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Abstract
Many microbial ecology experiments use sequencing data to measure a community’s

response to an experimental treatment. In a common experimental design, two units, one

control and one experimental, are sampled before and after the treatment is applied to the

experimental unit. The four resulting samples contain information about the dynamics of

organisms that respond to the treatment, but there are no analytical methods designed to

extract exactly this type of information from this configuration of samples. Here we present

an analytical method specifically designed to visualize and generate hypotheses about

microbial community dynamics in experiments that have paired samples and few or no repli-

cates. The method is based on the Poisson lognormal distribution, long studied in macroe-

cology, which we found accurately models the abundance distribution of taxa counts from

16S rRNA surveys. To demonstrate the method’s validity and potential, we analyzed an

experiment that measured the effect of crude oil on ocean microbial communities in micro-

cosm. Our method identified known oil degraders as well as two clades,Maricurvus and
Rhodobacteraceae, that responded to amendment with oil but do not include known oil

degraders. Our approach is sensitive to organisms that increased in abundance only in the

experimental unit but less sensitive to organisms that increased in both control and experi-

mental units, thus mitigating the role of “bottle effects”.

Introduction

Paired-sample microbial ecology experiments
Many microbial ecology experiments use amplicon-based sequencing (e.g., 16S rRNA gene
sequencing) to study the dynamics of a microbial community, whose members are typically
grouped into operational taxonomic units (OTUs). A straightforward experimental design uses
control units (i.e., subjects, microcosms, or animals not subjected to the treatment) and pretests
(i.e., measurements of microbial community composition taken before the treatment is applied
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to the experimental units). This two-timepoint, paired-sample design is intended to identify
changes in community composition that are specific to the experimental treatment, rather than
all the changes that occur in the experimental unit, some of which might be irrelevant to the
intentionally applied treatment. For example, aquatic microbial communities transplanted into
microcosms often suffer dramatic changes in community composition on account of the trans-
plantation. These extraneous community composition changes are called “bottle effects”. Over
the course of the experiment, bottle effects are entangled with the effects caused by the experi-
mental treatment [1]. A similar complication can occur in experiments that study animal-asso-
ciated microbiota, where changes in community composition can be caused by, for example,
interactions with experimenters or circulation of a microbe in the animal facility.

If an experiment is performed with many replicates, there are statistical methods that can
make statements about whether the observed changes between the groups were meaningful
with respect to a null hypothesis. In some cases, an experiment is very preliminary or the sam-
ples are so precious that robust replication is not feasible. For example, we intended the test the
effect of crude oil on an ocean microbial community and did not have enough of the sample
material, which was collected on a special cruise, for many replicates. Without sufficient repli-
cations, it is impossible for us to make a statement about the statistical significance of the
results of such an experiment, but we wanted to obtain as much information as possible from
such difficult-to-acquire samples, with the caveat that any conclusion would need a separate,
properly-powered experiment for verification.

Because of the complications in paired-sample experiments in general and our experimental
setup in particular, we aimed to create a method to visualize and generate hypotheses about the
dynamics of microbial communities in paired-sample experiments with few or no replicates.
Most popular tools for analyzing the results of microbial ecology experiments have shortcom-
ings or complications when applied to this particular experimental setup. We review some clas-
ses of these existing tools below.

For convenience, we refer to the four samples in a two-timepoint, two-unit experiment as
“control-before” (control unit, pretest sample), “control-after” (control unit, post-treatment
sample), “experimental-before”, and “experimental-after”.

Existing analytical techniques
Ordination techniques. Ordination techniques include principal component analysis

(PCA), multidimensional scaling (MDS), redundancy analysis (RDA), and canonical analysis
of principal components (CAP) [2, 3]. Although very useful for analyzing and visualizing the
relationships between many samples, ordination techniques are not easy to interpret in the
context of a paired-sample microbial ecology experiment. In an experiment with no replicates,
an ordination plot will only have four points, making it difficult to visually or analytically
extract interesting information about the community’s dynamics.

Clustering techniques. In the context of microbial ecology, clustering techniques like
hierarchical clustering or k-means clustering use a dissimilarity metric to infer which samples
in a data set group together [2]. Clustering techniques are often combined with ordination
techniques and give similar insight. They therefore suffer similar drawbacks when analyzing
the results of paired-sample experiments. In the case of a single paired-sample experiment with
no replicates, there are only four samples, so a clustering technique can only produce a limited
number of analytical outcomes.

Beta diversity and other tests. Statistical tests like ANOSIM [4] and PERMANOVA [5]
are designed to evaluate whether some set of samples in a data set are more similar to one
another than they are to other samples in the data set. In general, rigorous statistical inference
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and machine learning methods require many replicates, which might be impractical for explor-
atory studies. For example, La Rosa et al. [6] calculate that at least 25 samples are needed to
determine if two groups of human microbiome samples have meaningfully different composi-
tions at 90% power.

Indicator species techniques. Indicator species techniques like IndVal [7] are intended to
identify species that especially informative with respect to the ecological community’s compo-
sition or abiotic context [8]. Indicator species techniques treat each sample as an independent
community rather than, as we consider, timepoints from the same community. For example, if
an OTU is rare in the control-before and control-after but abundant in the experimental-before
and experimental-after, an indicator species approach would identify that OTU as important
to distinguishing the experimental and control units, which, although true, does not correctly
reflect that that OTU is probably not affected by the experimental treatment, since it changed
in neither the control or experimental unit.

OTU-by-OTU techniques. There are techniques that can identify OTUs whose dynamics
merit further investigation, even if those OTUs are not abundant enough to appear in a com-
munity composition chart or if there are not enough replicates for statistical inference. For
example, OTUs can be ordered according to their change in relative abundance between the
pretest and the post-treatment sample. However, unintuitive signals, called “compositional
effects”, can arise when standard analytical techniques are used with compositional data sets
like OTU count data [9, 10]. In an aquatic microcosm experiment, for example, a single organ-
ism might bloom in response to the experimental treatment, causing an organism with con-
stant absolute abundance to decrease in relative abundance. The reverse is also possible: an
organism with constant absolute abundance increases in relative abundance when other organ-
isms decrease in absolute abundance.

Opportunity for a distribution-based technique
To incorporate controls and pretests, it is important to be able to meaningfully compare OTUs’
abundances across samples. As discussed above, relative abundances are susceptible to compo-
sitional effects. In contrast, nonparametric analysis, which uses only the ranks of abundance-
ordered OTUs, is robust to compositional effects but loses much of the quantitative informa-
tion encoded in the relative abundances. For example, an arbitrarily large change in the abun-
dance of one OTU can cause arbitrarily large changes in the relative abundances of all OTUs
but will only change the ranks of each OTU by, at most, one. Using ranks presents a tradeoff
between robustness (i.e., each rank changing by at most one) and loss of quantitative informa-
tion (e.g., if the most abundant OTU doubles in abundance, no ranks change). Ranks are also
challenging to use with OTU count data because many OTUs have the same number of counts.

If OTU abundances were distributed in a way that could be reliably modeled, a compromise
between relative abundances and ranks would be possible. For example, if one organism
blooms and all others remain at constant absolute abundance, the overall shape of the distribu-
tion of abundances would change very little. As in an analysis that uses relative abundances,
the blooming OTU would be registered because that OTU would move up in the distribution.
As in an analysis that uses ranks, the unchanging OTUs would remain at the same places in the
distribution even though their relative abundances decreased.

Our method
In this paper, we present an analytical method designed to measure the dynamics of OTUs
across two timepoints, to correct for bottle effects using control units, and to correct for unit-
specific effects using pretests. The method is framed in terms of an abundance distribution
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from macroecology research, the Poisson lognormal distribution, that we found accurately
models the abundance distribution of OTU count data. As a test of the method’s validity, we
show that, in the context of a bioreactor experiment, this method reports that OTUs in micro-
bial communities derived from the same inoculum and subjected to strong but identical condi-
tions have well-correlated responses.

We used our method to identify OTUs in a complex ocean water community, collected off
the Egyptian coast, that respond to amendment with crude oil. Most of the sequences we iden-
tified classified asMaricurvus, Pseudomonas, Alcanivorax,Methylophaga, and Rhodobactera-
ceae. These clades include known oil degraders as well as organisms that other microbial
ecology experiments have suggested may degrade oil. These results demonstrate that our
method will be useful for visualizing the effect of the treatment of interest on all OTUs and for
quantifying dynamic changes in abundance in a paired-sample microbial ecology with few or
no replicates, although properly-powered follow-up experiments would be needed to verify
any of these dynamics.

Materials & Methods

Poisson lognormal distribution
Theory. Noting that many microbial communities are structured by complex ecological

processes, we searched for an ecologically-motivated probability distribution that accurately
models the abundance distribution of OTUs in natural microbial communities. The truncated
Poisson lognormal (TPL) distribution is an attractive candidate. When a value is drawn from
the TPL distribution, a true abundance λ is first drawn from a lognormal distribution (with
scale parameter μ and shape parameter σ). Then a random integer is drawn from a Poisson dis-
tribution with mean λ. If the integer is zero, a new λ is drawn and is used to draw a new integer.

Among the many models of species-abundance relationships (e.g., [11, 12] and references
therein), there is evidence and theory suggesting that fractions of the total niche space allotted
to each organisms are approximately lognormal-distributed [13], and the Poisson distribution
is a straightforward model for converting a continuous value λ into a random number of dis-
crete counts. The Poisson lognormal has been used to model abundance distributions for
plants and animals [14–16] and has been used in at least one study [17] that simulated micro-
bial abundances. In most of these applications, the distribution is truncated at zero counts,
since, in most cases, it is impossible to distinguish if a species is absent or if it present but very
rare; in both cases, that species would present zero counts.

In a microbial ecology context, the TPL framework asserts that the abundances of microbial
species in an environment are lognormal-distributed, that is, that the logarithms of those abun-
dances have a Gaussian distribution. The framework also asserts that sequencing produces an
integer number of reads for each species. The number of sequencing counts for a species with
true abundance λ is drawn from a Poisson distribution with mean λ. The parameter μ is related
to the mean of the abundances of microbial species in that environment (conditioned on the
depth of sequencing). The parameter σ describes the variability of those abundances.

Metrics. Once fit to the OTU abundances in a sample, the TPL distribution provides
transformations from raw OTU counts to two different values. As mentioned above, in the
TPL framework, OTUs’ true abundances λ are assumed to be lognormal-distributed with scale
μ and shape σ. If the Poisson lognormal distribution is an accurate model for OTU abundance
distributions, samples might have differing parameters μ and σ, but the underlying distribution
of (log λ − μ)/σ should be similar across samples. We expect this because if, roughly speaking, λ
is lognormal distributed, then log λ is normally distributed, and (log λ − μ)/σ accounts for the
differences in means and shapes of the normal distribution. An OTU’s number of reads r is the
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maximum likelihood estimator of its true abundance λ, so we define the normalized reads
z� (log r − μ)/σ, which estimates (log λ − μ)/σ.

Given this metric z that can be compared across samples, we looked for a sensible way to
combine these values as a measure of dynamics. To quantify an OTU’s dynamics between the
two timepoints, we define Δz, the change in rescaled reads. This metric is similar to the log
fold change in relative abundance, an application of the more general log-ratio transformation
commonly used with compositional data sets. To show this connection, consider two samples
i 2 {0 = before, 1 = after} from one microcosm, either control or experimental, with the TPL fit
parameters μi and σi. One OTU of interest has counts ri in the two samples. In this case,

Dz � logr1 � m1

s1

� logr0 � m0

s0

¼ logr1
s1

� logr0
s0

þ constant:

For comparison, the log fold change in relative abundance is

log
r1=N1

r0=N0

� �
¼ logr1 � logr0 þ constant;

where Ni is the total number of reads in sample i. If σ0 � σ1, then

Dz � log fold change
s0

þ constant;

that is, Δz and the log fold change are approximately linearly related.
Aside from rescaled reads, the TPL distribution can also be used to transform raw OTU

counts to the value of the cumulative distribution function F, which has the common range
[0, 1] across all samples. Having fit the parameters μ and σ, an OTU with r reads has

FðrÞ � P
r0 �rfTPLðr0 Þ, where fTPL is the probability distribution function for the TPL distribu-

tion. Conveniently, ΔF is defined for all r0 and r1, while Δz and the log fold change are poorly
defined when r0 = 0 or r1 = 0.

Implementation. We implemented the TPL fitting, computation of z and F, and basic
visualizations in an R package texmexseq, which we have posted at CRAN (cran.r-project.org).
Our package is based on the poilog package [18], to which we add convenience functions for
interacting with OTU tables, fitting the distribution to multiple samples, and visualizing Δz
and ΔF.

Bioreactor experiment
Experimental design. We performed a bioreactor experiment to verify that our analytical

method would identify similar dynamics in identically-treated microcosms. Briefly, three iden-
tical anaerobic serum bottles were loaded with sterile anaerobic media, glucose, and anaerobic
sludge from Al Mafraq wastewater treatment plant (Abu Dhabi Sewage Services Company, Al
Dhafrah, Abu Dhabi, UAE). Glucose was the only carbon source. Each bioreactor was incu-
bated at 35°C for 48 hours, at which point the bioreactor’s contents was spun down and the cell
pellet resuspended in fresh media. This process was repeated 7 times. The timepoints analyzed
in this study are the initial inoculum’s community and the bioreactor’s final community (i.e.,
timepoint 7).

Experimental protocol. Inocula were stored at 4°C before starting experiments. Fermenta-
tions were carried out in 150 mL serum bottles with a working volume of 60 mL. Anaerobic
serum bottles were loaded with media, described below, and sludge. The initial biomass concen-
tration for all the three inocula was 10 g/L dry weight matter. Sterile media consisted of 5 g/L
glucose (autoclaved separately from mineral media) and phosphate buffer (0.2 g/L
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Na2HPO4�2H2O and 2.5 g/L KH2PO4) diluted on basal anaerobic media [19]. Media pH was
adjusted to 5.5 with 1 MHCl.

After inoculation, each bottle was crimped using sterile rubber stoppers and flushed with
pure N2 for 2 minutes using sterile 0.45 μm pore gas filters. Bottles were incubated immediately
after flushing. To re-suspend the inoculum, the broth was centrifuged in sterilized containers
at 5,000 g for 5 minutes. The resulting pellets were re-suspended in 60 mL of fresh media. Bot-
tles were again crimped and flushed. Inoculation and media replacement were all performed in
a UV-sterilized laminar flow chamber.

DNA from the bioreactors was extracted with MO BIO Ultra Clean Soil DNA isolation kit
according to the manufacturer’s protocol. Paired-end Illumina sequencing libraries were con-
structed using a two-step 16S rRNA PCR amplicon approach described in Preheim et al. [20].
Libraries were multiplexed and sequenced on an Illumina MiSeq with paired-end 150 bp reads.

16S data processing. Only forward reads were used in the analysis. Primers were trimmed
from the reads by searching for the best-matching position in the read’s first 20 bases, allowing
a maximum of 2 mismatches between the primer sequence and the read sequence. Reads that
did not match the primer were discarded. Reads were demultiplexed by assigning reads to the
best-matching barcode sequence, allowing no more than 1 mismatched base. Reads with no
acceptable barcode match were discarded. Reads were trimmed to 120 bases. Shorter reads
were discarded. Reads with an expected number of errors, as calculated by Edgar & Flyvbjerg
[21], greater than 1.0 were discarded. The sequence data for these experiments are in S1 and S2
Datasets.

Aquatic microcosm experiment
Inoculum collection. Water samples were collected on 12/13 October 2012 aboard MV

Fugro Navigator in the West Nile Delta region of the Nile Deep Sea Fan from a station (29.571°
E, 31.813° N) with a sea floor depth of 1230 m. This work was conducted in BP’s West Nile
Delta Concession as part of a larger survey of Eastern Mediterranean ocean microbiology
described elsewhere [22]. No specific permits were required for collection of these samples.
These field studies did not include the collection of any endangered or protected species. Tem-
perature, salinity, depth, and dissolved oxygen were measured through the water column with
a Valeport Midas+ CTD. Samples were collected with Niskin bottles from four depths selected
in consideration of differences in temperature, salinity, and depth: within the thermocline (50
m), within an area of increased salinity in the water column (250 m), two-thirds of sea floor
depth (824 m), and 20 m above the sea floor (1210 m). Water was removed from the Niskin
bottles and stored in pre-cleaned amber glass bottles at 4°C until the microcosms were set up.
In this paper, we analyze the result of the experiment performed using water from 824 meters
depth.

Microcosm design and sampling. We performed a microcosm experiment to evaluate the
effect of crude oil on the microbial community in those water samples. 2 L of water from each
depth was used for microcosms, 1 L each for a control microcosm and experimental micro-
cosm. Microcosms were incubated at room temperature in amber glass bottles wrapped in tin
foil. The experimental microcosms were treated with 100 ppm v/v crude oil. The oil, Norne
Blend, was selected because we expected it would be similar in composition to oil in natural
reservoirs near the sampling site. When we sampled, there were no wells near the sampling site
that were producing oil.

At 0 and 72 hours after the microcosms were prepared, 100 mL subsamples were extracted
and immediately filtered through a 0.2 μm filter. DNA was extracted from the filters according
to the standard protocol for the MoBio PowerWater DNA Isolation Kit. We amplified a
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subunit of the V4 region of the 16S rRNA gene following the procedure described in Preheim
et al. [20]. Extracted DNA was amplified using custom barcoded primers and sequenced with
paired-end 250 bp reads on an Illumina MiSeq.

16S data processing. Primers were trimmed from the forward and reverse reads by
searching for the best-matching position in the read’s first 20 bases, allowing a maximum of 2
mismatches between the primer sequence and the read sequence. Read pairs without matching
forward and reverse primers were discarded. Reads were demulitplexed by assigning reads to
the best-matching barcode sequence, allowing no more than 1 mismatched base. Reads with
no acceptable barcode match were discarded. Reads were merged by (i) evaluating alignments
that would produce merged reads of 263 ± 5 bases, (ii) selecting the alignment with the greatest
number of matching bases, (iii) assigning consensus bases and quality scores according to
Edgar & Flyvbjerg [21]. Merged reads with more than 2.0 expected errors were discarded. Tax-
onomic information was collected using the RDP classifier [23] and, in select cases, NCBI
BLAST [24]. We searched for chimeras in the data by performing UCHIME with the Broad
gold database [25], UCHIME with the RDP training database (version 9), and de novo
UPARSE at 99% identity [26]. The sequence data for these experiments are in S3 and S4 Data-
sets and at MG-RAST [27] under accession 4685010.3.

OTU calling. For most analysis of the ocean and sludge experiments, we use unique
sequences as OTUs (i.e., these are 100% identity OTUs). For visual clarity, we used 99% de
novo clustering with UPARSE for all samples in Fig 2. In S1 Fig, we called OTUs using multiple
methods. To call OTUs with RDP, we truncated every sequence’s taxonomy at the first level
that has less than 80% bootstrap confidence, and two sequences that have the same truncated
taxonomy are placed in the same OTU. To call reference-based OTUs, we used the Greengenes
reference database [28] (August 2013 97% OTUs) and global usearch [29] with minimum 97%
identity.

Phylogenetic tree. The sequences shown on the tree are the 303 sequences most abundant
in the four microcosm experiments. Sequences were aligned to the Greengenes core set [28]
using Pynast [30]. One sequence (#229) that did not align to the core set was excluded. The
tree was constructed with FastTree [31] and drawn with APE [32].

HMP samples
The Human Microbiome Project [33] samples were downloaded from the 16S rRNA trimmed
data set (HM16STR). Reads from the stool sample (#700014956) and vaginal sample
(#700016101) were trimmed to 200 bp. Only V3-V5 region reads were used.

Results

Disparate dynamics in control and experimental microcosms
Fig 1 shows data from our paired-sample aquatic microcosm experiment. These data highlight
some of the issues mentioned in the Introduction. One of the OTUs (OTU 3) increases to a
high abundance in the experiment-after sample, potentially introducing a large compositional
effect. Furthermore, that OTU’s apparently dramatic dynamics in the experimental microcosm
should be treated with skepticism because OTU 3 also increases in the control unit. In contrast,
another OTU (OTU 63) was not detected in the two control samples or in the experiment-
before sample, but it has a high abundance in the experiment-after sample, suggesting that little
or none of its increase in the experimental microcosm should be attributed to bottle effects.
How should we compare an OTU’s abundances in the four samples? How should we correct
results of the experimental unit with information from the control unit? We were motivated to
develop a method based on the Poisson lognormal distribution to answer these questions.
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Poisson lognormal distribution accurately models 16S abundances
We found that the truncated Poisson lognormal (TPL) distribution is an excellent fit for the
abundance distributions of OTUs from multiple environments (Fig 2). To quantify the quality
of the fit, we conducted an empirical test to see if the differences between the theoretical and
observed abundances can be attributed to chance. For each sample shown in Fig 2, we fit the
Poisson lognormal distribution to the sample’s data, simulated 10 000 datasets (each with a
number of OTUs equal to the number in the observed data) using the fit parameters, and com-
pared the chi-square goodness-of-fit statistic in these simulations to the goodness-of-fit in the
observed data. In all cases, the differences between the theoretical and observed distributions

Fig 1. OTU dynamics and possible bottle effects in a paired-sample experiment. Four histograms are
shown, one each for each sample in the experiment: control-before (above, black), control-after (above, red),
experimental-before (below, black), experimental-after (below, red). Each histogram shows howmany OTUs
(logarithmic y-axes) have what number of associated reads (logarithmic x-axis). No bin is shown for OTUs with
zero counts. The dynamics of two OTUs are shown: black arrows point to the abundance bin for OTUs in the
“before” sample and red arrows point their abundance bins in the “after” samples.

doi:10.1371/journal.pone.0154804.g001
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are attributable to chance (p = 0.76, 0.91, 0.66 for the first three panels in Fig 2), although the
attribution to chance was marginal in the sample obtained from a microcosm after treatment
with oil (p = 0.054; “oiled ocean” in Fig 2). The TPL distribution’s fit is similar when the OTUs
were called with some other common OTU-calling methods (S1 Fig).

Replicate units yield well-correlated results
To check that the TPL distribution can be used to quantify dynamics, we compared replicates
from the bioreactor experiment, which subjects a microbial community to strong selective
pressures. We expected that strong selective pressures would cause dramatic changes in micro-
bial community composition but that these effects would be similar across replicates. Analyti-
cally, this means that we expect that Δz, a measure of an OTU’s dynamics, should be similar
across replicates. Visually, this means that, if the Δz values for all OTUs in two replicates are
plotted against one another, they should fall along the y = x diagonal. In fact, the replicated bio-
reactors show these sorts of well-correlated dynamics (Fig 3). Each plot provides an immediate
summary of the relationship between the dynamics of all OTUs in the four samples in the
experiment.

Fig 2. TPL distribution fits OTU abundance distributions in multiple ecosystems. Probability-probability
plots comparing the empirical cumulative distribution function (horizontal axis) with the theoretical cumulative
probability of a TPL distribution fit to each data set (vertical axis, black solid line). The first ten data points are
marked with vertical dashes: the first dash (furthest lower left) represents the fraction of OTUs that have 1
read, the second dash represents the fraction of OTUs with 2 or fewer reads, and so forth. The dotted black
line indicates a perfect fit of the TPL to the empirical distribution (y = x). The theoretical cumulative probability
of a simple lognormal distribution (red line) is shown to emphasize the quality of the TPL fit. The ecosystems
are ocean water from this study (top left), wastewater sludge from this study (top right), human stool (bottom
left; HumanMicrobiome Project [HMP] sample), and human vagina (bottom right; HMP sample). 99% de
novoOTUs are shown for all samples.

doi:10.1371/journal.pone.0154804.g002
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Identification of known and putative oil-degrading organisms
Having shown that metrics derived from the TPL distribution can be used to quantify dynam-
ics, we analyzed the results of an aquatic microcosm experiment with one control microcosm,
one experimental microcosm, and two timepoints (pretest and post-treatment samples). In this
experiment, ocean water was treated with crude oil to gain insight into the effects of a potential
oil spill in this region. Previous work has shown that, in many aquatic environments, a few spe-
cies (especially in the genera Alcanivorax and Cycloclasticus) multiply to make up the majority
of microbes after crude oil is added [34, 35]. We aimed to identify OTUs in this ecosystem that
respond to amendment with crude oil.

To identify OTUs with suggestive responses to oil, we selected criteria for Δz and ΔF that
would be consistent with a response to oil and not growth due to bottle effects. Specifically, we
considered OTUs whose Δz in the experimental unit was greater than or equal to its Δz in the
control unit minus 0.5. Roughly speaking, this selected OTUs whose abundances increased
more in the experimental unit relative to the control unit. We selected this cutoff criterion
because it was compatible with our expectations about specific responses to oil and also
included some OTUs with finite Δz values (S2 Fig). Analogous to the fold-change cutoffs used
to identify interesting spots on microarrays, this sort of cutoff criterion does not necessarily
OTUs whose dynamics would be considered statistically significant in a well-powered
experiment.

We also considered OTUs whose ΔF in the treatment unit was greater than 0.5 but whose
ΔF in the control unit was less than 0.5. Roughly speaking, this selected for OTUs whose posi-
tion in the TPL distribution moved up past about 50% of other OTUs in the experimental unit
but whose position in the distribution moved down past about 50% of OTUs in the control
unit. A plot of the ΔF values which highlights the OTUs that meet the criteria are shown in S3
Fig. The OTUs that satisfy either the Δz or ΔF criteria are shown in the context of a bacterial

Fig 3. OTUs in replicate units have correlated dynamics. The dynamics of OTUs (circles) in three
replicate bioreactors (replicate 1, x-axis; replicates 2 and 3, y-axes) inoculated with the same material and
subjected to the same conditions. The dotted line (y = x) indicates a perfect correlation: an OTU on this line
would have exactly the same Δz in both replicates, while deviations show differences in dynamics. For
example, in the left plot, OTUs above the dotted line experienced a greater increase in abundance in replicate
2 than in replicate 1 (or, a smaller decrease in 2 than in 1), while OTUs below the line “grewmore” in replicate
2 than in replicate 1 (or, “died less” in 2 than in 1). OTUs with infinite Δz are plotted on the plot’s borders (e.g.,
the points in the lower- right corner of the first plot represent OTUs that have Δz = +1 in replicate 1 and Δz =
−1 in replicate 2).

doi:10.1371/journal.pone.0154804.g003
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phylogeny in Fig 4. They group into five monophyletic clades. Detailed information about the
OTU’s taxonomic classification and dynamics are reported in Table 1.

The OTUs that appear to respond to oil are all members of γ-Proteobacteria (clades A
through D) or α-Proteobacteria (clade E). Among the γ-Proteobacteria, many of these OTUs
correspond to phylogenetic groups that contain known oil degraders: the two OTUs in clade C
are both classified as Alcanivorax, the seven OTUs in clade B are classified as Pseudomonas or
Pseudomonadaceae [36], and the one OTU in clade D is classified asMethylophaga [37, 38].

All but one of the eight OTUs in clade A are classified asMaricurvus. These seven OTUs
align to NCBI entries forMaricurvus nonylphenolicus and Aestuariicella hydrocarbonica. The
first species,M. nonylphenolicus is theMaricurvus type strain and degrades nonylphenol [39],
while the second, A. hydrocarbonica has a 16S sequence highly similar toMaricurvus and
degrades multiple aliphatic hydrocarbons [40].

The OTUs in clade E, which are members of α-Proteobacteria, are classified by RDP as Rho-
dobacteracea, and they align equally well to 16S sequences from Phaeobacter, Roseobacter,
Pelagimonas, and Sulfitobacter spp. Although genus Phaeobacter has no known oil-degrading
species, it may have increased in abundance in other experiments that amended ocean water
with crude oil [41], and Sulfitobacter spp. were abundant in oiled beach sands [35] and in a
large microcosm simulating an oil spill in ocean water [42].

Fig 4. OTUs that respond to oil appear in five clades.On a phylogenetic tree built from the 16S
sequences, organisms potentially responding to crude oil are marked with open circles. OTUs that satisfy the
Δz criteria are marked with blue circles, OTUs that satisfy the ΔF criteria are marked with orange circles, and
OTUs that satisfy both are marked with black circles. Information about the taxonomy and dynamics of these
sequences are shown in Table 1. The five clades (A through E) are labeled, and select taxonomic groups are
labeled to help orient the reader. The Archaea branch is truncated. Scale bar: substitutions per site.

doi:10.1371/journal.pone.0154804.g004
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Discussion

The truncated Poisson lognormal distribution and microbial ecology
As noted above, the TPL distribution has been used to model the abundance distribution of
plants and animals, but to our knowledge this is the first report in which the TPL distribution
is used to model microbial abundances collected in 16S surveys.

When we laid out the logic of the TPL distribution, we described the Poisson distribution as
the link from the continuous-valued true abundance λ to the discrete number of sequencing
reads. However, the number of 16S genes is not identical between organisms, and so our
approach uses a single layer (a stochastic change from λ to the number of reads) to model a
process that actually has two layers (a deterministic change from the organism’s true abun-
dance λ to the true abundance of its 16S gene, and from there to reads). The quality of the TPL
distribution’s fit to 16S abundance data suggests that variations in 16S copy number need not
be separately included to explain the observed abundance distributions. This idea contrasts
against the approach of Kembel et al. [17], who showed that the abundance distribution of
organismal counts N, computed from an estimate of a taxon’s 16S copy number C and its 16S
sequence data counts N × C, fits the lognormal better than does the abundance distribution of
16S counts N × C. Our results suggest that the lognormal is simply a poor fit for discrete 16S
count data. In the ecosystems we studied, compounding the lognormal with a random Poisson
distribution is sufficient to make an excellent fit to 16S OTU abundance data.

Interpreting microbial dynamics
The information in Table 1 helps demonstrate that three quantifications of OTU dynamics—
change in relative abundance, change in rescaled reads z, and change in cumulative distribution
function value F—provide complementary information about the OTUs’ dynamics in our
experiment. In multiple cases, OTUs satisfied both the Δz and ΔF criteria. However, the ΔF cri-
teria tend to identify organisms that are less abundant and have non-finite Δz values. Some
OTUs underwent a small change in relative abundance but a large change in ΔF, indicating the
abundance distribution for 16S sequences is so skewed that that small change in relative abun-
dance is sufficient for it to advance dramatically relative to other OTUs. For example, OTU 63
in clade A experiences a small increase in relative abundance (+0.8%) in the experimental
microcosm, but its ΔF (+0.996 of a possible 1.0) indicates that its small change in relative abun-
dance made it more abundant than most of the other OTUs in the sample. In this case, a small
change in relative abundance for a lowly-abundant OTU can equate to a large ΔF. Conversely,
a large change in relative abundance for a highly-abundant OTU can equate to a small ΔF.

We speculate that the Poisson lognormal’s fit to microbial community structure may have fur-
ther relevance to making inferences about microbial community dynamics. The problem of lim-
ited replicates is not new, and difficulties in replication were probably more pronounced for
microarray studies. One approach to limited replication in microarray studies was to infer the var-
iance in each gene’s expression level, potentially improving the power of gene-by-gene t-tests
without requiring more replicates, using Bayesian hierarchical models [43]. Just as genes with
higher expression level tend to have higher variance, it may be that there are trends in the variance
or dynamics of OTUs’ relative abundances. It may be that the Poisson lognormal distribution
could provide a lens for discovering those trends, which in turn might provide better inference for
uncovering OTUs’ dynamics if they are integrated in a productive way. It is important to again
note that no method, no matter how sophisticated, can obviate the need for sufficient replication.

As mentioned in the Introduction, sequencing count data sets are compositional and are
therefore subject to compositional effects. Without a quantification of overall or absolute
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bacterial abundance, metagenomic 16S datasets can provide evidence—but never proof—that a
measured bacterial species changed in absolute abundance. However, if the Poisson lognormal
distribution accurately models the distribution of OTUs’ abundances, and if most OTUs do
not change in absolute abundance, then the OTUs’ positions with respect to the distribution
may reflect their absolute abundances better than their relative abundances do. A well-powered
experiment comparing absolute abundances and OTU’s positions in the Poisson lognormal
distribution could evaluate this possible relationship.

Possible identification of oil degraders
A simple microcosm experiment, coupled with our analytical technique, identified many OTUs
that may have increased meaningfully in abundance in response to the amendment with crude
oil. OTUs classified as Rhodobacteraceae had Δz values indicating a small bloom, suggesting
that these organisms might be involved in oil degradation without being capable of degrading
oil on their own. On the other hand, the large blooms of OTUs classified asMaricurvus, along
with the recent discovery of the closely-related oil degrader Aestuariicella hydrocarbonica, sug-
gest that these organisms might be relevant to oil degradation in the Eastern Mediterranean.

Table 1. OTUs with dynamic behavior in response to amendment with oil.

criteria Δr.a. Δz ΔF

Clade Classification support Δz ΔF ct ex ct ex ct ex OTU ID

A Maricurvus 0.95 * 0.0330 0.7390 1.382 1.419 -0.0002 0.0041 3

Maricurvus 0.87 * 0.0000 0.0080 n.d. 1 0.0000 0.9958 63

γ-Proteobacteria 1.00 * 0.0000 0.0033 n.d. 1 0.0000 0.9942 107

Maricurvus 0.87 * 0.0000 0.0030 n.d. 1 0.0000 0.9939 111

Maricurvus 0.96 * * 0.0000 0.0013 0.827 1 0.1429 0.9883 119

Maricurvus 0.97 * -0.0002 0.0002 0.115 1 0.0263 0.9292 256

Maricurvus 0.90 * -0.0001 0.0005 0.402 1 0.1649 0.9659 262

Maricurvus 0.94 * 0.0000 0.0007 n.d. 1 0.0000 0.9767 291

B Pseudomonas 1.00 * 0.0027 0.0629 1.137 1.073 0.0140 0.0063 14

Pseudomonas 0.99 * 0.0000 0.0142 n.d. 1 0.0000 0.9961 42

Pseudomonas 0.91 * 0.0000 0.0112 n.d. 1 0.0000 0.9960 53

Pseudomonaceae 0.82 * 0.0000 0.0045 n.d. 1 0.0000 0.9950 88

Pseudomonas 0.99 * 0.0000 0.0025 n.d. 1 0.0000 0.9931 120

Pseudomonas 0.91 * 0.0000 0.0018 n.d. 1 0.0000 0.9913 167

Pseudomonas 1.00 * 0.0000 0.0016 n.d. 1 0.0000 0.9903 174

C Alcanivorax 1.00 * * -0.0001 0.0004 0.402 1 0.1649 0.9599 206

Alcanivorax 1.00 * -0.0007 -0.0001 0.007 -0.143 -0.0143 0.0148 270

D Methylophaga 1.00 * 0.0000 0.0006 n.d. 1 0.0000 0.9739 210

E Rhodobacteraceae 1.00 * * -0.0003 0.0008 -0.167 1 -0.1188 0.9799 104

Rhodobacteraceae 1.00 * * 0.0003 0.0003 1.237 1 0.2935 0.9384 105

Rhodobacteraceae 1.00 * * -0.0002 0.0001 0.115 1 0.0263 0.7678 226

Rhodobacteraceae 1.00 * 0.0000 0.0000 n.d. 1 0.0000 0.6098 288

All OTUs that satisfied the Δz or ΔF criteria are listed. The first three columns show taxonomy. The most specific RDP taxonomic classification with at

least 80% bootstrap support is shown. In the next two columns, asterisks (*) indicate whether the OTU satisfied the Δz criteria, the ΔF criteria, or both.

The next six columns show the changes in relative abundance (Δr.a.), rescaled reads z, and cumulative distribution function F in the control (“ct”) and

experimental (“ex”) units. The value Δz = n.a. is shown for OTUs that had zero counts at both timepoints in that microcosm; Δz = 1 is shown for OTUs

had zero counts before the treatment and more than zero counts after the treatment.

doi:10.1371/journal.pone.0154804.t001
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Uses and limitations for this method
In our experiment, we had enough sample material for a few microcosms, and we could non-
destructively subsample each microcosm through time. Ideally, we would have had access to
much more sample material so we could run many replicate experiments and use standard sta-
tistical approaches to validate any observed bacterial community dynamics. In our constrained
setup, we aimed to mitigate extraneous, confounding effects like time, bottle effects, or contact
with a common set of microbes by incorporating information about the community composi-
tion dynamics from multiple timepoints. Experiments in which subsampling is less onerous
than replications—as in, for example, experiments studying the microbiome of animals in a
facility or experiments studying the effect of a treatment in situ—might benefit from quantita-
tive correction of experimental results using the data obtained from pretests and control units.

We expect that this method might also be applicable to situations beyond the very con-
strained one that originally motivated us. If an experimental setup has many replicates, it may
be that performing rigorous statistical analyses on the Poisson lognormal metrics, rather than
just the relative abundances, yields more useful results. We also expect that the Poisson lognor-
mal distribution might fit data from amplicon-based sequencing of other taxonomic marker
genes, like eukaryotes’ 18S rRNA gene.

Supporting Information
S1 Dataset. Unique sequences from sludge bioreactor experiments. Trimmed, quality fil-
tered, dereplicated sequences.
(FASTA)

S2 Dataset. Count data from sludge bioreactor experiments. Table showing number of times
each sequence appeared in each sample (three replicates, two timepoints each).
(TXT)

S3 Dataset. Unique sequences from oil microcosm experiments. Trimmed, merged, quality
filtered, dereplicated sequences.
(FASTA)

S4 Dataset. Count data from oil microcosm experiments. Table showing number of times
each sequence appeared in each sample (water from four depths, control and experimental
“oil”microcosms, two timepoints each).
(TXT)

S1 Fig. TPL fits OTUs called by different methods. Probability-probability plots comparing
the empirical cumulative distribution function (x-axis) with the theoretical cumulative proba-
bility of a TPL distribution fit to the distribution of OTUs computed using different OTU-call-
ing methods (y-axis, black line). This is same ocean sample as in Figs 1 and 2. The first ten data
points are marked with vertical dashes: the first dash (furthest lower left) represents fraction of
OTUs with 1 read, the second dash represents the fraction of OTUs with 2 or fewer reads, and
so forth. The dotted black line indicates a perfect fit (y = x). The theoretical cumulative proba-
bility of a simple lognormal distribution fit to each OTU distribution (red) is shown to empha-
size the quality of the TPL fit. The methods are unique sequences (i.e., 100% identity OTUs;
top left), 97% reference-based OTUs from Greengenes (top right), de novo 97% OTUs (bottom
left), and genus-level OTUs computed with RDP (bottom right). The empirical goodness-of-fit
test described in the main text yields p = 0.35, 0.40, 0.44, 0.41 for these data.
(EPS)
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S2 Fig. OTU dynamics measured by Δz. Each OTU present in the microcosm experiment
described in the main text is shown. OTUs that meet the Δz criterion described in the text (Δz
in treatment> Δz in treatment − 0.5) are in red. OTUs that meet the criterion and are among
the 304 most abundant sequences in the four microcosm experiments (i.e., those shown as blue
dots in Fig 4) are circled. OTUs with an undefined Δz value in either microcosm are not
shown, while OTUs with infinite Δz values are shown at the border of the figure (e.g., an OTU
with Δz = +1 in the control unit and -1 in the experimental unit would be shown in the
lower-left corner).
(EPS)

S3 Fig. OTU dynamics measured by ΔF. Each OTU present in the microcosm experiment
described in the main text is shown. OTUs that meet the ΔF criteria described in the text (ΔF in
treatment> 0.5; ΔF in treatment< 0.5) are in red. OTUs that meet those criteria and are
among the 304 most abundant sequences in the four microcosm experiments (i.e., those shown
as red dots in Fig 4) are circled.
(EPS)
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