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The interplay between drugs and cell metabolism is a key factor in determining both
compound potency and toxicity. In particular, how and to what extent transmembrane
transporters affect drug uptake and disposition is currently only partially understood.
Most transporter proteins belong to two protein families: the ATP-Binding Cassette
(ABC) transporter family, whose members are often involved in xenobiotic efflux and
drug resistance, and the large and heterogeneous family of solute carriers (SLCs). We
recently argued that SLCs are collectively a rather neglected gene group, with most of its
members still poorly characterized, and thus likely to include many yet-to-be-discovered
associations with drugs. We searched publicly available resources and literature to
define the currently known set of drugs transported by ABCs or SLCs, which involved
∼500 drugs and more than 100 transporters. In order to extend this set, we then mined
the largest publicly available pharmacogenomics dataset, which involves approximately
1,000 molecularly annotated cancer cell lines and their response to 265 anti-cancer
compounds, and used regularized linear regression models (Elastic Net, LASSO) to
predict drug responses based on SLC and ABC data (expression levels, SNVs,
CNVs). The most predictive models included both known and previously unidentified
associations between drugs and transporters. To our knowledge, this represents the first
application of regularized linear regression to this set of genes, providing an extensive
prioritization of potentially pharmacologically interesting interactions.

Keywords: solute carriers, ABC transporters, drug sensitivity and resistance, drug transport, regularized linear
regression

INTRODUCTION

The role of cellular metabolism in determining the potency and distribution of drugs is
increasingly recognized (Zhao et al., 2013). Along with the enzymes involved in actual xenobiotic
transformation, such as members of the cytochrome and transferases families, a critical role is
played by transmembrane transporters, which directly affect both the uptake and the excretion
of drugs and their metabolites (Zhou et al., 2017). Among transmembrane transporters, two
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large families have been described: the family of ATP-binding
cassette (ABC) transporters and the family of solute carriers
(SLCs) (Hediger et al., 2013). ABC transporters are pumps
powered by the hydrolysis of ATP and show a remarkable broad
range of substrates, including lipids, secondary metabolites, and
xenobiotics. Members of this family, such as the ABCB/MDR and
ABCC/MRP proteins, have been associated with resistance to a
large number of structurally diverse compounds in cancer cells
(Fletcher et al., 2010). SLCs are secondary transporters involved
in uptake or efflux of metabolites and other chemical matter
(Cesar-Razquin et al., 2015). At more than 400 members and
counting, SLCs represent the second largest family of membrane
proteins and comprise uniporters, symporters and antiporters,
further grouped into subfamilies based on sequence similarity
(Hoglund et al., 2011). Among the reported SLC substrates are
all major building blocks of the cell, such as nucleic acids,
sugars, lipids, and amino acids as well as vitamins, metals, and
other ions (Hediger et al., 2013). Despite the critical processes
mediated by these proteins, a large portion of SLCs is still poorly
characterized and, in several cases, lacks any associations with
a substrate (Cesar-Razquin et al., 2015). Importantly, several
members of the SLCO (also known as Organic Anion Transporter
Proteins or OATPs) and SLC22 families (including the group of
organic cation transporters or OCTs, organic zwitterion/cation
transporters or OCTNs and organic anion transporters or OATs)
have been found to play prominent roles in the uptake and
excretion of drugs, especially in the liver and kidneys (Hagenbuch
and Stieger, 2013). Several other cases of SLCs mediating
the uptake of drugs have been reported, such as in the case
of methotrexate and related anti-folate drugs with the folate
transporter SLC19A1 (Zhao et al., 2011) or the anti-cancer
drug YM155/sepantronium bromide and the orphan transporter
SLC35F2 (Winter et al., 2014). Indeed, whether carrier-mediated
uptake is the rule or rather the exception is still a matter of
discussion (Dobson and Kell, 2008; Sugano et al., 2010). Due to
the understudied nature of transporters and SLCs in particular,
we can nonetheless expect that several other associations between
drugs and transporters, involving direct transport or indirect
effects, remain to be discovered and could provide novel insights
into the pharmacokinetics of drugs and drug-like compounds.

Analysis of basal gene expression and genomic features in
combination with drug sensitivity data allows the identification
of molecular markers that render cells both sensitive and resistant
to specific drugs. Such a pharmacogenomic analysis represents
a powerful method to prioritize in silico gene-compound
associations. Different statistical and machine learning (ML)
strategies have been used in the past to confirm known as well
as to identify novel drug–gene associations, although generally
in a genome-wide context (Iorio et al., 2016). For our study, we
mined the “Genomics of Drug Sensitivity in Cancer” (GDSC)
dataset (Iorio et al., 2016) which contains drug sensitivity data
to a set of 265 anti-cancer compounds over ∼1,000 molecularly
annotated cancer cell lines, in order to explore drug relationships
exclusively involving transporters (SLCs and ABCs). To such end,
we used regularized linear regression (Elastic Net, LASSO) to
generate predictive models from which to extract cooperative
sensitivity and resistance drug–transporter relationships, in what

represents, to our knowledge, the first work applying this type of
analysis to this group of genes.

MATERIALS AND METHODS

Data
Solute carriers and ABC genes were considered as in (Cesar-
Razquin et al., 2015). Known drug transport cases involving SLC
and ABC proteins were obtained from four main repositories
as of September 2017: DrugBank (Law et al., 2014), The
IUPHAR/BPS Guide to PHARMACOLOGY (Alexander et al.,
2015), KEGG: Kyoto Encyclopedia of Genes and Genomes
(Kanehisa and Goto, 2000), and UCSF-FDA TransPortal
(Morrissey et al., 2012). These data were complemented
with various other cases found in the literature (Sprowl and
Sparreboom, 2014; Winter et al., 2014; Nigam, 2015; Radic-
Sarikas et al., 2017). Source files were parsed using custom
python scripts, and all entries were manually curated, merged
together and redundancies eliminated. The final compound list
was searched against PubChem (Kim et al., 2016) in order to
systematize names. A list of FDA-approved drugs was obtained
from the organization’s website. Network visualization was done
using Cytoscape (Shannon et al., 2003).

All data corresponding to the GDSC dataset1 (drug sensitivity,
expression, copy number variations, single nucleotide variants,
compounds, and cell lines) were obtained from the original
website of the project as of September 2016. Drug sensitivity
and transcriptomics data were used as provided. Genomics data
were transformed into a binary matrix of genomic alterations
vs. cell lines, where three different modifications for every gene
were considered using the original source files: amplifications
(ampSLCx), deletions (delSLCx), and variants (varSLCx). An
amplification was annotated if there were more than two copies
of at least one of the alleles for the gene of interest, and a deletion
if at least one of the alleles was missing. Single nucleotide variants
were filtered in order to exclude synonymous SNVs as well as
nonsynonymous SNVs predicted not to be deleterious by either
SIFT (Ng and Henikoff, 2001), Polyphen2 (Adzhubei et al., 2010),
or FATHMM (Shihab et al., 2013).

LASSO Regression
LASSO regression analysis was performed using the “glmnet”
R package (Friedman et al., 2010). Expression values for all
genes in the dataset (17,419 genes in total) were used as input
features. For each compound, the analysis was iterated 50 times
over 10-fold cross validation. At each cross validation, features
were ranked based on their frequency of appearance (number of
times a feature has non zero coefficient for 100 default lambda
possibilities). We then averaged the ranking across the 500 runs
(50 iterations × 10 CV) in order to obtain a final list of genes
associated to each compound. In this context, the most predictive
gene for a certain drug does not necessarily have an average rank
of one, even though its final rank is first.

1http://www.cancerrxgene.org/downloads
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Elastic Net Regression
Elastic net regression analysis was performed using the “glmnet”
R package (Friedman et al., 2010). Genomic data (copy number
variations and single nucleotide variants) and transcriptional
profiles of SLC and ABC genes across the cell line panel were
used as input variables, either alone or in combination. Drug area
under the curve (AUC) values were used as response. Elastic net
parameters were fixed as follows: (i) alpha, the mixing parameter
that defines the penalty, was set to 0.5 in order to apply an
intermediate penalty between Ridge and LASSO, and (ii) lambda,
the tuning parameter that controls the overall strength of the
penalty, was determined individually for every model (drug) by
optimizing the mean squared cross-validated error.

For each compound, 500 Elastic Net models were generated
by a 100× fivefold cross-validation procedure. In order to assess
model performance, the Concordance Index (CI) (Harrell et al.,
1996; Papillon-Cavanagh et al., 2013) between the predicted and
observed AUC values was calculated for each run, and then
averaged across all models. This index estimates the fraction of
cell line pairs for which the model correctly predicts which of
the two is the most and least sensitive; hence CI values of 0.5
and 1 would indicate random and perfect predictors, respectively.
Feature weights were calculated by normalizing the fitted model
coefficients to the absolute maximum at every cross-validation
run. The final list of features associated with each compound
was built by computing the frequency of appearance of each
feature in all the 500 models as well as its average weight.
Features with positive weights are associated with a resistance
phenotype to the compound, and negative weights are indicative
of sensitivity.

RESULTS

SLC and ABCs as Drug Transporters
We collected data from public repositories as well as relevant
publications to define the current knowledge on transport of
chemical compounds by members of the SLC and ABC protein
classes. A total of 493 compounds linked to 107 transporters were
retrieved, which altogether formed a single large network with
a few other smaller components (Figure 1 and Supplementary
Table S1).

Within the largest network and in agreement with previous
reports (Nigam, 2015), three families are significantly enriched
(hypergeometric test, FDR ≤ 0.05): the SLCO/SLC21 family of
organic anion transporters (9/12 members) (Hagenbuch and
Stieger, 2013), the SLC22 family of organic anion, cation, and
zwitterion transporters (13/23) (Koepsell, 2013; Nigam, 2018),
and the ABCC family of multidrug resistance transporters (8/13)
(Vasiliou et al., 2009). Not surprisingly, ABCB1 (P-glycoprotein;
MDR1), the very well-studied efflux pump known for its broad
substrate specificity and mediation of resistance to a large amount
of drugs (Aller et al., 2009), is the most connected transporter in
the network, linked to more than 200 compounds. In particular,
106 compounds are connected exclusively with ABCB1 and
25 other are exclusively shared with ABCG2 (BCRP), another
well-known transporter and the one with the second highest

degree in the network (Robey et al., 2007; Figure 1B). Other
top-connected SLCs include members of the above mentioned
SLCO and SLC22 families, which also show several common
substrates (e.g., SLCO1B1 and SLCO1B3 share 36 compounds,
and SLC22A8 and SLC22A6 share 20), as well as members
of the SLC15 family (SLC15A1 and SLC15A2, which share 22
compounds), involved in the transport of beta-lactam antibiotics
and peptide-mimetics (Smith et al., 2013). In contrast to these
cases, other transporters appear related to one or only a few
compounds. One such case is SLC35F2, whose only reported
substrate to date is the anti-cancer drug YM155 (sepantronium
bromide) (Winter et al., 2014). Finally, while most chemical
compounds appear linked to one or two transporters, a few others
show higher connectivities (Figure 1C). A well-known example,
methotrexate is transported by more than 20 different SLC
and ABCs, including some belonging to families not commonly
involved in drug transport, such as the folate carriers SLC19A1
and SLC46A1.

Transporter Expression Landscape in
Cancer Cell Lines
The GDSC dataset contains expression data for 371 SLCs and
46 ABCs across a panel of ∼1,000 cell lines of different tissue
origin. Each of these cell lines effectively express between 167
and 255 transporters, with a median value of 195 (Figure 2A
and Supplementary Table S2). Although all together they
cover almost the whole transporter repertoire (414/417), the
distribution is clearly bimodal, with a common set of ∼130
transporters expressed in at least 900 cell lines and a more specific
set of ∼140 expressed in less than 100 (Figure 2B). Among the
most commonly expressed transporters, we find several members
of the SLC25 (mitochondrial carriers) and SLC35 (nucleoside-
sugars transporters) sub-families, the two largest among SLCs, as
well as several members of the SLC39 family of zinc transporters.
On the other end, many members of the SLC22 family, a large
and well known group of proteins involved in the transport
of drugs, as well as the SLC6 family, a well-studied family of
neurotransmitter transporters, show a more specific expression
pattern. As for ABCs, it is worth highlighting that subfamilies A
and C present half of their members in the set of transporters
of specific expression, while subfamily B has members in both
sets.

When looking at actual expression values across the panel,
some of the commonly expressed transporters coincide with
those of highest expression (Figure 2C). The most extreme
cases are SLC25A5, SLC25A3, SLC25A6, and SLC38A1, which
present very similar maximum and median values across the
cell line panel. On the contrary, other transporters such as
SLC26A3, SLC17A3, or SLC38A11 present a much wider range
of expression, being amongst the highest expressed in some cell
lines but completely absent from others.

Finally, substantial differences become apparent when
considering transporter expression patterns according to the
tissue of origin of the GDSC cancer cell lines (Figure 2D).
Cell lines belonging to the hematopoietic (blood) lineage,
which includes leukemias, lymphomas, and myelomas, present
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A

CB

FIGURE 1 | (A) Network visualization of known SLC/ABC-mediated drug transport cases. Circular nodes represent SLC and ABC transporters, and squares
represent chemical compounds. Drugs approved by the FDA (Food and Drug Administration) are displayed with thicker gray borders. Edges connect transporters to
compounds and their thickness indicates the number of sources supporting each connection (see section “Materials and Methods”). Size indicates node degree
(number of edges incident to the node). Relevant transporter families are color coded. (B) Transporter degree distribution. The inlet bar chart displays the
transporters connected to at least 15 compounds. Bar colors correspond to transporter families in (A). (C) Same as (B) for drugs.
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A B C

D

FIGURE 2 | (A) Number of transporters (SLCs and ABCs) expressed across cell lines in GDSC dataset. A cut-off of 3.5 in RMA units is set to consider a gene as
expressed (∼73% genes expressed). The red line indicates the median number of transporters expressed per cell line. The inlet lists the 11 cell lines expressing the
highest number of transporters, indicated between parentheses. (B) Number of cell lines expressing each of the transporters. The color bars and inlets indicate sets
of transporters showing more common or specific expression across the panel. (C) Median expression vs. maximum expression for each transporter across the cell
line panel. Color indicates the tissue of origin of the cell line presenting the maximum expression for the transporter. (D) Transporter Z-scores of the average
expression values within each tissue. Tissue names with number of cell lines between parenthesis are indicated on the x-axis. Transporters are ordered alphabetically
by family and name.

the largest proportion of transporters with highest average
expression values (28%), as indicated by Z-score, followed by
cancer cell lines belonging to skin, kidney, and the digestive

system. Interestingly, kidney cell lines also present the largest
number of transporters with low expression values, pointing to a
very wide range of expression and high specificity in those cells.
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LASSO Regression Shows Importance of
SLC Genes Across Whole Genome
We investigated the importance of SLC and ABC transporters
for drug response by applying regularized linear regression on
the GDSC dataset. To this end, we first built LASSO models
of sensitivity to each compound based on genome-wide gene
expression levels (17,419 genes in total) (Tibshirani, 1996), and
then looked for cases where a transporter ranked as the top (first)
predictor (see section “Materials and Methods”). The decision to
focus exclusively on the top predictor is supported by a literature
search. Indeed, the average number of PubMed publications
containing both the drug and the gene name was over 40 in the
case of top predictors, falling down to below 10 for the ones
ranked second (Supplementary Figure S1).

Consistent with their well-characterized role as drug-
transporters, the multi-drug resistance pump ABCB1, as well
as ABCG2, were the main predictors of resistance to a
large number of drugs (Table 1). More interestingly, several
compounds had an SLC as their best predictor (Table 2). Among
them, and in concordance with previous expression-sensitivity
data (Rees et al., 2016), we find the sensitive association of
sepantronium bromide (YM155) and SLC35F2, its main known
importer (Winter et al., 2014). Another sensitive association
involving SLC35F2 links this transporter to NSC-207895, a
MDMX inhibitor (Wang et al., 2011). Dimethyloxalylglycin
(DMOG), a synthetic analog of α-ketoglutarate that inhibits HIF
prolyl hydroxylase (Zhdanov et al., 2015), showed association
to two SLCs: monocarboxylate transporter SLC16A7 (MCT2)
was the main predictor for sensitivity to this compound,
while creatine transporter SLC6A8 (CT1) was associated with

TABLE 1 | LASSO ABC-drug top associations.

LASSO top hits, all 17,419
genes used

Top sensitive
associations
(average rank)

Top resistant
associations
(average rank)

ABCB1 YM155 (1)

Paclitaxel (1.1)

BI-2536 (6.0)

A-443654 (32)

Vinorelbine (1)

Thapsigargin (20)

AT-7519 (1.8)

WZ3105 (1)

PHA-793887 (2.2)

GSK690693 (15)

Vinblastine (1.1)

Docetaxel (1.2)

ZM447439 (77)

ZG-10 (1.3)

QL-VIII-58 (1)

QL-XII-61 (9.7)

ABCG2 CUDC-101 (12)

THZ-2-102-1 (1.8)

ABCA10 STF-62247 (20)

FR-180204 (22)

resistance. However, due to the high IC50 values of DMOG
(in the millimolar range), this association is unlikely to
be clinically relevant. Finally, cystine-glutamate transporter
SLC7A11 (Blomen et al., 2015) is associated to resistance
to the ROS-inducing drugs Shikonin, (5Z)-7-Oxozeaenol and
Piperlongumine. This is in agreement with previous studies
that highlighted a positive correlation of the expression of this
transporter and resistance to several drugs via import of the
cystine necessary for glutathione balance maintenance (Huang
et al., 2005).

Elastic Net Regression Identifies
Transporter–Drug Relationships
In order to further explore SLC and ABC involvement in drug
response, we decided to build new predictive models using
Elastic Net regression based on transporter molecular data only.
Assessment of model performance was done by cross-validation
using the CI (see section “Materials and Methods”)

We considered different predictors to build the models:
genomics (copy number variations and single nucleotide
variants), transcriptomics (gene expression) and a combination
of both. Among these, gene expression resulted to be most
predictive, in agreement with previous reports (Aydin et al.,
2014; Figure 3A). A total of 139 (53%) of the 265 drugs
included in the dataset had predictive models with a CI higher
than 0.60, and 36 (14%) higher than 0.65 (Figure 3B). For
those drugs, we then ranked genes based on their frequency
of appearance in the cross-validated models (indicative of
the robustness of the association) and their average weight
(indicative of the strength of the association as well as its
direction). In this context, increased levels of transporter
expression could therefore be associated with either sensitivity or
resistance to the drug, for example, through its uptake or efflux,
respectively (Figure 3C). Among the top ranked transporter–
drug associations, we identified several known cases of drug
transport. For instance, the strongest sensitivity association
with sepantronium bromide (YM155) corresponded again to
SLC35F2. Similarly, the strongest resistance association for this
drug was ABCB1, which includes YM155 among its many
substrates (Lamers et al., 2012; Voges et al., 2016; Radic-Sarikas
et al., 2017). Another example was methotrexate, for which

TABLE 2 | LASSO SLC-drug top associations.

LASSO top hits,
all 17,419 genes
used

Top sensitive
associations
(average rank)

Top resistant
associations
(average rank)

SLC16A7 DMOG (1)

SLC6A8 DMOG (40)

SLC30A2 CP724714 (28)

SLC35F2 YM155 (2.24)

SLC35F2 NSC-207895 (9.5)

SLC7A11 Shikonin (2)

SLC7A11 (5Z)-7-Oxozeaenol
(12)

SLC7A11 Piperlongumine (12)

Frontiers in Pharmacology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 1011

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01011 September 25, 2018 Time: 15:59 # 7

César-Razquin et al. Computational Identification of SLC–Drug Associations

A B

C

D E

FIGURE 3 | (A) Comparison of Elastic Net regression performance (Concordance Index) using different input data: gene expression, genomics (CNVs and SNVs)
and a combination of both. (B) CI value distribution using gene expression as input. Red bars indicate drugs with a median CI higher than 0.65, which were selected
for subsequent analysis. (C) Elastic Net results for drugs with the highest CI values. The top five associations are shown for each compound. Purple indicates
associations linked to sensitivity (higher expression value confers sensitivity to the compound), and orange indicates resistance. (E) Network representation of three
transporters appearing as “hubs” (e.g., connected to several different compounds) in the results, including the well-known multidrug resistance protein ABCB1.
(D) Same as (E) for MEK inhibitors, which show a similar association pattern.

the folate transporter SLC19A1, known to mediate its import
(Zhao et al., 2011), ranked second for sensitivity association
(Supplementary Table S3).

Two major patterns are apparent in the set of top-ranking
associations: genes showing similar profiles of resistance or
sensitivity across several different and unrelated compounds as

well as groups of genes showing a similar profile in relation to a
functionally related class of drugs (Figure 3C).

A prototypical case of the first pattern is ABCB1,
which is associated with resistance phenotypes to several
compounds (Figure 3D). Together with the aforementioned
YM155, resistance relationships were predicted for known
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substrates vinblastine and docetaxel (Fletcher et al., 2010),
17-AAG/Tanespimycin (Huang et al., 2007) and AT-7519
(Cihalova et al., 2015) as well as other not previously associated
compounds such as ZG-10 (a JNK1 inhibitor), the CDK2/5/7
inhibitor PHA-793887 and the broad kinase inhibitor WZ3105.
Similar to ABCB1, other transporters showed multiple resistance
and sensitivity associations to different compounds, particularly
kinases and chromatin-related enzymes. Two of these “hubs”
were SLC12A4/KCC1, a potassium-chloride cotransporter
involved in cell volume homeostasis (Arroyo et al., 2013), and
SLC35D2, an activated sugar transporter localized in the Golgi
(Song, 2013).

As an example of the second class of associations, some
of the best models were achieved for compounds belonging
to the MEK inhibitor drug class (Trametinib, Selumetinib,
Refametinib, CI-1040, PD-0325901, (5Z)-7-oxozeaenol), which
showed very similar patterns, with sensitivity associated to
SLC45A2, SLC27A1, SLC20A1, and SLC22A15 (Figure 3E).
SLC45A2 has been related to melanin synthesis and it is highly
expressed in melanomas (Park et al., 2017), a cancer type
sensitive to MEK inhibitors. Interestingly, SLC20A1/PiT1, a
sodium-dependent phosphate transporter (Olah et al., 1994), was
previously shown to regulate the ERK1/2 pathway independently
of phosphate transport in skeletal cells (Bon et al., 2018).
SLC27A1, a long-chain fatty acid transporter, and SLC22A15, an
orphan member of the well-known family of cationic transporters
involved in the transport of different compounds, were not
previously associated with this drug class.

Finally, we also observed a strong sensitivity relationship
between expression levels of the amino acid transporter
SLC7A5/LAT1 and the Her2 and EGFR kinase inhibitors
Afatinib, Gefitinib, and Bosutinib (Figure 2C), consistent with
previously published data (Timpe et al., 2015).

DISCUSSION

Transporters of the ABC and SLC superfamilies are increasingly
recognized as key players in determining the distribution and
metabolism of drugs and other xenobiotic compounds as they
possess distinct and extremely variable expression patterns across
cell lines and tissues (O’Hagan et al., 2018). Moreover, they
have been implicated in the development of resistance to several
chemotherapeutic drugs (Fletcher et al., 2010). A survey of
currently known drug transport relationships revealed that only
a fifth of the more than 500 SLCs and ABCs have been described
to be involved in the transport of drugs. These transporters
appear to be very unevenly distributed, with some genes and
families considerably more represented and better connected
than others (Figure 1). This is the case for several members of
the ABCB, ABCC, SLCO, and SL22 sub-families. Similarly, while
compounds such as methotrexate are linked to more than 20
transporters, most drugs are connected to only one.

To further expand this network, we took advantage of the
expression and drug sensitivity data available within the GDSC
project. We started by characterizing the expression patterns of
SLCs and ABCs in the GDSC panel of ∼1,000 cancer cell lines,

covering thirteen different tissues of origin (Figure 2). Roughly
80% of SLCs and 90% of ABCs were included in the datasets
and we observed a bimodal distribution of their expression, with
similarly sized sets of transporters either present in most cell
lines or specific to a few. In particular, a broad spectrum of
expressed transporters was detected in cell lines derived from the
hematopoietic (blood) lineage as well as in cell lines derived from
skin, kidney, and the digestive system. A large variability in the
level of expression was also observed within the superfamilies,
consistent with what recently reported by another recent study
(O’Hagan et al., 2018).

We then implemented a linear regression-based approach to
identify the set of transporters associated with sensitivity to each
compound across all cell lines. Previous reports undertook a
similar approach to identify associations of the ABC (Szakacs
et al., 2004) and SLCO/SLC22 (Okabe et al., 2008) families with
drug sensitivity within a limited set of about 60 cell lines. We
now extended these results to a much more comprehensive set
of cell lines while implementing regularized linear regression
approaches. In a first step, LASSO regression was used to assess
genome-wide importance of transporters as predictors for drug
sensitivity. The choice of the LASSO method was motivated by
its ability to shrink a large number of coefficients to zero, ideal for
models that make use of thousands of predictors. Moreover, being
a linear regression method, it can account for both positive and
negative interactions (i.e., resistance and sensitivity, for example,
by export and import in the case of a transporter), while at
the same time being more interpretable than more complex
models. Subsequently, we based our analysis on transporter data
only. By removing the effect of other genes in the models, we
could prioritize compounds that show a stronger dependency
on transporters, as well as to analyze potential cooperative
interactions among them. We used in this case Elastic Net
regression, a generalization of the LASSO that overcomes some
of its limitations and that has already been applied in similar
contexts (Zou and Hastie, 2005; Barretina et al., 2012; Iorio et al.,
2016).

We identify a large set of drug–transporter associations
roughly split between sensitivity and resistance relationships
(Figure 3 and Tables 1, 2). Known associations involving, for
example, ABCB1 expression levels with increasing resistance
to several unrelated compounds as well as known interactions
such as the associations between antifolates and SLC19A1 or
YM155 and SLC35F2 were clearly identified. Interestingly, we
also observed cases were, similarly to ABCB1, a single gene was
associated with several compounds, possibly as a result of an
alteration of the general metabolic state of the cell. We also
observed the opposite scenario, with several genes associated with
a functionally related class of compounds as in the case of the
MEK inhibitors and the genes SLC45A2, SLC27A1, SLC20A1,
and SLC22A15. To our knowledge, no transporter has so far
been identified for any member of this class of compounds, and
while the association with the skin-specific SLC45A2 transporter
is likely the result of the high sensitivity of melanoma cell lines to
these drugs, other associations are more difficult to interpret.

We propose the gene list reported here as a means of
prioritizing transporters that could explain the transport and
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pharmacodynamics of the associated compounds. While in many
cases these associations could be due to indirect effects, such as a
change in the metabolic state of the cells that renders them more
sensitive or resistant to a compound, some might correspond
to actual import or export processes. Further validation, for
example, modulating the expression levels of the transporters
or by transport assays, will be necessary in order to confirm
and distinguish such different scenarios. Finally, the power
of the analysis could also be increased by larger datasets,
for instance including additional compounds, as well as by
orthogonal or more accurate measurements. Availability of such
pharmacogenomics datasets will be of critical importance for the
further identification and characterization of transporter–drug
associations.

In conclusion, we provide here an overview of the known
ABC- and SLC-based drug transport relationships and expand
this with an in silico-derived ranking of transporter–drug
associations, identifying several novel and potential interesting
cases. On the one hand, these new interactions offer new insights
into the mode of drug transport across membranes, as well
as provide initial structure activity relationships (SARs) for
natural ligands, still unknown for many of these transporters.
On the other hand, as many of the compounds involved
in our analysis are clinically approved or candidates for
oncological treatments, we hope that this study will provide
novel hypotheses that could illuminate how transporters
affect their pharmacodynamics and pharmacokinetics, as well
as point to potential interactions with other compounds
transported by the same proteins (e.g., in combination
treatments), eventually leading to more specific and effective
therapies.
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