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The human immunodeficiency virus type 1 (HIV)/AIDS pandemic represents the most

significant global health challenge in modern history. This infection leads toward an

inflammatory state associated with chronic immune dysregulation activation that tilts the

immune-skeletal interface and its deep integration between cell types and cytokines with

a strong influence on skeletal renewal and exacerbated bone loss. Hence, reduced bone

mineral density is a complication among HIV–infected individuals that may progress to

osteoporosis, thus increasing their prevalence of fractures. Highly active antiretroviral

therapy (HAART) can effectively control HIV replication but the regimens, that include

tenofovir disoproxil fumarate (TDF), may accelerate bone mass density loss. Molecular

mechanisms of HIV-associated bone disease include the OPG/RANKL/RANK system

dysregulation. Thereby, osteoclastogenesis and osteolytic activity are promoted after the

osteoclast precursor infection, accompanied by a deleterious effect on osteoblast and

its precursor cells, with exacerbated senescence of mesenchymal stem cells (MSCs).

This review summarizes recent basic research data on HIV pathogenesis and its relation

to bone quality. It also sheds light on HAART-related detrimental effects on bone

metabolism, providing a better understanding of the molecular mechanisms involved in

bone dysfunction and damage as well as how the HIV-associated imbalance on the gut

microbiome may contribute to bone disease.
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INTRODUCTION

According to UNAIDS, 37.9 million people worldwide are currently living with HIV/AIDS and
about 22 million are on highly active antiretroviral therapy (HAART). The life expectancy of
HIV-infected individuals treated with HAART is nearly normal, with a decreased incidence in
AIDS-related morbidity and mortality (1).

Low bone mineral density (BMD) has frequently been observed among HIV-infected
individuals, likely leading to osteopenia and osteoporosis with a high prevalence of fractures
compared with the general population (2).

In HIV-infected patients, bone loss is primarily enhanced by two pivotal factors: HIV infection
and its direct consequences, and HAART, mainly during the first years of treatment (3–8). The
contribution of each one is still controversial. The evidence of reduced bone mass in treatment-
naïve patients indicates that the virus alone directly affects bone homeostasis (9–14). Moreover,
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some reports indicate that low BMD is not completely
attributable to HIV infection alone or HIV infection plus
treatments with HAART (15–23).

The bone as part of the skeletal system interacts with
immune cells in the bone marrow, interacting with each other
in a significant mutual influence (24). Recently, the molecular
mechanisms involved in the homeostatic interactions between
bone and immune cells has been elucidated (25–27), which HIV
appears to be able to disturb.

MICROBIOTA CONTRIBUTION IN HIV
INTERACTION WITH BONE

HIV Proteins
HIV genes encode regulatory, auxiliary, and structural proteins.
The regulatory proteins include the HIV trans-activator (Tat)
involved in the regulation of the reverse transcription of the
viral genome, and the regulator of expression of virion proteins
(Rev) responsible for the synthesis of major viral proteins. The
auxiliary HIV proteins comprise the negative factor (Nef), which
is implicated in multiple functions during the viral replication
cycle, including, among other functions, the lentivirus protein
R (Vpr) responsible for nuclear import of the pre-integration
complex. It is also comprised of the viral infectivity factor
(Vif) required to synthesize infectious viruses in several human
cells and the virus protein U (Vpu) the main role of which
is the successful release of virions from infected cells. The
structural proteins included the group-specific antigen (p55 gag
polyprotein), a polyprotein which is processed by viral proteases
during maturation to matrix protein (p17), capsid protein (p24),
spacer peptide 1 (p2), nucleocapsid protein (p7), spacer peptide
2 (p1), and P6 protein. Other structural proteins involve the
polymerase (Pol) and the envelope protein (gp160) that is post-
translationally processed to produce the surface glycoprotein
(gp120) and gp41 that mediate binding to the CD4 receptor, and
envelope fusion to target cells, respectively (28).

Interaction of HIV and Its Proteins With
Bone Cells
Among many of the viral pathogenic mechanisms, HIV
regulatory, auxiliary, and structural proteins play critical roles
during cell-host interaction and thus have shown significant
impacts on bone in experimental studies, promoting changes in
the balance of bone formation and resorption. It is important
to highlight that the HIV-induced detrimental effects on cells
are not only a consequence of the active viral replication and
the role of infectious virions but are also caused by several HIV
proteins that are released to extracellular media which could
induce bystander harmful effects, such as apoptosis, oxidative
stress, mitochondrial dysfunctions, or autophagy alterations, on
surrounding cells (29, 30).

Mesenchymal stem cells (MSCs) are multipotent precursors
able to differentiate toward multiple tissue lineages such as
adipocytes, chondroblasts, and osteoblasts (31, 32). As MSCs
express CD4 receptors and CCR5 and CXCR4 coreceptors, these
cells are likely susceptible to HIV infection, although integrated

proviruses are rarely found and productive infection has not yet
been documented (33). Nonetheless, hematopoietic progenitor
cells (HPCs) in the bone marrow of HIV-infected individuals
have been regarded as a persistent HIV reservoir (34).

Differentiation of MSCs ex vivo into both osteoblasts and
adipocytes depicted a dichotomy upon exposure to the serum
source, since those in contact with a high HIV viral load
preferentially acquired a proadipogenic phenotype whereas
those in contact with low viral load serum were induced
toward an osteogenic condition. This phenomenon may involve
Tat protein, which inhibits the transcription factor COUP
TF-I (chicken ovalbumin upstream promoter transcription
factor), thus favoring adipocyte differentiation while preventing
osteoblast development.

To command the balance of bone resorption and formation,
osteoblasts produce a receptor activator factor of nuclear
factor-kB ligand (RANKL) that controls the differentiation of
osteoclasts (35). Osteocytes -the terminally differentiated form
of osteoblast- also produce RANKL to regulate osteoclast activity
(36). Under physiological conditions, osteoclastogenesis involves
RANKL and macrophage colony-stimulating factor (M-CSF)
produced by osteoblast and bone marrow stromal cells (37).
M-CSF prompts the expression of RANKL receptor (RANK),
on osteoclast precursor which then interacts with RANKL
to initiate osteoclasts’ differentiation (38). As a counterpart,
osteoprotegerin (OPG) is a neutralizing soluble trap receptor
expressed by bone marrow stromal cells and osteoblasts able to
inhibit the RANKL-RANK interaction (39).

The Tat protein enhances peripheral blood monocyte-derived
osteoclast differentiation and activity by RANKL plus M-CSF
treatment, which increases both the mRNA transcription of
specific osteoclast differentiation markers, such as cathepsin
K and calcitonin receptor, and the tartrate-resistant acidic
phosphatase (TRAP) expression and activity. Together, these
results show that Tat may be considered a viral factor that
stimulates osteoclastogenesis and bone resorption activity (11,
40–42). In vitro, Tat and Nef proteins reduce -in a cumulative
manner- the number of bone marrow MSCs available to
differentiate into osteoblasts by inducing early senescence,
associated with increased oxidative stress and mitochondrial
dysfunction of these cells. Moreover, Tat, but not Nef, induced
an early increase in NF-κB activity and cytokine/chemokine
secretion, and reciprocally, Nef- but no Tat-treated cells -have
shown early autophagy inhibition (43).

The HIV accessory protein Vpr upregulates the RANKL
expression in peripheral mononuclear cells from healthy donors,
enhancing osteoclastic activity. This action is synergized by
both exogenous and endogenous glucocorticoids as a potent
cofactor in bone mineral loss (44). Moreover, Tat and Rev
proteins increase monocyte differentiation into osteoclasts, as
well as boost osteoclast resorption function by increasing reactive
oxygen species and TNF-α production in osteoclast precursors
(45, 46).

In an in vivo humanized mice and ex vivo human joint
tissue study, Raynaud-Messina et al. have contributed to
our current understanding of the HIV-induced bone loss
mechanisms. For the first time, the authors demonstrated that
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HIV infects osteoclast precursors even at different stages of
osteoclastogenesis, either via cell-free viruses or, more efficiently,
through transfer from infected T cells. These infected precursor
cells have been proposed as HIV reservoirs that display a greater
migratory capacity and exhibit the enhanced ability to recruit and
concentrate in the bones where the viral infection alters the bone
resorption machinery. HIV can enlarge podosomes and enhance
the osteolytic activity of the bone resorption apparatus, also
known as the “sealing zone” (SZ). The virus is also able to increase
the TRAP secretion by osteoclasts, leading to demineralization
and degradation of larger bone extensions. These viral-directed
actions are Nef-mediated and are abundantly produced and
secreted during the early phase of viral replication. Such Nef-
mediated actions occur through the activation of Src, which
regulates podosomes into the SZ (47).

Soluble HIV-structural proteins are also mediators of
cytopathogenic effects. These proteins may act as part of the
viral particle or as bystander effect mediators after their release
from productively infected cells (48). Both, p55-gag and gp120
were found to reduce calcium deposition, alkaline-phosphatase
activity, levels of secreted BMP-2, -7, and RANKL, as well as
the expression and activity of the pro-osteogenic transcription
factor runt-related transcription factor 2 (RUNX2) in human
osteoblasts. The levels of osteocalcin were also significantly
reduced by p55-gag treatment, while gp120 also increased the
pro-adipogenic transcription factor and peroxisome proliferator-
activated receptor γ (PPARγ) activity. The ability of MSCs to
develop into functioning osteoblasts was also affected by the
presence of HIV proteins, with p55-gag inducing a decrease
in osteogenesis, while rev induced an increase (49). A positive
feedback loop exists between RANKL production and HIV
replication, which may be relevant to both the pathophysiology
of HIV-linked osteopenia and the control of HIV replication (50).

Furthermore, HIV gp120 can trigger in vitro osteoblast
apoptosis induction mediated by the up-regulation of TNF–α
(51). In these cells, gp120 enhances the expression of Dickkopf-
1 (Dkk1), the antagonist of the Wnt, significantly reducing the
intracytosolic and intranuclear β-catenin expression, the alkaline
phosphatase activity, and the cell proliferation (52).

In HIV-infected individuals, B and T lymphocytes have
exhibited several signs of dysfunction with an impact on bone
homeostasis. They are sources of OPG and, consequently, their
dysfunction contributes to viral-induced bone loss. Hence, there
is a higher frequency of RANKL-expressing B cells (resting
memory and exhausted tissue-like memory B cells) expanded
as a consequence of inflammation and a lower frequency of
OPG-expressing B cells (resting memory B cells) in HIV-infected
compared to HIV-uninfected individuals, thus resulting in a
lower RANKL/OPG ratio that correlates with total hip BMD, T-,
and Z-scores in the HIV-infected participants (14).

Similarly, T-cell OPG production was also significantly
lower in CD4 T-cell-sufficient HIV-infected individuals (>200
cells/µl) but not in those with lower cell counts. It was
coupled with moderately higher T-cell RANKL production,
resulting in a significantly higher T-cell RANKL/OPG
ratio. Such a T-cell RANKL/OPG lowered ratio correlated
significantly with BMD-derived z-scores at the hip, lumbar

spine, and femur neck (53). Moreover, as a bystander
effect, such an abnormal RANKL expression by T cells is
mimicked when these cells are exposed to soluble gp120
(Figure 1) (54).

HIV-Related Gut Microbiome Alterations
and Its Relationship With Bone Loss
Recently, the gut microbiota has been reported to have
an influence on bone metabolism, attracting attention as
a prospective new target to balance BMD. The basis of
this evidence is mainly concentrated on its involvement in
modulating the interface between the immune system and bone
cells (55, 56).

As an early event, the gut microbiome in HIV-infected
individuals exhibits different compositions compared to
uninfected individuals (57, 58). Among them, the bacterial
composition is altered on its diversity, genes, and functional
capabilities, that are either pro-inflammatory or potentially
pathogenic and whose abundance correlated with immune status
(59, 60). T-cell depletion is pronounced at the gut-associated
lymphoid tissue (GALT) promptly after HIV infection, followed
by an increase in the barrier permeability and microbial
translocation with increased LPS levels (61). This context
induces an innate immune activation leading to a shift toward a
pro-inflammatory cytokine environment with osteoclastogenesis
and bone resorption enhancement (62, 63).

Since chronic immune activation with progressive immune
suppression impacts on the gut microbiome, a differential
contribution of gut bacteria and their molecular agents
(metabolites and proteins) is desirable to promote immune
recovery in HIV-infected individuals. Hence, after characterizing
the interplay between the active gut microbiota and the host, it
is plausible to reduce inflammation and recover the immune–
skeletal interface (64–66).

The HAART treatment effect on gut microbiota in HIV
patients is uncertain (67). One hypothesis is that HIV treatment
stimulates the restoration of normal microbial flora (68).
However, some studies show a minimal effect of HAART on the
restoration of normal microbial flora (68–70) while others reveal
a negative impact (71).

ROLE OF ANTIRETROVIRAL THERAPY ON
BONE TISSUE METABOLISM

The widespread accessibility of HAART has changed HIV
from a life-limiting condition to one with a near-normal
life expectancy. Unexpectedly, throughout such a therapy, the
bone loss promoted by HIV-infection may continue unabated.
However, among HIV-infected individuals on HAART, the
presence of osteoporosis appears to be about three times higher
than those uninfected (3–8). Although, far from consensus, other
reports have estimated up to a 6% decrease in BMDuponHAART
treatment initiation for a 2-year period, but then the BMD
remains unchanged despite continuing therapy (72–74).

As mentioned above, in naïve immunosuppressed
HIV-infected individuals a decrease in BMD is observed.
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FIGURE 1 | HIV and viral proteins’ interaction with bone cells. 1-HIV infects osteoclasts via cell-free viruses or by cell-to-cell transfer from infected T cells. The

infection increases the tartrate-resistant acidic phosphatase (TRAP) secretion by osteoclasts. The viral protein Tat increases mRNA transcription of cathepsin K,

calcitonin receptor, TRAP, and Nef-regulate podosomes through activation of Src. Vpr upregulates RANKL expression, stimulating osteoclastogenesis. Tat and Rev

increase osteoclastogenesis. 2-HIV infection induces an increase in RANKL-expression and the reduction of OPG-expression in B and T cells. 3-HIV proteins Tat and

Nef reduce the number of bone marrow MSCs by inducing early senescence. Tat stimulates MSC to secrete IL-6 and IL-8, and Nef induces the inhibition of

autophagy. 4-Human serum with a high HIV viral load preferentially acquired a proadipogenic phenotype in a mechanism dependent on Tat protein, while those in

contact with a low viral load serum were induced toward osteogenic conditions. 5-p55-gag and gp120 stimulate osteoblast apoptosis and reduce

alkaline-phosphatase activity (ALP), calcium deposition, the runt-related transcription factor 2 (RUNX-2), and Bone morphogenic protein-2 and−7 (BMP-2−7), and

p55-gag also reduces osteocalcin levels, and gp120 induces the increase in peroxisome proliferator-activated receptor γ (PPARγ).

Paradoxically, when these individuals are on HAART
they achieve their immune reconstitution by CD4+ T cell
repopulation (75, 76). These reports offer evidence of stable or
increasing BMDwith plausible early, but small and not sustained,
loss of BMD that accompanies the initiation of HAART, and
without accelerated bone loss in the medium term (77–82).

The gender of the HIV-infected individual also influences
the BMD reduction grade. Among HAART-treated patients, it
appears to be more accentuated in women than in men (83,
84), but is at a level similar to that observed initially during
menopause (85).

Several studies have directly emphasized HIV factors
associated with low BMD: duration of infection, HIV viral
burden, and a more advanced HIV disease (86–88). In this
regard, data presented in a sub-study of the Strategy for
Management of Antiretroviral Therapy (SMART) study
demonstrated a low level of bone turnover markers but higher
BMD when HAART is interrupted, thus inferring a higher HIV
RNA level and lower CD4+ T cell counts (89). In contrast,
Grund et al. have reported that continuous HAART was
associated with significant reductions in BMD with no changes
or increases in BMD observed in those on intermittent ART
(90). Similarly, longitudinal data collected from randomized
control trials have insinuated that the initiation of HAART at
higher viral RNA and lower CD4+ T cell counts at baseline
were associated with more pronounced reductions in BMD
(88). Such low pre-treatment CD4 counts were reported

as a strong and independent risk factor for loss of BMD
during treatment. However, loss of bone continues for up to
2 years after HAART initiation and the extent of immune
reconstitution was not related to BMD improvement (88). In
conjunction, these data suggest that important roles are played
directly by HIV and/or indirectly by the immune response in
BMD loss.

The effect of HAART on BMD seems to be influenced
by the specific type of treatment. Low BMD has been
associated with regimens such as nucleoside analog reverse-
transcriptase inhibitors (NRTIs) (74, 91, 92). Individuals exposed
to tenofovir disoproxil fumarate (TDF)-based treatment in
particular exhibited a more accentuated BMD loss compared
to individuals on other regimens, such as lamivudine (3TC)
and emtricitabine (FTC), or those who have been switched to
two-drug regimens (74, 91–97). However, others have reported
contradictory findings regarding TDF-therapy duration and
BMD loss, even after long-term exposure to the drug (98).

The underlying mechanisms by which antiretroviral drugs
promote BMD loss are still controversial. The mechanism
to NRTIs-mediated BMD loss may be promoted by elevated
lactic acid concentration in the blood leading to calcium
hydroxyapatite loss, especially in the trabecular bone, due to
the labile of calcium storage (99). Regarding the underlying
mechanisms that may be related to TDF-associated lower BMD,
mitochondrial toxicity, hyperphosphaturia secondary to tubular
dysfunction, and renal osteodystrophy have been considered
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(92, 100–102). Despite the bone loss, there are contradictory
findings about phosphate metabolism abnormalities observed
among HAART-treated individuals who can present higher
phosphate blood levels and lower bone density (86). These
data offer supportive information to avoid the use of TDF and
its replacement with bone-friendly regimens among the HIV-
infected population with fracture risks (103).

Besides the BMD reduction related to NRTIs, available data
regarding protease inhibitors (PIs) remain contradictory (104).
On the one hand, increased bone turnover, accelerated bone loss,
and a higher prevalence of reduced BMD have been reported
(3, 72, 92, 105–107), whereas other studies showed opposed
results (9, 10, 73, 108). Detrimental effects on BMD are in line
with in vitro observations evaluating the effect of different PIs
on osteoblast activity (109). For example, pharmacologic levels
of two PIs that are clinically linked to osteopenia, ritonavir
(RTV) and saquinavir (SQV) but not indinavir (IDV) and
nelfinavir (NFV), abolish the interferon-γ-mediated degradation
of the RANKL signaling adapter protein TRAF6 (tumor
necrosis factor receptor-associated protein 6) in proteasomes.
Moreover, under inflammatory conditions, interferon-γ
promotes bone loss mainly by up-regulating the activity of
macrophages, leading to T cell activation and osteoclastogenic
cytokine production (110).

RTV appears as an osteoclast-activating agent that
promotes the proliferation and activation of osteoclasts in
vitro (111, 112) and ex vivo studies (113), causing increased
bone absorption.

Importantly, most of these in vitro direct effects of PIs on
bone cells did not resemble the in vivo observations collected
from patients on HAART. RTV, SQV, and fosamprenavir (FPV)
appear to improve the BMD in vitro rather than the loss
observed in vivo, by decreasing RANKL and increasing OPG
secretion (54, 109). The impact on BMD loss was also reported
in several in vivo studies which also observed a strong difference
in bone loss according to PI discontinued and continued
schemes between patients (72, 92, 107). RTV -but not IDV-
at a greater than normal concentration was able to inhibit
osteoclast function and suppress osteoclastogenesis in vitro
and in vivo by impairing RANKL-induced signaling (114).
However, RTV at plasma concentration, as a PI-boosting drug,
favors the differentiation of blood monocytes into osteoclasts
by up-regulating the production of transcripts for osteoclast
growth factors using the non-canonical Wnt proteins 5B and
7B as well as activated promoters of nuclear factor-kappaB
signaling, but suppressing genes involved in canonical Wnt
signaling. Additionally, RTV blocks the cytoplasmic-to-nuclear
translocation of β-catenin, the molecular node of the Wnt
signaling pathway, in association with enhanced β-catenin
ubiquitination (111, 112). In vivo, among RTV-treated patients,
its discontinuation resulted in a slower decrease in BMD (107),
and the bone mineral loss appeared in a time-dependent manner
irrespective of dosage (107). Other PIs, such as IDV and NFV,
have been shown to have a negative impact on osteoblasts
by impairing its alkaline phosphatase activity and calcium

deposition. Lastly, in vivo and in vitro studies demonstrate that
PIs atazanavir (ATV) and lopinavir (LPV) also decrease BMD
by impairing the MSCs differentiation to osteoblasts (72, 92,
115).

Finally, in addition to immune cells, the HIV-coreceptor
CCR5 has been involved in the regulation of the function
of bone cells by directly modulating osteoclastogenesis and
the communication between osteoclasts and osteoblasts (116–
118). In this regard, epidemiological evidence suggests that the
functional loss of CCR5 is correlated with a lower incidence
of bone-destructive diseases as well as of HIV transmission.
Using a CCR5-deficient murine model, the osteoclasts appeared
dysfunctional in their cellular locomotion and bone-resorption
activity, which is associated with the disarrangement of
podosomes and adhesion complex molecules including Pyk2.
Such an experimental model exhibited an osteoporosis-resistance
induced by RANKL (119). These data are in line with a previous
study showing the CCR5-antagonist Maraviroc associated with
a lower degree of bone loss in the hip and lumbar spine of
HIV-infected individuals, as an example of a CCR5-antagonist
treatment that might help to improve bone health among HIV-
infected patients (120).

In conclusion, important progress has been made in
our understanding of the effect of antiretroviral drugs
on bone health in HIV-infected people. Such advances
have enriched our ability to apply treatment to diminish
aging-associated complications, such as osteoporosis
and fractures.

CONCLUDING REMARKS

During HIV infection and its progression to AIDS, bone
loss occurs and HAART likely contributes -at least in
part- to this comorbidity, involving both factors associated
with disease reversal and direct skeletal effects. Although
the clinical and imaging characterization of HIV bone
pathology has been well-documented, the pathogenic
mechanisms of bone loss have only been partially
elucidated at present.

Irrespective of the mechanisms involved, diagnostic and
therapeutic measures are necessary to delay the onset of bone
disease in HIV patients to prevent a significant new threat to the
health of the HIV/AIDS population.
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