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M A T E R I A L S  S C I E N C E

Mechanism and performance relevance 
of nanomorphogenesis in polyamide films revealed by 
quantitative 3D imaging and machine learning
Hyosung An1,2, John W. Smith1, Bingqiang Ji3, Stephen Cotty4, Shan Zhou1, Lehan Yao1,  
Falon C. Kalutantirige5, Wenxiang Chen1,2, Zihao Ou1, Xiao Su4, Jie Feng2,3, Qian Chen1,2,4,5,6*

Biological morphogenesis has inspired many efficient strategies to diversify material structure and functionality 
using a fixed set of components. However, implementation of morphogenesis concepts to design soft nanomaterials 
is underexplored. Here, we study nanomorphogenesis in the form of the three-dimensional (3D) crumpling of 
polyamide membranes used for commercial molecular separation, through an unprecedented integration of 
electron tomography, reaction-diffusion theory, machine learning (ML), and liquid-phase atomic force microscopy. 
3D tomograms show that the spatial arrangement of crumples scales with monomer concentrations in a form 
quantitatively consistent with a Turing instability. Membrane microenvironments quantified from the nano-
morphologies of crumples are combined with the Spiegler-Kedem model to accurately predict methanol permeance. 
ML classifies vastly heterogeneous crumples into just four morphology groups, exhibiting distinct mechanical 
properties. Our work forges quantitative links between synthesis and performance in polymer thin films, which 
can be applicable to diverse soft nanomaterials.

INTRODUCTION
Morphogenesis—the emergence of structure—occurs across length 
scales and by diverse physical and chemical mechanisms in biological 
systems. Examples include the deposition of diatom frustules (1), 
differential growth during embryonic development (2), and the 
self-assembly of the cytoskeleton (3). A key utility of these approaches 
lies in the ability to generate diverse morphological phenotypes—
and therefore functions—from a fixed set of components. Biological 
morphogenesis has inspired strategies to pattern synthetic crystalline 
“biomorphs” (4, 5), hydrogels (6), and composites (7, 8) at or above 
the micrometer-scale. However, morphogenesis at the nanoscale, 
especially in amorphous soft materials, is not well understood. On 
the one hand, morphology quantification is challenging for these 
systems, because conventional ensemble structural characterization 
methods such as spectroscopy (9) and quartz crystal microbalance 
measurements (10) are not sufficient to characterize the three-
dimensional (3D), nanoscale, and heterogeneous features they can 
exhibit. Recent work, including our own (11), successfully used 
scanning/transmission electron microscopy (S/TEM) tomography 
to reveal the complex inner and outer nanostructure of polymer 
membranes (12–14) and self-assembled block copolymer architectures 
(15). However, these 3D features have not yet been quantitatively 
related to synthesis conditions or local material properties. On the 
other hand, there are many theoretical models for morphogenesis—
for example, based on differential growth, which is a pathway to 
establish macroscopic structure in plants (16) or the digestive sys-
tem (17)—but these tend not to describe complexities that emerge 
when chemical reactions are involved. In general, quantitative 

chemical models concerning molecular reactions far from equilibrium 
for the development of nanoscale structural features are lacking, 
further underscoring a need for experimental quantification of soft 
nanostructures for comparison.

Here, we developed an understanding of nanomorphogenesis in 
our model system of polyamide membranes, along with its effect on 
their permeance and mechanical heterogeneity, by coupling quanti-
tative 3D imaging, machine learning (ML), and theoretical model-
ing. Polyamide membranes are the active layer in most thin-film 
composites used for energy-efficient molecular separations (18, 19). 
These membranes are synthesized via interfacial polymerization, 
which produces films that are macroscopically flat but characterized 
by heterogeneous crumples containing inner voids at the nanoscale 
(12, 19). Crumples are complex and 3D and are believed to play 
important roles in membrane performance (14, 20, 21). Hence, an 
understanding of their nanomorphogenesis is required as a quanti-
tative link between synthesis conditions and performance metrics, 
such as separation efficiency and mechanical robustness. We used 
electron tomography with nanometer resolution to reconstruct the 
3D morphology of a series of polyamide membranes synthesized 
with a range of monomer concentrations. We found pores beneath 
each crumple though not spanning across the membrane. The 
characteristic spatial wavelength of these pores follows a power 
law dependence on the monomer concentrations, a quantitative 
trend expected from a process described by Turing theory (22) and 
suggesting the involvement of a reaction-diffusion instability in 
crumple formation. Then, we identified an array of quantitative 
morphological parameters to describe the irregular 3D nanostructure 
of the crumples. The true membrane surface area and local thick-
ness measured in this way were used as input to predict the perme-
ance of each membrane using the Spiegler-Kedem model, which 
showed exceptional agreement with the experimental measurements. 
Morphological parameters were also used as input for unsupervised 
ML classification with a Gaussian mixture model (GMM), which 
allowed us to classify 151 crumples into just four types: domes, 
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dimples, pancakes, and clusters, regardless of synthesis conditions. 
These morphology groups have distinct local Young’s moduli, resolved 
with nanometer resolution using liquid-phase atomic force microscopy 
(AFM). In short, we quantify cross-talk between synthesis conditions, 
3D nanomorphology, and performance properties in polyamide 
membranes. These concepts may inspire strategies to expand the func-
tionality of soft nanomaterials in general—polymers, vesicles, microgels, 
etc.—through morphogenesis and engineer their 3D nanomorphology 
during chemical reactions, folding, phase separation, or drying.

RESULTS
Variations in monomer concentration produce diverse 
membrane nanostructures
We used low-dose rate (4 to 7 e− Å−2 s−1) electron tomography with 
no staining (11) to minimize beam-induced alteration and reconstruct 
the 3D nanostructure (with a final voxel size of 6.8 Å) of polyamide 
membranes synthesized with a range of monomer concentrations 
and a fixed reaction time (movie S1). Their synthesis by interfacial 
polymerization involves an aqueous phase containing an amine 
monomer [m-phenylenediamine (MPD) here] and an organic phase 
containing an acyl chloride monomer [here, trimesoyl chloride 
(TMC) in hexane] (Fig. 1A and figs. S1 and S2). Upon contact of the 
two phases, MPD can diffuse into hexane more readily than TMC 
into water, so polymerization occurs mostly in hexane near the 
water–hexane interface (23, 24). Interfacial polymerization eventually 
self-terminates because diffusion is blocked by the grown polymer 
film (25). The polymerization reaction is rapid and highly exothermic 
(24, 26). For this reason, conflicting hypotheses involving local 
heating (27, 28), rapid diffusion of amines into the organic phase 
after formation of an incipient layer (21), and generation of nano
bubbles (28) have been proposed as possible mechanisms for crumple 
formation. However, the dominant contributor to morphogenesis 
has up to now been unclear, especially due to a lack of quantitative 
nanostructure analysis across different synthesis conditions. As 
shown in the reconstructed 3D tomograms (Fig. 1B and movie S2), 
variations in the monomer concentration alone (cMPD, 1 to 5 w/v%; 
cTMC, 0.05 to 1 w/v%) lead to distinct nanostructures, ranging from 
crumples of different sizes and areal number densities (Materials 
and Methods, fig. S1, and table S1) to completely interconnected 
networks [Fig.  1B, bottom right, polyamide (5, 0.05)]. Samples 
obtained at a reaction time longer than 1 min do not show a difference 
in morphology (fig. S1B).

Electron tomography differentiates inner voids and pores from 
the polymer volume of the membrane, and these features are present 
in all 151 crumples that we analyzed for the membranes synthesized 
at different conditions (fig. S3). Figure 1  (C and D) shows cross-
sectional views of two types of crumples. The first we call solo 
crumples, consisting of one nodule and generally one bottom pore 
(Fig. 1C and fig. S4, 129 of 135 solo crumples have one bottom pore; 
Np = 1.1 ± 0.4 for number of pores per crumple, Fig. 1E). The sec-
ond we refer to as cluster crumples, composed of merged nodules 
with multiple pores (Fig. 1D and fig. S5, from 16 cluster crumples; 
Np = 9.2 ± 4.8, Fig. 1E). The collocation of the pore(s) and a nodule 
suggests that pore formation and nodule protrusion accompany 
one another (fig. S6A). Here, the pores are not open ones but can be 
seen effectively as a concave region formed because of the bulging 
of a continuous membrane. Pores have been noted in previous SEM 
studies of the back surface of polyamide membrane and also in our 

samples (fig. S6), but have not been resolved simultaneously with 
the top nodule on the front side to confirm their collocation (29). 
We also confirmed that the synthesized membranes are not 
defective by performing permeability tests showing no permeability 
against water (fig. S7).

Pore distributions quantitatively link film morphogenesis 
to a reaction-diffusion instability
The lateral spatial distribution of pores strongly depends on the 
monomer concentrations, and quantitative characterization of this 
relationship provides evidence for a hypothesis that crumple pro-
trusion is associated with a Turing reaction-diffusion instability. In 
particular, Turing’s theory (22) predicts that when two species with 
sufficiently different diffusivities react and diffuse with each other, 
spatial patterns will be generated with a wavelength following a 
power law dependence on the monomer concentrations and diffu-
sivities (30). Previous studies have suggested a connection between 
film morphologies and a Turing-like reaction-diffusion process 
(24, 31), but their lack of structural characterization did not allow 
for quantitative validation. Our comprehensive reconstructions 
across synthesis conditions allow us to test the Turing hypothesis 
quantitatively. In particular, we analyzed the spatial distribution of 
more than 2000 pores in the membranes that we studied using 
Delaunay triangulation (Materials and Methods, Fig. 2, A to D, and 
figs. S8 to S10), from which a characteristic wavelength  (i.e., 
averaged distance d between neighboring pores, see fig. S10) can 
be measured (table S2). Our data are well described by

	​ ~​​​ 1/2​ ​​​ 1/2​ ​m​MPD​ 1/2  ​ ​D​TMC​ 1/4  ​ ​c​MPD​ −1/2 ​ ​c​TMC​ −1/4 ​​	 (1)

where  is the membrane thickness (table S1),  is the polymer den-
sity assuming a linear relationship between polymer density and 
degree of cross-linking (19, 32), mMPD is the mass fraction of MPD 
in membranes (Materials and Methods and table S3), and DTMC ≈ 
10−9 m2/s (31, 33) is the diffusion coefficient of TMC in hexane. 
Equation 1 is the mathematical form expected from a Turing 
reaction-diffusion process (for a complete derivation, see Materials 
and Methods). As shown in Fig. 2E, our experimentally measured  
for the membranes relates to monomer concentrations following 
Eq. 1, validating that the main trend behind of the pore and crumple 
distancing could be captured by a reaction-diffusion instability. The 
corresponding interfacial polymerization time , given an MPD 
diffusion coefficient (31) DMPD, is estimated by

	​  = ​ ​​ 2​ ​(2)​​ −1​ ​D​MPD​ −1/2 ​ ​D​TMC​ −1/2 ​ ​	 (2)

to fall in the range of 1 to 10 s, which is consistent with the reaction 
time reported in the literature (23).

We also provide evidence against earlier hypotheses that mem-
brane crumpling is dominated by hydrodynamic phenomena. For 
example, spatial patterns can also develop in thin liquid films be-
cause of Rayleigh-Bénard or Bénard-Marangoni instabilities (34). 
Onset of these instabilities requires that the critical Rayleigh 
number (Ra, comparing buoyancy-driven convective thermal trans-
port to diffusive thermal transport) or the critical Marangoni num-
ber (Ma, comparing interfacial tension gradient-driven transport to 
diffusive thermal transport) exceeds 660 to 1700 or 50 to 80, respec-
tively (35). In our system, Ra ≈ 10−12 and Ma ≈ 10−1 (Materials and 
Methods), which are far too small to induce either instability. Other 
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previous work has shown that polymer nanofilms can develop 
structure due to, for example, a thermal gradient to form nano-
pillars at a molten polymer film (36), acoustic phonons (37), or 
periodic interfacial thermocapillary stress (35), but these mecha-
nisms involve no molecular reactions and thus are not applicable to 
our system.

A high areal density of pores is associated with formation of 
cluster crumples over solo ones during synthesis (Fig. 3A). To illus-
trate this, alongside whole-membrane views (Fig. 3, B and C), we 
highlighted clusters in light brown over the pores they envelop 
(Fig. 3, D and E). As the local areal number density of pores increases 
[from (1, 0.1) to (1, 1) samples], clustering of multiple adjacent nodules 
into a single crumple is facilitated by proximity (Fig. 3A and fig. 
S11). Note that the crumple size normalized by the number of pores 

underneath otherwise does not depend on the local areal density as 
shown in fig. S11. Cluster crumples exhibit phenomenologically 
larger sizes than solo crumples only because they are effectively 
multiple crumples merged during growth. Meanwhile, the growth 
of the crumples can consume MPD and TMC locally and rapidly 
(24,  26,  38), which may cause the spatial heterogeneity of the 
concentrations across the polymer film, resulting in the crumple size 
heterogeneity. On the basis of the Voronoi tessellation of pore posi-
tions (Fig. 3, F and G, and fig. S12), the local areal number densities 
of the pores underneath clusters are higher than those of solo crum-
ples (Fig. 3, H and I). The areal number density of pores is controlled 
by the monomer concentrations (Fig. 3, J and K), suggesting a multi-
level diversification of 3D nanostructures in polyamide membranes: 
The monomer concentrations dictate the spatial patterns of pores as 

Fig. 1. Tomographic reconstruction of diverse 3D membrane nanostructures produced by variations in the monomer concentrations. (A) Interfacial polymerization 
of MPD and TMC produces crumpled polyamide membranes. (B) Full 3D reconstructions of polyamide membranes colored according to the voxel grayscale intensity. 
MPD and TMC concentrations are given as (cMPD, cTMC) in w/v%. The size of bounding box in (B) is 683 nm by 683 nm (width × length); the height is to scale. (C and D) Repre-
sentative examples of (C) a solo crumple and (D) a cluster crumple from the polyamide (1, 1) sample including (top left) 3D reconstructed volumes with void(s) rendered 
in purple, (middle left) the z-slice of the crumple base, (bottom left) a projected view of the pore(s), and (right) z-slices of the reconstructed tomograms. (E) Solo and 
cluster crumples are differentiated by the number of pores at the base of the crumple (Np: 1.1 ± 0.4 versus 9.2 ± 4.8, respectively). Scale bars, 50 nm.
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predicted by Turing’s theory, and their density determines the 
emergence of cluster versus solo crumples.

Relating nanomorphology to membrane permeances
Polyamide membranes were observed to consist of a flat region 
together with regions with protruding crumples, with the latter 
relatively increasing the effective membrane surface area. The largest 
increase in the total surface area of the membrane due to crumpling 
(152%) was observed for polyamide (2, 0.05), where crumples take 
up 75.3% of the 2D membrane surface area (Fig. 4A and fig. S13). In 
addition, the local membrane thickness (Fig. 4, B to D) determines 
the solvent permeation path length (11), which is another morpho-
logical parameter that we use in predicting permeances.

From an application standpoint, such a thorough description of 
membrane surface morphology is of great importance for under-
standing their separation performance. For example, we found that 
by using the true surface area and local thickness revealed by to-
mography, along with the membrane’s degree of cross-linking as 
input for the Spiegler-Kedem model (39), we can predict experimental 
membrane permeance with high accuracy. We show this for 
membranes synthesized with a range of MPD/TMC concentration 
ratios. Morphological properties were accounted for via calculation 
of local thickness for both crumpled and flat regions (Fig. 4, E and F, 
and fig. S14) and their surface areas. Because the local thickness 
variation is less than 10% for each membrane sample (table S1), we 

used the averaged value of it to represent the membrane thickness. 
The degree of cross-linking for the membranes [determined by x-ray 
photoelectron spectroscopy (XPS); fig. S15] for synthesis condition 
was incorporated to model density changes using literature values 
(19). As shown in Fig. 4G, the resulting model of methanol permeance 
matched experimental results well (SD of residual permeance 
was 0.64 liters m−2 h−1 bar−1 (LMH/bar). Variations in membrane 
morphology were found to account for 49.3% of modeled permeance, 
with the remainder being variation of material properties (fig. S16A). 
In addition, the model fit was notably enhanced when experimental 
permeance was calculated with the true total surface area (determined 
by our morphology quantification) compared to the conventional use 
of the apparent, projected surface area (fig. S16B). Estimation of true 
membrane surface area more accurately approximates the effective area 
of a polyamide membrane. We reveal that quantitatively combined 
understanding of the morphological and materials properties of 
polyamide membranes is necessary for a physically relevant estimation 
of permeation performance. Our use of morphological parameters 
precisely measured from 3D imaging instead of bulk characterizations 
can be potentially used to correct or develop permeance models.

ML sorts crumples into “morphology groups” with distinct 
mechanical properties
Despite their apparent heterogeneity, solo crumples can be auto-
matically and robustly sorted into just three subgroups based on 

Fig. 2. Spatial patterns of membrane pores are quantitatively tied to monomer concentrations. (A to C) Workflow of pore pattern wavelength analysis using polyamide 
(5, 0.05) as an example. (A) Generation of the pore distribution map using the tomogram (fig. S8A), in which the centroid of each pore is marked as a black dot. The pore 
distribution maps from other membranes are available in fig. S8B. (B) Delaunay triangulation of pore positions, generating a mesh in which the length of each mesh line 
(examples labeled as red, purple, and orange lines) measures d. (C) Scatter plot of the relative positions of neighboring pores [defined by d and angle , labeled in (B) and 
(C)] from the whole tomogram (fig. S8B). The colored lines (red, purple, and orange) in (C) correspond to the lines in (B). (D) Corresponding polar kernel density plot of 
relative pore positions obtained from (C), showing a clear ring pattern. Its radial profile measures the characteristic wavelength  (fig. S10 and table S2). The minimum and 
maximum values of the color bar are 0 and 2.8 × 10−5, respectively. (E) Experimental results (symbols) compared to a linear fit (solid line) based on Eq. 1. The fitted slope 
is 1.71 × 10−4 kg1/4 m–1/4. Error bars represent SDs of the distance histograms in fig. S10. Statistical analysis was done by two-tailed, two-sample unequal variance t test. 
The t test and a weighted linear fitting confirmed the statistical significance of data (see Materials and Methods for more details). Scale bars, 200 nm.
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morphometry analysis. Streamlining such a process for irregular 3D 
shapes is not straightforward, especially since it is hard to identify 
geometric descriptors that sufficiently represent the shape. We 
overcame this challenge by developing an ML-based procedure to 
identify the most important morphological quantities. First, follow-
ing our previous work (11), we converted the surface profiles of the 
135 solo crumples into a mesh of 3-nm2 triangles, from which we 
collected statistics on local Gaussian curvature (G), mean curva-
ture (H), curvedness, shape index, and the fractions of tip, tube, valley, 
and saddle elements across the surface (Materials and Methods, 
Fig. 5A, and figs. S4 and S17). In parallel, crumple height, surface 
areas, volumes, and local thickness (the complete list of shape 
descriptors in table S4 and fig. S18) were extracted from the recon-
structed tomographs. All these shape descriptors are applicable to 

an arbitrary 3D structure, without fitting to regular shapes such as 
spheres, ellipsoids, or polyhedra.

Equipped with a much higher dimensional parameter space than 
our previous work (11), we first used an ML-based random forest 
model to determine the eight most important shape descriptors 
(Materials and Methods and fig. S19), all of which are related to 
local crumple curvature. Next, we used principal component 
analysis (PCA), which requires no prior judgment, to project these 
eight descriptors into PC space (Fig. 5B) (40). The variances of the 
first two PCs are 85.4 and 7.7%, respectively, demonstrating suffi-
cient dimension reduction while capturing the dominant features 
(Fig. 5C). These PCs were used to sort the solo crumples into three 
groups following an unsupervised, ML-based GMM. The three 
groups—hollow hemispherical domes, elongated but “pinched” 

Fig. 3. Synthesis-driven clustering of crumples. (A) Schematic illustrations of solo and cluster crumple formation depending on the distance between neighboring 
pores, d. (B and C) Projection TEM images and (D and E) corresponding pore maps with clusters highlighted in light brown for the polyamides (1, 0.1) and (1, 1). Location 
of pores and boundary of clusters are obtained from tomograms. (F and G) Corresponding Voronoi representations of pore distribution maps colored according to the 
Voronoi cell area. Voronoi cell area ranges for polyamides (1, 0.1) and (1, 1) are (583 to 2.37 × 104) nm2 and (257 to 6.13 × 103) nm2, respectively. (H and I) Local areal number 
density of bottom pores (inverse of Voronoi cell area) normalized by the average areal number density of the bottom pores in each synthesis condition. The log-normal 
fittings in (H) and (I) are to guide the eye. (J and K) The local areal number density of the pores as a function of (J) cTMC with fixed cMPD (1%) and (K) cMPD with fixed cTMC 
(0.05%), showing that the pores underneath cluster crumples are denser than those of solo crumples. Statistical analysis was done by two-tailed, two-sample unequal 
variance t test. The t test and a weighted linear fitting confirmed the statistical significance of data (see Materials and Methods for more details). Scale bars, 200 nm.
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dimples, and flat pancakes (Fig. 5, D to F, and fig. S20)—are present 
in all but the network membrane sample [polyamide (5, 0.05) in 
Fig. 1B]. Radar charts of the percentages of tip, tube, valley, and 
saddle surface elements in the three crumple types (Fig. 5, D to F, 
bottom) show high consistency across different membranes. Domes 
always have tips (70 to 80%) as a major surface element, dimples 
have intermediate levels of tips (40 to 50%) and tubes (20 to 30%), 
and pancakes have mostly tubes (40 to 50%). The pervasiveness of 
these morphology groups across synthesis conditions shows that 
our approach is a reliable way to describe membrane morphology, 
which we can then relate to the mechanical heterogeneity of 
membranes (see below). However, the fractions of all four crumple 
groups (including clusters, Fig. 1, C to E, and the three groups of 
solo crumples) in a membrane do depend on the monomer concen-
trations. As shown in Fig. 5G, we applied the morphology grouping 
workflow to four membrane samples, which show distinct fractions 
and therefore additional synthetic control over morphology (figs. 
S21 and S22). We confirmed the reproducibility of our quantitative 
analysis by conducting the same analysis with the samples synthe-
sized from different batches (fig. S23). While we demonstrated that 
the thickness and surface area of the membranes determine the 
permeance performance, we foresee that our quantification of the 
crumple morphology could allow studies on their possible impacts on 
solute-membrane interaction and thus the performance regarding 
solute rejection, selectivity, and even fouling.

The morphology groups identified by our ML analysis are also 
distinguished by the mechanical microenvironments they present, 
which is an important consideration given that membranes must 
endure high hydraulic pressures in reverse osmosis and nanofiltration 
(19), whereas in the past polyamide membranes have been consid-
ered to have a single global modulus. To show this, we used liquid-
phase AFM to map out the topography and mechanical response of 
polyamide membranes immersed in water simultaneously for the 
first time (Fig. 6A). A representative AFM height map of the (2, 0.05) 
polyamide membrane (Fig. 6B) shows a heterogeneous nanostructure 
consistent with our TEM data. The AFM tip can simultaneously be 
used to measure force-indentation curves with 7.8 nm by 7.8 nm 
lateral resolution and thereby determine a local apparent modulus 
(Materials and Methods) (41). Note that due to the nanoscale rough 
features exhibited by the membranes and the possibility of bending 
and flexing of the features, AFM mechanical property test may have 
a technical difficulty in decoupling mechanical responses from 
topography properties. Thus, we refer to the modulus values we 
obtained as apparent modulus in this study. The membrane 
morphologies are not affected by immersing in water or swelling as 
shown in comparative AFM analysis and liquid-phase TEM imaging 
(figs. S24 and S25), which is likely due to the high cross-linking den-
sity of the membranes. Figure 6 (G to J) shows that there is nanoscale 
heterogeneity in the apparent modulus map for all four types of 
crumples. However, the average crumple moduli are consistent 

Fig. 4. Quantitative relationship between nanomorphology and methanol permeance. (A) Left: 3D reconstructed volume of polyamide (2, 0.05) to measure the total 
surface area of the membrane and (A, right) the decoupled surface area of the flat region (black). (B) Representative crumple showing the measurement of local thickness 
at each voxel of the membrane, which is defined as the size of the largest sphere that contains the voxel and remains within the bounds of the membrane (see dotted 
yellow circles). (C) Corresponding z slices of the crumple at a given height colored to the local thickness values. (D) Corresponding histogram of local thickness as a function 
of height. Minimum and maximum values of the color bar are 0 and 770, respectively. (E) Local thickness of the crumples and (F) surface areas (see fig. S13) as a function 
of the concentration ratio of MPD to TMC. From left to right: synthesis conditions (cMPD, cTMC): (1, 1), (1, 0.1), (1, 0.05), and (2, 0.05), respectively. (G) Experimental measurements 
and theoretical prediction of methanol permeance of the membranes. Scale bar, 20 nm.
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within morphology groups but differ among them (Fig. 6K): The 
average apparent modulus follows an ascending trend when the 
crumple type varies from dimples, domes, clusters to pancakes 
(0.56 ± 0.45, 0.57 ± 0.33, 0.90 ± 0.58, and 0.97 ± 0.58 GPa, respectively). 
These values are on the same order of magnitude as bulk measure-
ments (42, 43) and now mapped with nanometer resolution. Clusters 

have about 60% higher apparent modulus than domes. Dimples 
have the smallest apparent modulus, which can be attributed to the 
extended yet partially collapsed shapes, whereas pancakes mostly sit 
flat with the highest apparent modulus. The modulus AFM mea-
surements show that mechanical heterogeneity exists both on the 
nanometer scale within a single crumple and across different crumple 

Fig. 5. ML-based nanomorphology grouping of crumples. (A) Extraction of shape descriptors on the single-crumple level. From left to right: the segmented volume of 
a representative crumple, a zoomed-in view of the triangular mesh surface, and the same mesh colored according to different local shape descriptors. (B) Shape descriptors 
projected onto the space of the first two principal components (PCs). Tip, tube, valley, and saddle descriptors are the fractions of these surface elements over the crumple 
surface (defined in fig. S17B). (C) Distribution of the solo crumples projected onto the space spanned by the first two PCs. Color represents the grouping based on a 
GMM. The colored regions are confidence ellipsoids of the GMM with sigma = 1, 2, and 3. (D to F, top) Representatives of the three solo crumple morphology groups: 
(D) domes, (E) dimples, and (F) pancakes. (D to F, bottom) Corresponding radar plots of the fractions of the surface elements (fTip for tip, fTube for tube, fValley for valley, and 
fSaddle for saddle) for each type of solo crumples (different intensities of gray lines correspond to a different synthesis condition). (G) Pie charts of the four crumple types 
of the polyamide membranes synthesized at different monomer concentrations.
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groups, suggesting that synthetically manipulating the relative frac-
tions of these four groups serves as a knob to control the mechanical 
robustness of polyamide membrane in filtration applications.

DISCUSSION
We used quantitative imaging to understand nanomorphogenesis, 
including its mechanism and relevance to function, in a model but 
also industrially relevant soft materials system: polyamide mem-
branes. In doing so, we provide the first quantitative support that 
crumples protrude under the influence of a reaction-diffusion insta-
bility, which determines their areal density in a synthesis-dependent 
manner. This revelation will aid in predictive design of membrane 
nanostructures—and therefore performance—by varying the diffu-
sivity, concentration, reactivity, and size of the reactants. It also 
invites future work in interfacial polymerization systems with other 
geometries, such as emulsion polymerization schemes used to pre-
pare drug-release microcapsules with morphological and chemical 
heterogeneity. Our ML workflow to assemble and condense an 
array of quantitative shape descriptors can be applied to a broad 
range of amorphous and irregular materials, such as microphase 
separated polymers and bicontinuous metals (44, 45). Our imaging 
and analysis methods and the nanomorphogenesis concept can 
similarly be used in other systems, such as conjugated polymers and 
composites with different packing morphologies (e.g., nanowhisker 
and nanoribbons) (46, 47) that have distinct failure modes in flexible 
electronic and mechanical devices, and nano- or microplastics (48) 

whose shape could potentially determine their harmfulness to 
humans. We foresee that our work opens a door to using the 
middleman of nanostructure to quantitatively and mechanistically 
link nanomorphologies and functions.

Exciting future improvements can be implemented on both the 
imaging and analysis sides. For example, combining electron to-
mography with liquid-phase TEM (49) could make it possible to 
capture continuous movies of nanoscale morphogenesis during 
the reactions. In addition to the ML-based analysis presented in this 
work relying on shape descriptors as inputs, it could be greatly 
advantageous if one could use the reconstructed volume itself as 
inputs for automated morphology analysis. Coupling with advance-
ments in EM and data science, nanomorphogenesis can become an 
emerging theme of understanding and designing soft materials.

MATERIALS AND METHODS
Chemicals
Cadmium chloride hydrate (99.998%, CdCl2·xH2O, x ≈ 2.5; Alfa 
Aesar), ethanolamine (>98%; Sigma-Aldrich), MPD (99%; Sigma-
Aldrich), 1,3,5-benzenetricarbonyl trichloride (also known as TMC; 
98%, Sigma-Aldrich), molecular sieves (3 Å, 1- to 2-mm beads; Alfa 
Aesar), hydrochloric acid (36.5 to 38.0%, HCl; Macron), polysulfone 
film (PS35, Sepro Corporation), potassium hydroxide (KOH), 
hexanes (99.9%; Fisher Chemical), isopropyl alcohol (IPA), and 
methanol (99.9%; Fisher Chemical for synthesis, and high-performance 
liquid chromatography (HPLC) grade, Fisher for permeance test) 

Fig. 6. Crumple morphology groups have distinct nanoscale mechanical heterogeneity. (A) Schematic illustration of liquid-phase AFM measurement of a polyamide 
membrane sample immersed in water. (B) 3D-rendered AFM topography image of polyamide (2, 0.05). (C to F) Representative 3D-rendered AFM topography for representative 
crumples belonging to the dome, dimple, pancake, and cluster groups. (G to J) 3D-rendered apparent modulus maps for two typical crumples of each group. From left to 
right: dome, dimple, pancake, and cluster. Force-indentation curves were recorded from the area spanned by a crumple with a pixel size of 7.8 nm by 7.8 nm, and then 
the apparent modulus was calculated from the force curves (details in Materials and Methods). (K) Apparent modulus obtained from (G) to (J). The box range and middle 
horizontal line are SD and mean value, respectively. Scale bars, 200 nm in (B) and 50 nm in (C) to (J).
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were used as received. Approximately 225-g molecular sieves were 
baked at 110°C in a glass jar for 1 day and then stored with hex-
ane (1 liter). Water used in this study is nanopure water processed 
by a Milli-Q Advantage A10 system (18.2 megohm·cm at 25°C). 
All glassware was cleaned with a base bath (saturated KOH in 
IPA), followed by an acid bath (1 M HCl), thoroughly rinsed with 
water, and dried with nitrogen gas. Cadmium chloride hydrate, 
MPD, and TMC were carefully stored in a desiccator to prevent ex-
posure to moisture, which is important for reproducible membrane 
synthesis.

Polyamide membrane synthesis
Polyamide membranes were synthesized as described previously 
(19). We used porous sacrificial support layer used to synthesize 
membranes, which enable precise control of the polyamide layer 
formation and formation of ultrathin polymer compared to poly-
amide membrane prepared on conventional support membranes 
(e.g., polysulfone) having rough and low-porosity surface. A sacrifi-
cial support layer of cadmium hydroxide [Cd(OH)2] nanowires was 
prepared by sequentially adding aqueous solutions of CdCl2·xH2O 
(50 ml, 4 mM) and ethanolamine (50 ml, 2 mM) to an Erlenmeyer 
flask (250  ml). The solution was stirred with a Teflon-coated 
magnetic stir bar (2 cm long) at 500 rpm at room temperature for 
15 min and turned cloudy. The polysulfone substrate (6 cm by 6 cm), 
having been stored in water for 12 hours, was fixed on a glass filter 
funnel (3.8 cm inner diameter) connected to a filtering flask, which 
was connected to a vacuum pump (KNF, UN726.3 FTP). The poly-
sulfone substrate was washed by filtering 20 ml of methanol, fol-
lowed by filtering 50 ml of water under vacuum. The solution of 
Cd(OH)2 nanowires was filtered across the polysulfone substrate 
with a vacuum pressure of −67 kPa. An aqueous solution of MPD 
with the desired concentration (cMPD, from 1 to 5 w/v%) was then 
gently transferred onto the nanowire-coated polysulfone using a 
10-ml micropipette and filtered with a vacuum pressure of −67 kPa. 
The filtering was stopped once the Cd(OH)2 nanowire layer was 
just wet with the MPD solution. Hereafter, we will use % to desig-
nate only weight per volume percent (i.e., gram per milliliter, w/v%). 
A TMC solution in hexane with the desired concentration (cTMC, 
from 0.05 to 1%) was gently transferred onto the polysulfone sub-
strate. Interfacial polymerization initiates immediately upon con-
tact of the MPD and TMC solutions. After 60 s, the TMC solution 
was gently removed using a micropipette and then pure hexane 
(10 ml) was added to rinse away excess TMC. This rinsing step was 
repeated two more times. Immediately afterward, the polysulfone 
substrate covered with the synthesized polyamide membrane was 
placed in a water-filled petri dish (10 cm in diameter). The polyamide 
membrane separates from the polysulfone substrate and floats at 
the air-water interface. The water in the petri dish was then replaced 
with a dilute HCl solution (10 mM) using a micropipette. The poly-
amide membrane was kept floating on the dilute HCl solution 
overnight to remove any residue of the Cd(OH)2 nanowires. The 
HCl solution was then replaced with water five times before the 
membrane was scooped onto a carbon film–coated TEM grid 
(Electron Microscopy Sciences, CF400-Cu). Note that the membranes 
are overall flat on the TEM grid without wrinkles or cracks intro-
duced during the transferring process from liquid to TEM grids. 
This is consistently confirmed in TEM (figs. S1, S2, and S23), SEM 
(fig. S6), and AFM (Fig. 6B and fig. S14), all samples of which follow 
the same sample preparation procedure of first etching Cd(OH)2 

sacrificial layer and then scooping the membrane using a solid 
substrate. The membrane was dried in air for TEM imaging.

Chemical characterization of polyamide membrane with XPS
Free-standing membranes were transferred to silicon wafers, and 
XPS (Kratos Axis) was performed using an Al K- X-ray (source 
energy of 1486.6 eV). All spectra were collected at a pass energy of 
160 eV and at an energy step size of 1 eV. A linear-type background 
subtraction was applied to the photoemission lines. The degree of 
cross-linking was calculated from the Os1 and Ns1 portion of the 
photoemission spectrum using the equations below (19)

	​ Os1 / Ns1 = ​  (3X + 4Y) ─ (3X + 2Y) ​​	 (3)

	​ DOC = ​   X ─ X + Y ​ × 100%​	 (4)

where Os1 and Ns1 are the integrated peak areas for Os1 and Ns1, 
respectively. X and Y are the number portion of cross-linked and 
linear structures, respectively. DOC is the degree of cross-linking. 
The mass fraction of MPD in a membrane, mMPD, was estimated 
using the equation below

	​​ m​ MPD​​  =  X ​m​ MPD,network​​ + Y ​m​ MPD,linear​​​	 (5)

where mMPD, network and mMPD, linear are mass fractions of MPD in 
cross-linked and linear structures, respectively.

Polyamide membrane imaging by TEM
A JEOL 2100 Cryo TEM at an acceleration voltage of 200 kV was 
used for TEM imaging of the polyamide membranes. Low electron 
dose rates (4 to 7 e− Å−2 s−1) were applied using spot size 3 to 
minimize beam-induced alteration. For tomography, we prepared 
six polyamide membranes, with cMPD and cTMC systematically varied: 
cMPD of 1, 2, or 5% with a fixed cTMC of 0.05%; cTMC of 0.05 or 0.1% 
with a fixed cMPD of 1%; and cMPD of 2% and cTMC of 0.1%. Note that 
the two monomers were shown to have a competing effect on 
membrane nanomorphology in our previous work, by scaling the 
morphological parameters obtained from 2D TEM images as a 
function of the monomer concentrations or the concentration ratio 
(50). Thus, we choose six conditions (three with varied cMPD at a 
fixed cTMC of 0.05%, two with varied cTMC at a fixed cMPD of 1%, and 
one with cMPD of 2% and cTMC of 0.1%) to study the effect of mono-
mer concentrations in 3D structure of crumples in this study. These 
six membranes also exhibit individual and separable crumples, 
which allow for a unified analysis framework for quantitative 
comparison. For each polyamide film, a total of 61 tilt images were 
acquired over a tilt range of −60° to +60° with an angle increment of 
2° (fig. S2). Each image was collected with an exposure time of 1 s, 
resulting in a dose per image of 4 to 7 e− Å−2. The sample was set to 
its eucentric height at each tilt angle manually, followed by a defocus 
of −2048 nm to improve contrast, and the same defocus was used 
throughout all tilt series acquisition. TEM images were aligned and 
assembled using the patch tracking module in the open-source soft-
ware IMOD 4.9.3 (University of Colorado, http://bio3d.colorado.edu/) 
(51). After the alignment, the tomograms of these samples (Fig. 1B) 
were generated using the Model-Based Iterative Reconstruction (MBIR) 
algorithm with diffuseness of 0.3 and smoothness of 0.2 (43).

http://bio3d.colorado.edu/
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Polyamide membrane imaging by SEM
A Hitachi S4800 High-Resolution SEM was used for SEM imaging 
of the polyamide membranes. A small Si wafer (5 mm by 5 mm) was 
used as the SEM sample substrate, which was first cleaned with 
water, acetone, and isopropanol, and then treated with oxygen plasma 
for 1 min. For the top surface sample, we scooped the membrane 
floated on the water surface with the Si wafer. For the bottom surface 
sample, the Si wafer was flipped with its surface approaching toward 
the top surface of the membrane floated on the water surface. 
Both SEM samples were dried in air. The samples were coated with a 
thin film of Au-Pd by sputter coating before SEM characterization.

Polyamide membrane imaging by graphene liquid cell
Graphene liquid cell TEM imaging of polyamide membrane was 
conducted on a JEOL 2100 Cryo TEM at an acceleration voltage of 
200 kV. Preparation of the graphene liquid cells follows previous 
literature (52), with the modification that we used one graphene-
coated TEM grid to scoop a small piece (~1 mm by 1 mm) of 
polyamide membrane floated on the water surface. Because water 
wets the membrane well, a thin water film was scooped together on 
top of the membrane. Next, the other graphene-coated TEM grid 
was applied to overlay on top of the membrane and the water film 
to complete the sealing.

Analysis of the 3D tomograms of the polyamide membranes
Segmentation and morphology analysis of reconstructed membranes 
were performed in ImageJ/FIJI (53) and Amira 6.4 (FEI) (54). 
ImageJ/FIJI was used to analyze the pore distribution. The pores 
underneath each nodule were identified by scanning for voids in the 
bottom few z-slices of the tomograms and used to generate a pore 
distribution map (Fig. 2A). For segmentation and 3D morphology 
analysis, the reconstructed tomograms were imported into Amira. 
For segmentation, a median filter over a 3 × 3 × 3 voxel neighbor-
hood and 26 iterations were applied, followed by a 3D Gaussian 
filter with a kernel size of 9 in 3D with SD voxel of 3 × 3 × 3 and then 
a 3D edge-preserving smoothing filter with 25 time, 5 step, 3.5 contrast, 
and 3 sigma. Contrast and brightness were not adjusted. A grayscale 
threshold was set on a per-sample basis to generate an approximately 
segmented volume, which was then corrected using a manual ad-
justment to fill in holes or remove regions not corresponding to the 
crumple. These procedures of segmentation were repeated for four 
polyamide membranes: cMPD of 1 and 2% with a fixed cTMC of 0.05% 
and cTMC of 0.05 and 0.1% with a fixed cMPD of 1%.

To extract crumple shape descriptors, individual crumples were 
first cropped from the segmented tomographs. The volume, height, 
external surface area, sphericity, and surface area–to–volume ratio 
of the crumples were measured using the MorphoLibJ plugin of 
ImageJ (55). We also quantified morphology parameters of the 
pores themselves including perimeter, (2D) area, equivalent radius, 
maximum Feret distances (i.e., the longest distances between two 
parallel lines restricting the boundary of each pore), aspect ratio, 
and circularity (4 × (area)/(perimeter)2) using the BioVoxxel 
Image Processing and Analysis Toolbox for ImageJ. The local thick-
ness of crumples was measured using the Local Thickness plugin of 
ImageJ (56). Uni- or bimodal distributions were observed for the 
crumple local thickness  (fig. S18), and the first peak was used as 
the local thickness in the main. We attribute the second peak to 
regions where two parts of the membrane are arranged such that 
they touch. Amira was used for the analysis of crumple surface 

curvatures. Segmented crumples were converted to a network of 
triangular meshes using the Generate Surface function with 1/16 sim-
plification for all the crumples. The meshed network was smoothed 
using the Smooth Surface function with four iterations and lambda 
of 0.7. Principal curvatures (1, 2) are defined as 1/R1 and 1/R2, 
where R1 and R2 are the radii of the smallest and largest spheres, 
respectively, that can be fit to the surface at each mesh point. The 
Gaussian (G) and mean (H) curvatures are G = 12 and H = (1 + 
2)/2. Curvature elements (tube, saddle, tip, and valley) at each 
mesh were determined using the arithmetic function

	​ (​​ 1​​ >  0 && ​​ 2​​ >  i ) + 2(​​ 1​​ >  0 && ​​ 2​​ <  i && ​​ 2​​  <  j ) +  3(​​ 1​​ >  0 && ​
​ 2​​  <  j ) +  4(​​ 1​​ <  0 && ​​ 2​​ <  j)​		  (6)

where && is the Boolean “and.” Thus, the expression returns 1 for a 
“tip” element, 2 for a “tube” element, 3 for a “saddle” element, and 
4 for a “valley” element. Thresholds i and j were chosen as 0.005 
and −0.005 because the second principal curvature (and therefore G) 
at tube elements is never perfectly zero (i.e., the film is never 
perfectly flat). The curvedness (C) and shape index (SI) are 
​C = ​ √ 
_

 (​​1​ 2​ + ​​1​ 2​ ) / 2 ​​ and SI = (2/)tan−1((1 + 2)/(1 − 2)).

PCA and GMM-based grouping of crumple morphologies
The 135 solo crumples identified in the pore analysis process were 
first manually classified into three groups simply based on the 
apparent appearance of their morphologies without rigorous geo-
metrical criteria. Then, using all 49 shape descriptors (table S4) we 
obtained as the input and the manual classification labels as output, 
we trained a random forest classifier to predict the classes of the 
crumples. The random forest classifier model has 200 estimators, a 
feature maximum of 7, and a depth maximum of 20. With the vali-
dation split of 0.8, we cross-validated the random forest model 
100 times and the result showed an average accuracy of 83.2 ± 6.0%, 
matching with the manual classification labels. We then plotted out 
the ranking of the importance of all the shape descriptors, which 
was computed as the (normalized) total reduction of the Gini impu-
rity brought by that descriptor (also known as the Gini importance) 
(fig. S19) (57). In doing so, we identified eight important and 
systematic shape descriptors including the curvedness, Gaussian 
curvature, mean curvature, and shape index averaged over all the 
meshes of a crumple, and ratios of tip, tube, saddle, and valley 
elements on crumple surfaces, which were further used for the PCA 
dimension reduction. The averaged curvedness, Gaussian curvature, 
mean curvature, and shape index were normalized across 135 solo 
crumple samples by the following equation

	​​ N​ normalized​​ = ​   N − min(N)  ───────────  max(N ) −  min(N) ​​	 (7)

where N denotes one shape descriptor. Then, the normalized eight 
parameters of 135 solo crumples were projected into first two PC 
space by PCA. The variances of first two PCs are 85.4 and 7.7%. 
Then, the dimension reduced data points were clustered with a 
GMM (58) with three centers. Random forest, PCA, and Gaussian 
mixture modeling were done in Python using scikit-learn.

Quantitative analysis of the pore patterns by Turing’s theory
On the basis of the one-to-one relation of crumple-bottom pore, 
we focus on the average distance between pores for each synthesis 



An et al., Sci. Adv. 8, eabk1888 (2022)     23 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 14

condition, which can be interpreted as the characteristic wavelength 
of a Turing structure  and is given by

	​   = ​ (2D)​​ 1/2​​	 (8)

where D is the geometric average diffusion coefficient of the reac-
tants, D = (DMPDDTMC)1/2. Because the reaction diffusion process 
for this system happens mainly in the hexane phase, DMPD and 
DTMC represent the diffusion coefficients of MPD and TMC in 
hexane, respectively, and  is the period of the cycle oscillation 
when the system is at the onset of a Hopf bifurcation (59). Here, we 
estimate  as the formation time of the membrane since the interfacial 
polymerization reaction is extremely rapid (31). This time scale is 
expected to follow

	​  ~ ​ M ─ J  ​​	 (9)

where M is the total mass of MPD molecules per unit area in the 
formed membrane and J is the the mass flux of MPD. M is propor-
tional to the local thickness  of the membrane measured in our 
experiments, the polymer density , and the mass fraction, mMPD, of 
MPD in the membrane; thus, M ~ mMPD. Polymer density is related 
to the degree of polymer cross-linking (DOC) when temperature, 
reaction time, and membrane synthesis technique are all held 
constant. The linear correlation of DOC (estimated from XPS; 
fig. S15) with polymer density  was used to estimate  based on the 
following, using literature values (19, 32)

	​​  =  DOC × ​(​​3.39 ​ g ─ ml ​​)​​ − 1.58 ​ g ─ ml ​ ​​	 (10)

Note that the correlation in these references was based on a 
linear regression of data and only applicable within a DOC range of 
0.6 to 0.95, which is the case for our data.

At short time scales, it has been suggested that the reaction is 
dominated by monomer-monomer coupling in the reaction-diffusion 
boundary layer (25), and thus, J follows

	​ J~​c​ MPD​​ ​(​c​ TMC​​ ​D​ MPD​​)​​ 1/2​​	 (11)

From Eqs. 8, 9, and 11, we obtained

	​ ~​​​ 1/2​ ​​​ 1/2​ ​m​MPD​ 1/2  ​ ​D​TMC​ 1/4  ​ ​c​MPD​ −1/2 ​ ​c​TMC​ −1/4 ​​	 (12)

In addition, the interfacial polymerization time  in our experi-
ment can be estimated from Eqs. 8 and 12 as

	​  = ​   ​​​ 2​ ───────────  
2 ​(​D​ TMC​​ ​D​ MPD​​)​​ 1/2​

 ​ ~  ​m​ MPD​​ ​c​MPD​ −1  ​ ​c​TMC​ −1/2 ​ ​D​MPD​ −1/2 ​​	 (13)

Statistics
Two-tailed, two-sample unequal variance t test and linear regression 
analysis on spatial patterns and local areal number density of 
membrane pores related to monomer concentrations were performed 
using Microsoft Excel (version 2102) and Software OriginPro 2020 
(version 9.7.0.188). A P value for F test < level of significance 
( = 0.05) was considered significant.

Estimation of Rayleigh number (Ra) and Marangoni 
number (Ma)
The following equations define the Rayleigh number and Marangoni 
number (34) 

	​ Ra =  gT ​​​ 3​ / () and Ma =  − ​​ T​​ T / (​​ l​​ )​	 (14)

where g = 9.81 m s−2 is the gravitational acceleration; , l, , and  
are the thermal expansion coefficient, density, kinematic viscosity, 
and thermal diffusivity of the liquid, respectively; T ≡ ∣d/dT∣ is 
the interfacial tension change rate with the temperature; and T is 
the temperature difference across the membrane thickness . In the 
experimental system for the polyamide membrane formed in 
hexane (31),  = 1.48  ×  10−3  K−1,  = 4.55  ×  10−7  m2–1 s−1,  = 
7.89 × 10−8 m2 s−1 (19), T ≈ −10−4 N m−1 K−1 (60), and l = 655 kg 
m−3 (61). In a crumpled structure  ≈ 10−8 m and T ~ O (10 K) 
(27), Ra ~ O (10–12) and Ma ~ O (10–1).

Mechanical response mapping
Liquid-phase AFM measurements were performed using an Asylum 
Cypher S AFM. A small Si wafer (5 mm by 5 mm) was used as the 
AFM sample substrate, which was first cleaned with water, acetone, 
and isopropanol, and then treated with oxygen plasma for 1 min. 
The AFM sample was prepared by scooping the as-synthesized 
membrane with the Si wafer and allowing it to dry in air. The Si 
wafer was mounted onto the sample stage in the microscope under 
ambient conditions. A droplet of water was added onto the surface 
of the membrane right before the AFM measurements. The model 
of the AFM tip is Multi75-G from BudgetSensors, with a typical 
spring constant of 2.2 N m−1. The spring constant of the AFM tip 
was measured via thermal tune to ensure an accurate measurement 
of the force, while the inverse optical lever sensitivity was calibrated 
on the basis of the force-distance curves collected on a clean Si wafer. 
Fast force mapping (FFM) was performed with a Z-rate (vertical 
force spectra) of 200 Hz and a lateral pixel size of 7.8 nm. The height 
image, modulus map, and force curves at different locations were 
obtained on the basis of the FFM results. The reported apparent 
modulus was based on the fitting results using Hertz model with 
bottom-effect correction (41,  62). The corrected force can be 
expressed as

	​​ 
​​F​ corrected​​  = ​   4E ​√ 

_
 ​l​​ 3​ r ​ ─ 

3(1 − ​v​​ 2​)
 ​​[​​1 − ​ 

2 ​f​ 0​​ ​√ 
_

 lr ​
 ─ πh  ​ + ​ 

4 ​f​0​ 2​ lr
 ─ 

​π​​ 2​ ​h​​ 2 ​
 ​−​

​    
​​ 
8(​f​0​ 3​ + 4 ​π​​ 2​ ​g​ 0​​ / 15 ) lr ​√ 

_
 lr ​
  ─────────────  

​π​​ 3​ ​h​​ 3​
 ​  + ​ 

16 ​f​ 0​​(​f​0​ 3​ + 3 ​π​​ 2​ ​g​ 0​​ / 5 ) ​l​​ 2​ ​r​​ 2​
  ──────────────  

​π​​ 4​ ​h​​ 4​
 ​​ ]​​​

​​	 (15)

where E is the modulus, r is the AFM tip radius, l is the indentation 
depth, h is the sample height measured by AFM at each pixel, and 
the constants f0 and g0 are functions of the sample Poisson’s ratio v. 
For a sample not bonded to the substrate, f0 and g0 can be expressed as

	​​ f​ 0​​ =  − 0.347 ​ 3 − 2v ─ 1 − v ​, ​g​ 0​​ =  0.056 ​ 5 − 2v ─ 1 − v ​​	 (16)

We approximated the tip as a sphere with a radius of 7 nm, a 
Poisson’s ratio of 0.17, and a modulus of 150 GPa, and estimated the 
membrane’s Poisson’s ratio to be 0.39, as the fitting parameters for 
Eqs. 15 and 16.
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Methanol permeance testing
The methanol permeability for all membranes was measured with 
an electronically controlled pressure-driven membrane testing cell 
(Sterlitech HP4750). Membranes with a 25 mm diameter were given 
24 hours to soak in methanol (HPLC-grade, Fisher Chemical) 
before testing. The presoaked membrane was quickly and carefully 
loaded into the Sterlitech cell with the support layer of the mem-
brane facing the outlet. Throughout membrane loading, the mem-
brane remained saturated with methanol. The input compartment 
of the Sterlitech cell was filled with 100 ml of methanol and fully 
assembled. An electronically controlled nitrogen manifold was then 
connected via the top of the input solution compartment of the cell, 
and the output side of the Sterlitech cell was connected to a thin 
hose going to a collection container atop a mass balance.

Once the testing apparatus was assembled, a permeability mea-
surement experiment was controlled with a LabVIEW interface. 
The experiment was initialized by electronically opening the 
main nitrogen valve, which allowed the regulated nitrogen supply 
to gradually pressurize the methanol containing input compartment 
of the flow cell to 150 psi. Pressure was slowly built up to 150 psi 
within the cell with a throttling valve. The flow rate of the methanol 
permeate was calculated from the change in mass of the collection 
container over time—pressure and mass data were recorded every 
second. The apparatus was operated until 80% of the initial 100 ml 
of methanol had permeated through the membrane. Next, the 
pressure was slowly released, and the tested membrane was removed 
and stored once dry.

Membrane permeance was calculated using the equation below

	​ Permeance = ​   ​M ̇ ​ ─ A × P ​​	 (17)

where ​​M ̇ ​​ is the average mass flow rate of methanol through the cell, 
A is the membrane area, and P is the applied pressure.

Modeling membrane permeance from morphology 
and density data
First, the surface areas of crumple region and flat region were 
decoupled using Blender 2.9 (Blender Foundation) and then the 
fraction of crumpled area over total surface area (xcr) was calculated 
for the membrane synthesized at each concentration ratio of MPD 
to TMC (k  = 1, 10, 20, and 40) from morphology data using the 
following equation

	​​ x​ cr,k​​ = ​ 
​A​ cr,k​​
 ─ ​A​ cr,k​​ + ​A​ fl,k​​ ​​	 (18)

where Acr is the measured surface area of the crumple region and Afl 
is the measured surface area of flat membrane region (fig. S13).

The nominal membrane thickness (nom,k) for each monomer 
ratio was then calculated using the local thickness of crumpled 
region (cr,k; Fig. 4, B to E) and the flat region thickness (fl,k; fig. 
S14D), assuming that there is a purely bimodal distribution of thick-
ness for the membrane (fig. S18)

	​​ ​ nom,k​​ = ​​ [​​ ​ 
​x​ cr,k​​

 ─ ​​ cr,k​​ ​ + ​ 
1 − ​x​ cr,k​​

 ─ ​​ fl,k​​ ​​ ]​​​​ 
−1

​​	 (19)

The solvent-membrane permeability (Pm) was then calculated 
for each monomer ratio given the nominal membrane thickness 
and experimentally determined solvent permeance (​​L​p​ exp​​) with the 
following equation

	​​ P​ m,k​​ = ​ L​p,k​ exp​ × ​​ nom,k​​ ​	 (20)

To build a model of the system ignoring the role of material 
properties like mass density (this model is given notation mod1), 
the solvent-membrane permeability for each monomer ratio, k, 
was averaged (Pm,avg). Solvent permeance, ​​L​p​ mod1​​, was then calcu-
lated using

	​​ L​p,k​ mod1​ = ​ ​P​ m,avg​​⁄​​ nom,k​​​​	 (21)

By holding permeability constant, mod1 assumes only the thick-
ness of the membrane changes with monomer ratio.

For model 2 (mod2), permeance was assumed to be dependent 
on the mass density of the polyamide membranes as well. Solvent-
membrane permeability is inversely proportional to membrane 
density; therefore, to isolate the effects of density on permeability, a 
permeability constant, , defined as follows was calculated for each 
monomer ratio

	​​ ​ k​​ = ​ P​ m,k​​ × ​​ k​​​	 (22)

The permeability constant, , for each monomer ratio was 
averaged to form avg. For mod2, only surface area, membrane 
thickness, and polymer density were accounted for by defining avg 
as constant for all monomer ratios in the following equation of 
solvent permeance

	​​ L​p,k​ mod2​ = ​ 
​​ avg​​
 ─ ​​ k​​ × ​​ nom,k​​ ​​	 (23)

Models 1 and 2 are compared in fig. S16.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk1888
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