detailed residue-specific interactions that are responsible for the mutational
effect. Moreover, we compared several methods for calculating the mutational effect of
SARS-CoV-2 on binding to ACE2. The TI method is more accurate, but it is also the most
expensive, while the ML method gives the wrong predictions. On the other hand, the
ASGB method provides a good balance in terms of accuracy and efficiency.
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