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As it has several features that optimize information processing, it has been proposed
that criticality governs the dynamics of nervous system activity. Indications of such
dynamics have been reported for a variety of in vitro and in vivo recordings, ranging
from in vitro slice electrophysiology to human functional magnetic resonance imaging.
However, there still remains considerable debate as to whether the brain actually
operates close to criticality or in another governing state such as stochastic or oscillatory
dynamics. A tool used to investigate the criticality of nervous system data is the
inspection of power-law distributions. Although the findings are controversial, such power-
law scaling has been found in different types of recordings. Here, we studied whether
there is a power law scaling in the distribution of the phase synchronization derived
from magnetoencephalographic recordings during executive function tasks performed
by children with and without autism. Characterizing the brain dynamics that is different
between autistic and non-autistic individuals is important in order to find differences that
could either aid diagnosis or provide insights as to possible therapeutic interventions in
autism. We report in this study that power law scaling in the distributions of a phase
synchrony index is not very common and its frequency of occurrence is similar in the
control and the autism group. In addition, power law scaling tends to diminish with
increased cognitive load (difficulty or engagement in the task). There were indications
of changes in the probability distribution functions for the phase synchrony that were
associated with a transition from power law scaling to lack of power law (or vice
versa), which suggests the presence of phenomenological bifurcations in brain dynamics
associated with cognitive load. Hence, brain dynamics may fluctuate between criticality
and other regimes depending upon context and behaviors.
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INTRODUCTION
Much is being discussed today about the possible critical
dynamics of brain activity and its close relatives complexity
and emergence. The appealing characteristics of criticality (for
comprehensive introductions to the field, see Christensen and
Moloney, 2005; Sornette, 2004), derived from early theoretical
and computational work indicating the optimization of infor-
mation processing and adaptability in general at the “edge of
chaos” (Packard, 1988; Langton, 1990), fostered a tremendous
interest in the application of these concepts to nervous system
function (concisely reviewed in Beggs, 2007; Chialvo, 2010; Shew
and Plenz, 2013), for, after all, whereas brain cells (glia and
neurons) perform individually relatively simple computations, in
their collective activity in the brain, cell networks achieve com-
plex operations leading to adaptive behaviors. Critical dynamics
generally show scale-invariant organization (similar fluctuations
occurring at all spatio-temporal scales) which can be described
by scale-invariant metrics. Of these metrics, power laws in the
distribution of characteristics of the system (for instance the

size of events or inter-event intervals) have been considered as
typical signatures of criticality. Encouraged by early experimental
observations reporting the celebrated 1/f power spectrum scaling
(Pritchard, 1992; Georgelin et al., 1999), neuroscientists launched
an intense investigation to study the presence of power laws
in experimental recordings of all types, from in vitro systems
to in vivo recordings. However, during these investigations, no
consensus on the interpretation of power law scaling has emerged
and many misunderstandings are currently apparent (Beggs and
Timme, 2012). Most notably, while the presence of power laws is
commonly thought to be associated with complexity, this associa-
tion has only been formally demonstrated to occur in equilibrium
statistical mechanics in systems near bifurcations. In addition,
there are many means by which a system may display power laws
(Mitzenmacher, 2004; Clauset et al., 2009; Marković and Gros,
2014) and some have little to do with complex dynamics.

Keeping these considerations in mind, we have assessed the
possible presence of power-law scaling in a phase synchronization
index of magnetoencephalographic brain recordings in children
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with and without autism during performance of two executive
function tasks. Characterizing the difference in brain dynamics
between autistic and non-autistic individuals is motivated by
the potential to find differences that could either aid diagnosis
or provide insights as to possible therapeutic interventions in
autism. Autism and related disorders (autism spectrum disorders,
ASD) are accompanied by different styles of brain information
processing, reflected in some particular behavioral features of
individuals with ASD. The Austrian psychiatrist Kanner (1943)
described autism as “. . .the inability to experience wholes without
full attention to the constituent parts” (even though it seems that
the term autism was coined in 1911 by the Swiss psychiatrist
Eugen Bleuler, who used it to describe the “withdrawal into one’s
inner world”). Ideas proposed to explain the behavioral traits in
ASD have mostly been on the psychological level of description,
such as the weak central coherence hypothesis (Frith, 1989). With
the advent of new analytical methods to scrutinize brain dynam-
ics, especially the analysis of synchrony and “connectivity”, these
ideas have been “translated” into neurophysiological notions such
as disconnection amongst brain circuits. Yet, the debate still
continues regarding the possible hyper or hypo-connectivity in
autistic brains.1 What seems conceivable is that the brain coor-
dination dynamics differs in ASD brains from others, for it is
the coordinated activity of transiently formed cell assemblies that
underlie cognition (von der Malsburg, 1981; Flohr, 1995; Bressler
and Kelso, 2001; Kelso, 2008; Pérez Velázquez and Frantseva,
2011). Thus, studies aimed at assessing brain coordinated activity
could be of relevance in the field.

Our study uses magnetoencephalographic (MEG) recordings
done in two groups, children with and without ASD, performing
two different executive function tasks. In our analysis, we calcu-
lated a synchronization index and studied whether the index’s
empirical density function (edf) displayed power law scaling.
Specifically, we looked for different expressions of power law
scaling between the two groups of children and the two executive
tasks. We found that power law scaling was not common and
its frequency of occurrence was decreased when the cognitive
load of the test was high. This difference between tasks was
seen in both groups of children but little inter-group variation
was observed. We discuss implications of these findings in the
Discussion section.

MATERIALS AND METHODS
PARTICIPANTS
Data were drawn from a larger sample of children enrolled in
previous studies (Pérez Velázquez et al., 2009; Teitelbaum et al.,
2012). Sixteen control children (7 females) and 15 children (1
female) diagnosed with high functioning autism (Asperger syn-
drome) participated in the study. The children’s parents provided
informed consent for the protocol approved by the Hospital for
Sick Children Review Ethics Board. Age range was between 7 and
16 years. Patients met the criteria for ASD based on DSM-IV
and were evaluated by the psychologists in the Autism Research

1see for instance http://sfari.org/news-and-opinion/news/2013/autism-
brains-are-overly-connected-studies-find for recent perspectives on the
topic

Unit of the Hospital for Sick Children or were recruited from
the Geneva Center for Autism and Autism Ontario. Age-matched
control children had no known neurological disorders. Cognitive
abilities were measured using the Wechsler Abbreviated Scale
of Intelligence (WASI), as reported previously (Pérez Velázquez
et al., 2009). The data analyzed in this study corresponded to 14
children (7 in each group) for the Stroop task and 25 children (12
in the ASD group) in the auditory attention task.

MAGNETOENCEPHALOGRAPHIC RECORDINGS
MEG recordings were acquired at 625 Hz sampling rate, using
a CTF Omega 151 channel whole head system (CTF Systems
Inc., Port Coquitlam, Canada), as previously described (Pérez
Velázquez et al., 2009). Head movement was tracked by measuring
the position of three head coils every 30 ms, located at the nasion,
left and right ear, and movements less than 5 mm were considered
acceptable. Sensors used in the analyses are depicted in Figure 1,
and were located over the following cortical areas: left and right
frontal (LF, RF), left and right parietal (LP, RP), and left and
right temporal (LT, RT). We chose these cortical areas as they are
associated with executive functions and relatively mutually distant
in space.

EXECUTIVE FUNCTION TASKS
Stroop color-word test
The color Stroop interference paradigm is a commonly used test
of inhibition (Stroop, 1935), in which the participant names
the colors of the ink in which words are written. It consists
of a list of color words written in congruent color (e.g., the
word “green” written in green color), and follows with a list in
incongruent color (e.g., the word “green” written in red color).
It is well established that processing the content of the word is
more automatic than processing the color of the word. Therefore,
in the incongruent condition, the individual needs to inhibit the
response of word naming that competes with the response of color
naming. In our experimental MEG set-up, words were presented
to participants via a video projector, and the children’s responses
were monitored on-line to check for errors. Besides the congruent
(termed “Congruent ink” in this study) and incongruent condi-
tions (“Incongruent ink”), we also conducted a baseline condition
(“Black-ink”) in which participants named the color words writ-
ten in black ink, where interference effects were expected to be
much lower or absent. Ninety four words were presented for each
condition (Black-ink, Congruent-ink, and Incongruent-ink), the
time interval between words was 2.5 s.

Auditory attention task
The auditory task included two conditions with varying atten-
tional requirements. In the simple reaction to stimulus, that is,
a “low attention” condition (which we term “No attend” in this
work) the participants heard repeated identical auditory tones
and were instructed to press the response button to every tone.
In the auditory oddball condition (“Attend” condition), that
required attention to a deviant tone amongst otherwise common
tones, participants pressed the response button only after hear-
ing a deviant tone. In this way, the “low-attention” condition
mainly reflected sensory registration of auditory stimuli, and the
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FIGURE 1 | Average magnitude of phase synchrony in the auditory
attention task. Upper head-plot depicts the MEG sensors used in the study,
grouped as left frontal (LF), right frontal (RF), left parietal (LP), right parietal
(RP), left temporal (LT) and right temporal (RT). The bar graphs represent the
average of the phase synchrony index R (described in Section Materials and
Methods) between two groups of sensors, and for each of the three

conditions of the task: the baseline (“control”) condition, the attend and
no-attend to the deviant tone (“Attend” and “NotAttend” respectively). For
clarity, eight sensor pairs are represented (same trend was present in the rest
of combinations). Note the slight increase in synchrony during task
performance, more evident in the non-ASD group, at central frequency of 10
Hz, in the upper bar graphs (see details in the Results section).

oddball condition reflected decision-making based on an auditory
distinction. The baseline recording for this task was a period of
30–60 s when individuals were asked to remain quiet and did not
receive any auditory input. Tones were presented binaurally with
a 750 ms inter-stimulus interval. MEG recording time was 5 min
for the low-attention and oddball conditions. There were 400 of
the same stimuli presented in the low-attention condition. There
were equally 400 stimuli presented in the oddball condition, of
which 30% were deviant tones.

PHASE SYNCHRONIZATION ANALYSIS
Visual inspection of the MEG recordings for artifacts was done
during the acquisition and off-line before the analysis to remove
sensors with artifacts or repeat the acquisition. Recordings were
initially band-passed using a FIRLCS filter with a band-pass
of ±2 Hz around a “central frequency”. The band-pass filter-
ing done before the extraction of the oscillation phase removes
eye blink artifacts (which tend to appear in frontal sensors)

because these last around 300–400 ms, which is ∼2.5–3.3 Hz
in terms of frequencies. Since in our study the lowest fre-
quency studied is 10 ± 2 Hz, we can consider that eye blinks
are not affecting our results. In this study, we used four cen-
tral frequencies, 10, 18, 26 and 32 Hz, thus covering the range
8–34 Hz. The reason to choose these frequency bands is that
they cover most of the ranges from α to lower γ that have
been attributed to cognitive task performances. In addition, due
to some limitations with the extraction of the phase using the
Hilbert transform, especially the advice to have about 20 points
per characteristic period of the oscillation (see page 367 in
Pikovsky et al., 2001), phase synchrony was not assessed past
34 Hz.

On these band-passed signals, the Hilbert transform was
applied and successive values of instantaneous phases were
derived from the corresponding analytic signal. These phase
series were then analyzed using sliding windows extracting the
Mean Phase Coherence Statistic between two MEG recording
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channels as described in Mormann et al. (2000). Briefly, we use
the analytic signal approach, employing the Hilbert transform
to estimate instantaneous phases and calculate phase locking
between two MEG recording channels (sensors), as previously
described (Garcia Dominguez et al., 2005, 2007). With noisy data,
phase synchronization has to be defined in a statistical sense:
two signals are phase synchronized if the difference between their
phases is bounded over a selected time window, that is, if it
clusters around a single value (Pikovsky et al., 2001). A measure of
this is the circular variance (CV) of the phase differences ∆θ(t),
or alternatively, the coefficient R = 1 CV, which can also be
expressed as:

Rjk = | < exp(i1θjk(t)) > |

Here |·| denotes the norm and < · > the mean value. 1θjk(t) =
θj(t)− θk(t) are the series of phase differences between the ana-
lytic signals of series indexed by j and k (each index j and k refer
to one signal, that is, one MEG sensor time series) over a given
time window. The value of R varies from 0 to 1, the higher the
value the tighter the clustering of the phase differences 1θ about
a single mean value; that is, the closer the R-value to 1 the more
synchronized the signals.

To estimate the mean synchrony index in the Stroop task,
as described in detail in Pérez Velázquez et al. (2009), averages
of the values of the synchronization index R were computed
from stimulus presentation to the moment near the individual’s
response, about 0.45–0.6 s after stimulus presentation in the
Stroop task. The precise time to calculate the average varied
slightly from individual to individual because the time to answer
was variable and the average of the synchrony index was taken
from the time of stimulus presentation to just before the subject’s
response. For this purpose, the minimum time for each response
of the individual rather than the mean of each subject’s distribu-
tion of reaction times was taken. All 282 trials (94 words × 3
conditions) were used for the analysis. The “baseline” was the
initial list of words written in black ink. The results derived
from the estimations of the magnitude of synchrony in this task
were reported in Pérez Velázquez et al. (2009). In the present
study, those synchronization indices estimated in the previous
study were used to construct the edf to be analyzed as described
below.

For the auditory attention task data, synchrony between two
cortical sensor groups (those aforementioned above and shown in
Figure 1) was computed, as in the Stroop task, using the average
of all sensor combinations between the regions. For example,
we selected 6 left parietal sensors and 6 right temporal sensors
and formed 36 inter-group pairs. For each task condition, the
synchrony values between these 36 sensor pairs were averaged to
define the average synchrony index between the two sensor groups
at each time point. Unlike in the Stroop task, in this case the
synchrony index was not calculated phase-locked to the stimulus
presentation, rather was calculated in a sliding window of 1 s
for the whole 5 m recording (this is reasonable as attention, in
this task, is supposed to be continuous and not intermittent).
This derived average was then compared between subject groups
and between conditions, and was used to obtain the empirical
distribution functions.

TESTING POWER LAW DISTRIBUTION
We used the method described in Janczura and Weron (2012),
which is based on the asymptotic properties of the edf. Details
and validation of the procedure can be found in that article. We
used the edf (the sample estimate of the cumulative distribu-
tion function) of the phase synchronization index rather than
probability densities (pdf) because the former is not as biased
as the pdf in terms of binning the data points that is required
to construct a pdf but not an edf, and in general tests on edf
are more powerful than those done on pdf (Newman, 2005).
Especially, it has been documented that the cdf is more accurate
to fit power laws (Dehgani et al., 2012). To construct the edf, the
values of the R index were not further averaged in the Stroop
task because the values represented the average from stimulus
presentation to the moment near the individual’s response in
the time periods mentioned in the previous paragraph on phase
synchrony analysis. In the auditory task, the R-values, computed
in a sliding window as mentioned above, were averaged in 1-s
windows to reduce the number of data points (otherwise we
would have 625 points per second, as we used a 625 Hz acquisition
rate, that would result in a very large number of data points for
the 5 m MEG time series and for all sensor combinations) and to
make it more comparable to the Stroop task data. In total and for
each individual and each task, the number of data points (that is,
the R-values corresponding to the sensor combinations) used to
derive the edf was 864 in the Stroop task, 4437 in the attention
task, and 387 in the “baseline” for the attention task (because here
the recordings were of shorter duration).

In brief, Janczura and Weron’s MATLAB algorithm
(CI_powertail.m) estimates confidence intervals of a specified
significance level (set at 0.05 in this study) for a power law fitted
to a certain range of the edf. The logarithmic plots (Figures 2
and 3) represent 1-edf on the y-axis and the data on the x-axis.
The ranges used in our study to fit the tail power law were (unless
otherwise stated in the text) to the largest 5–1% values for the
“attend” and “no attend” conditions of the auditory task, and
25–2.5% in the baseline condition of the auditory task and for
the Stroop task. The ranges had to differ because of the different
number of data points as detailed above. When the power law
was fitted to central regions of the edf, the range was 70–25%.

To assess possible phenomenological bifurcations (Kuehn,
2011), we estimated whether two pdfs of the R indices were
statistically different using the two-sample Kolmogorov-Smirnov
test, with the null hypothesis that the two data sets are from the
same continuous distribution.

RESULTS
In order to inspect characteristics of the phase synchrony proba-
bility distribution function or the edf, a computation of the phase
synchrony index, described in Section Materials and Methods,
was done first. It should be noted, as discussed below in the
Discussion section, that our synchrony analysis among MEG
sensors reflects population-scale levels of activity in large cellular
ensembles, mostly a combination of synaptic potentials and neu-
ronal action potentials (Toga and Mazziotta, 2002), thus the
synchrony index in reality represents correlated phases among the
MEG sensors. The average magnitude of the synchrony revealed
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FIGURE 2 | Examples of the pdf and its characteristics. (A) and (B), pdf
of the synchrony index and the edf corresponding to the baseline and the
“not attend” conditions of one individual (non-ASD) performing the auditory
attention task. In the right-hand side graphs, the logarithmic plots of the edf
versus the data (R-values) are presented. Dashed red lines indicate 95%
confidence for a power law, showing the presence of outliers in B. Note as
well the change in the pdf, becoming almost bimodal in B, and as well the
possible presence of a power law regime in the middle of the edf. Fitting
the power law in this middle range (70–30% of the values, see Section
Materials and Methods for ranges used), the exponent found was 2.4. (C)
Data collected from another individual (non-ASD) during performance of the
Stroop task, showing the presence of outliers in the tail during the
incongruent color condition.

few differences between the ASD and the control (non-ASD)
group during task performance. The most notable difference
is that the slight increase in synchrony during performance of
the auditory attention task was more evident in the non-ASD
group, as presented in Figure 1 for the central frequency of 10
Hz. Note that the synchrony index between two sensor groups
tends to augment from the “control”, or baseline, to the “attend”
condition in both ASD and non-ASD participants, and that it
is already higher than baseline in the “no-attend” condition.
Apparently, only the fact that participants had to perform a
task either paying or not paying attention to deviant tones as
instructed, already changes the brain synchrony patterns. In
contrast, and shown as well in Figure 1, no apparent repro-
ducible change in synchrony is detected when evaluated at 32
Hz (or at 26 Hz, not shown). The increase in the synchrony

FIGURE 3 | Upper graphs correspond to one subject (ASD) performing
the auditory attention task, illustrating that the tail power law
characteristics disappear during the attend condition. The inset on the
right-hand side graph is the log-linear plot, suggesting that the edf has more
pronounced exponential characteristics rather than power law features.
Lower plots are from another subject (non-ASD) showing the presence of
outliers in both conditions of the auditory task, but more numerous in the
“attend” condition (circled). As in Figure 2B, the middle part (70–40%) of
the edf in the “Attend” condition could be fit to a power law with exponent
3.4.

index R associated with task performance was observed when
phase synchrony was computed at central frequencies of 10 and
18 Hz, and the relative changes during task performance, between
the “baseline” and “attend” condition, were an increase of
13.1 ± 5.6% and 5.54 ± 4.6% for the non-ASD group at 10
and 18 Hz respectively, and 4.4 ± 3.5 and (a decrease of) −0.6
± 1.9% for the ASD group. Thus it seems that it is around the
α-frequency range (10± 2 Hz) where the tendency to enhance the
magnitude of phase synchrony amongst the MEG sensors assessed
is more pronounced. Note that, in the ASD group, the magnitude
of synchrony at 32 Hz is highest in the parietal sensors (LP-
RP) regardless of task condition, as indicated as well in previous
studies (Pérez Velázquez et al., 2009; Teitelbaum et al., 2012).
Comparison of the number of errors (deviant tones not detected)
committed during the performance of the oddball task (“attend”
condition) did not significantly differ between the two groups,
although there was a trend for worse performance by those with
ASD (ASD mean of 12.25 ± 13 errors; control group mean of
10.1± 7.3).

The changes in synchrony during the Stroop task were
reported in Pérez Velázquez et al. (2009), so it will not be
reproduced here. Briefly, significant increases in the magnitude of
the synchrony index were observed in the non-ASD participants
during the “incongruent” condition, but no apparent change in
synchrony between conditions was detected in the ASD group.
The behavioral results of this task are also reported in that paper:
the difference in the errors committed (reading the word rather
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than naming the color in the incongruent condition) between the
two groups of children was not significant even though, as found
in the attention task, there was a tendency to make more mistakes
in the case of ASD subjects (average of 5± 4.8 errors for the ASD
participants versus 2.68± 2.5 errors in the control group).

Whereas the averaged magnitudes of synchronization provide
certain information regarding brain dynamics, in addition to
presenting the averages it is also informative to inspect the whole
pdf of the magnitudes of synchrony, and this was our main
purpose in the present study. As is well known, when pdfs are not
Gaussian the central tendencies (median, most probable value,
average) will differ, so which one to use is a matter of convenience
or taste, thus inspecting characteristics of the whole pdf, especially
the tails, provides a more complete picture than averages and
variances alone. Figure 2 shows two pdfs of the synchronization
index evaluated at 26 Hz for one subject performing the auditory
task, Figure 2A is that derived from the baseline condition and
Figure 2B for the “no-attend” condition. Note the differences in
shape, one (“no-attend”) being bimodal, differences that can be
quantified by a Kolmogorov-Smirnov (KS) test (in this case the
difference is very significant: p < 0.0001). The logarithmic plot
of the edf (or rather 1-edf, as noted in Section Materials and
Methods) is represented in the same figure, and these were used
to assess the presence of power law in the tails, as explained in
Section Materials and Methods. Note that some power laws could
be present not in the tails of the distribution but in the middle,
as in Figure 2B (the straight segment in the middle), however
this was uncommon (less than 45% of inspected edfs). Power
laws in the tails were not too frequently found either. Tables 1
and 2 provide the abundance of power laws found in the tails:
in average in the non-ASD group, these were present in 27.9%
(auditory task) and 32.1% (Stroop task) of those evaluated, and
in the ASD group the averages were 35% (auditory task) and
39.3% (Stroop). Other values are presented in the tables, where
it can be seen a disappearance of tail power law characteristics
with increasing task cognitive effort, an effect seen in both tasks.

Figure 2C shows the loss of tail power law (appearance of outliers)
in the “incongruent ink” condition of the Stroop task, the more
demanding of the three in that task. Perhaps because of this
effect, notice in Tables 1 and 2 that, for the “baseline” conditions
in both tasks, the frequency of tail power laws is greater in the
baseline condition for the auditory task (60.5% of instances),
when children were asked to remain relaxed, whereas in the
Stroop task (36.4% of instances) the cognitive load was higher as
they had to read a list of words in black ink. Thus, less power law
features are associated with more cognitive effort. The Discussion
section contains comments on why the power law regime in the
synchrony distribution is less frequent as cognitive load increases.
Representative examples are presented in Figures 2 and 3. Even
when power laws could not be fitted, there were more outliers as
cognitive effort increased, depicted in Figure 3 (lower graphs) and
quantified in Table 1 (“points out of PL”). It is worth noticing
that rather than power laws, some of the edfs had exponential
characteristics, as shown in Figure 3, upper graph inset.

The tendency to change in pdf characteristics (as represented
in Figure 2) is suggestive of a critical transition, what is
known as phenomenological bifurcations (Kuehn, 2011),
that describe changes in the probability density functions
in random dynamical systems. To quantitatively assess the
difference between pdfs in each condition of the tasks, KS
tests were used. Of 388 pdfs evaluated, including all children
and all tasks (thus 388/2 = 194 transitions, one “transition”
here means going from one task condition, say “congruent
ink”, to the next, “incongruent ink”), changes between pdfs
were significant (p < 0.05) 52.1% of times, but were more
abundant when there was a transition from power-law to
non-power law (or vice versa) characteristics (53.9% of the
times) than when there was no such transition (39% of the
times). This difference was more pronounced in the data
corresponding to the Stroop task (47.2% of instances for power
law to non-power law, and 25% for the other case) than in
the auditory attention task. These observations suggest that

Table 1 | Presence of tail power law (PL) regimes in the distribution of the synchronization index during the auditory attention task.

Baseline Not attend Attend

Control group (n = 13) Percentage PL 57.4% 12.5% 15.4%
Points out of PL 4 ± 3 13.2 ± 9.7 14.5 ± 9

ASD group (n = 12) Percentage PL 64.1% 20.8% 25.5%
Points out of PL 2.1 ± 1.8 11.6 ± 7.8 10.6 ± 8.5

Total (n = 25) Percentage PL 60.5% 16.7% 20.2%

Data points outliers (“Points out of PL”) are more numerous as the attentional demand increases, from baseline to the “Attend” condition (lower plots in Figure 3

depict one example).

Table 2 | Presence of tail power law (PL) regimes in the distribution of the synchronization index during the Stroop color-word task.

Black ink Congruent ink Incongruent ink

Control group (n = 7) Percentage PL 46.4% 25% 25%
ASD group (n = 7) Percentage PL 25.9% 39.3% 32%
Total (n = 14) Percentage PL 36.4% 32.1% 28.6%
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a bifurcation, manifested as a change in the characteristics
of the pdf, may take place when increasing cognitive
load of a task.

DISCUSSION
Critical dynamics, the behavior of extended systems near a phase
transition where scale invariance prevails, has been proposed for
nervous system activity as it has several features that optimize
information processing (Beggs, 2007; Shew and Plenz, 2013),
and this notion has been taken with such enthusiasm that the
field is currently in the grip of an explosion of fecundity. Indi-
cations of such dynamics have been reported for a variety of
in vitro and in vivo recordings, ranging from in vitro slice elec-
trophysiology to human functional magnetic resonance imaging.
However, there still remains considerable debate as to whether
brains really operate close to criticality rather than, for instance,
stochastic or oscillatory dynamics. One sign of criticality that
has become a favorite is the inspection of power-law distribu-
tions in nervous system data, and such power-law scaling has
been reported associated with different types of recordings, even
though some studies failed to find clear evidence. Here, we
studied whether there is a power law scaling in the distribution
of the phase synchronization derived from magnetoencephalo-
graphic recordings during executive function tasks performed
by children with and without ASD. Our observations suggest
that power law scaling of phase synchrony indices derived from
MEG recordings is not very common in both ASD and non-
ASD groups and its frequency of occurrence tends to diminish
with increased cognitive load/effort as children performed the
tasks. There were indications of changes in the phase synchrony
probability distribution functions associated with a transition
from power law scaling to lack of power law, perhaps suggesting
the presence of phenomenological bifurcations in brain dynamics
associated with cognitive load. Hence, the observations of power
law and other (exponential) scaling regimes plus the signs of
phenomenological bifurcations, further support the metastability
of brain dynamics and suggest that some brain areas experience
critical transitions.

Our studies are based on the calculation of a phase syn-
chronization index from MEG recordings that reflect large-scale
activity, at the collective level, in extensive cellular ensembles. The
synchrony index thus represents correlated activity in brain areas
over which the sensors locate. There are certain limitations worth
noting. Perhaps principally, the signals detected may summate at
nearby MEG sensors, depending on the intensity of the source,
causing multiple sensors to contain similar activities. To minimize
summation of signals, the areas of sensors chosen were not direct
neighbors. These sensors were chosen as well because the cortical
areas over which they are located are associated with sensorimotor
transformations (Binkofski et al., 1999). Estimating the time
series at the source level (in brain tissue) is a solution to overcome
the summation at neighboring sensors, and while some methods
to derive the signals at the sources have been reported in the
literature, source reconstruction adds another level of complexity
to the analysis and may even yield spurious results, as it is an “ill-
posed mathematical problem” (Gross et al., 2013), mainly because
assumptions must be made about the origin and location of the

expected sources in order to properly constrain the solution to the
problem, and thus there is bias as it is not trivial to choose what
brain areas could be expected to account for the brain dynamics.
With these considerations in mind, our analyses are performed at
the sensor level and the conclusions we draw from them focus on
relative changes without focusing on specific cortical areas.

Traditional scientific reporting methods normally use averages
and variances, which tend to hide the variability and fluctuations
in data sets. Thus, a complementary approach is the observation
of the full pdf. As evidenced in the figures, power law scaling
could always be found in some segments of the edf, a well-known
feature as few real-world distributions follow a power law over the
entire range (Newman, 2005). This imposes a certain arbitrary
constraint, in that one must choose a range of values at which
the power law may hold, choice that is not trivial when using
empirical data, and thus the scaling exponent will vary depending
on the chosen data points. It is known as well that two or more
power law regimes with different exponent may be present in
the same distribution. To make things more complicated, the
exponent values depend on sampling and several other aspects
(Priesemann et al., 2009; Touboul and Destexhe, 2010; Marković
et al., 2013). For all these reasons, we do not emphasize the
values of the exponents in our work, nevertheless we note that
the values of the exponent, either in the tail or in the middle
of the distribution are larger than 2 (see legends of Figures 2B
and 3, where a power law approximated to the middle part of
the edf provided exponents >2). Because the classical exponent
associated with self-organized criticality is 1, the celebrated 1/f
scaling (Bak et al., 1988; Pritchard, 1992), exponents larger than
1 may not be associated with this phenomenon. High values of
exponents have been recently reported in recordings from cat,
monkeys and humans (Touboul and Destexhe, 2010; Dehgani
et al., 2012), hence the matter of self-organized criticality in
nervous system activity remains unclear at the present time.
Nevertheless our study is not intended to present evidence for
self-organized critical dynamics in brain synchronization, rather
to inspect certain properties of the distributions of our synchrony
index associated with performance of executive function tasks in
two groups of individuals. In instances where power law regimes
co-exist with others (e.g., exponential) in the distributions of
synchrony magnitudes, it could be hypothesized that this is a
sign of the metastability of brain dynamics, a notion proposed
by several authors (Bressler and Kelso, 2001; Fingelkurts and
Fingelkurts, 2004; Kelso, 2008; Pérez Velázquez and Frantseva,
2011; Deco and Jirsa, 2012; Kelso et al., 2013). Incidentally, one
of the first early proposals of the brain as “organ whose natural
state is one of unstable equilibrium” is due to William James in
his 1879 essay “Are we automata?” published in Mind, 4, 1–22.

One aspect that, in principle, could be concluded from our
study is that the power law features become less frequent as tasks
require more effort/cognitive component. Since we investigated
the edf of a synchronization index amongst MEG sensors, and if
we assume these indices represent correlated activity in brain areas
over which the sensors are positioned as expounded above, power
law scaling then denotes that synchrony has no characteristic
scale, and the absence of power law indicates that there are char-
acteristic scales in synchrony; in the case of the (right-hand side)
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tails of the distribution, the absence of power law features means
that there appear some especially high values of the magnitude of
synchrony, perhaps because of the change in coordinated activity
in certain cortical areas associated with task performance. Thus,
the possible reason why we observed decrease incidence of power
law regimes as cognitive effort augments can be explained by the
associated enhanced synchronization needed to perform the task.
In fact, Figure 1 indicates a tendency to increase synchrony during
task performance. Equally, in the Stroop task, it was previously
reported (Figures 1 and 2 in Pérez Velázquez et al., 2009) an
increase in the magnitude of phase synchrony going from the
baseline (“black ink”) to the “incongruent” condition (that is,
the most difficult of the three conditions in that task) only for
the non-ASD group, and consequently, notice in Table 2 the
reduced occurrence of tail power laws for this group as task
difficulty increased, but not for the ASD set. If some specific
cortical areas become more synchronous, this will result in high
values of the magnitude of synchrony (our R index) and therefore
the loss of scale-free features. Heavy tails have been associated
with small world features (Feldt et al., 2011), that applied to
our studies would suggest there are highly “connected” cortical
regions whereas most have low connections. Or more accurately,
because phase synchrony as evaluated here is not really a measure
of connectivity but a correlation between phases of oscillations,
those results could be interpreted as few regions with highly cor-
related phases of the oscillations (cautionary notes on the notion
of “connectivity” derived from these types of analyses have been
presented elsewhere, Perez Velazquez, 2012). It is of interest that,
in experiments in vitro, enhancing excitation using blockers of
GABAergic transmission results in deviations from the neuronal
avalanche power law observed in unperturbed brain slices (Beggs
and Plenz, 2003). It is conceivable that this in vitro manipulation
shares similar neurophysiological features with increasing cogni-
tive effort, perhaps increased activity/excitation in some cortical
regions, and therefore both results, in vitro and ours in vivo, are
complementary.

In our study we have not emphasized the possible associ-
ation of the observed power law regimes and self-organized
criticality, because, as noted above, it is still inconclusive that
power law scaling is directly related to self-organized criticality
in nervous systems. Indeed, features of critical dynamics emerge
in various situations even when the dynamics are not critical, as
shown in networks that possess a hierarchical modular structure
(Friedman and Landsberg, 2013) or a noisy feedforward structure
(Benayoun et al., 2010). While indications of criticality derived
from “neuronal avalanches” of activity (Beggs and Plenz, 2003) or
the scaling of fluctuations in functional brain imaging (Fraiman
and Chialvo, 2012) have been reported, other studies have cast
some doubt as to the methods used to assess power laws in
brain recordings (Clauset et al., 2009; Dehgani et al., 2012). For
instance, Touboul and Destexhe (2010) observed that sometimes
the scaling behavior is a consequence of the thresholding method,
which applies to amplitude-based recordings. There is doubt too
as to the generic character of this presumed criticality in nervous
tissue (Bédard et al., 2006; Beggs and Timme, 2012). To compli-
cate matters, power laws can be generated in a variety of manners
(Reed and Hughes, 2002; Marković and Gros, 2014). Nevertheless,

our finding of some signs of phenomenological bifurcations most
commonly associated with transitions from power law to non-
power law regimes, may suggest that, in some instances, our
MEG recordings display signatures of possible phase transitions
and thus provides a, perhaps indirect, support for criticality in
some instances. The observation that power law regimes are
not frequently seen may present another indication of criticality,
because in principle it is only at the bifurcation point when power
laws should be apparent, but once the transition has taken place,
other regimes can be present; this is an important point, many
times overlooked, mentioned in Beggs and Timme (2012). To
stress it again, what has been demonstrated beyond doubt is that
in systems at thermodynamic equilibrium power laws are found
only near bifurcations, but in far from equilibrium conditions,
this remains unclear. In view of what we, and others, have
been reporting with regards to the apparent mixture of regimes,
especially exponential (which is related to Poisson-type stochastic
processes) and power-law scaling, brain recordings may represent
the activity of coupled oscillator phenomena (Perez Velazquez et
al., unpublished observations) in stochastic settings (Teramae and
Tanaka, 2004; section 1.5 in Pérez Velázquez and Frantseva, 2011).
For instance, Reed and Hughes (2002) reported that randomly
observed stochastic processes exhibit tail power laws, and Deco
and Jirsa (2012) proposed that resting state networks in the brain
emerge as structured noise fluctuations in a multistable attractor
landscape.

In terms of synchronization in the brain, the presence or
absence of characteristic scales makes sense according to what
has been found regarding, for instance, the stability of cer-
tain functional nets derived from EEG recordings (Chu et al.,
2012), phenomenon which would require characteristic scales
if we assume those stable nets are almost always functionally
“connected”, whereas scale invariance makes sense too as many
brain nets have to be loosely or very transiently coordinated,
and especially when analyzing such recordings like MEG or
EEG representing global, collective activities in myriad of cells.
These neurophysiological features would support the varied
dynamic behaviors of brain networks and in general metastable
dynamics.

We have used phase synchronization in this study to evaluate
power law scaling, instead of others most commonly used such
as the size of bursts or number of spikes in neuronal avalanches.
It is difficult to ascertain what type of metric is the best suited
to characterize collective brain dynamics, but synchronization
has two advantages. First, it seems to be a reasonable metric to
scrutinize collective network dynamics, and it is and has been very
widely used to study cognition and brain pathologies. The second
advantage over other metrics that have been used in this type of
studies is that a threshold is not needed to define the character-
istic to be analyzed (it was mentioned above the problem with
threshold-based methods to assess power law regimes, Touboul
and Destexhe, 2010). Using different metrics to scrutinize for crit-
icality will be crucial in the future, considering the controversies
with the study of neuronal avalanches.

To conclude, a few comments on what these results may
indicate about ASD brain dynamics. It was noted in the
Introduction section the current debate about the classical notion

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 73 | 8

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Tinker and Perez Velazquez Autism brain synchrony characteristics

of “underconnectivity” in view of recent observations suggesting,
if something, the opposite. Since the time when specific changes in
brain dynamics were proposed to account for ASD cognitive fea-
tures, including the temporal binding deficit (Brock et al., 2002)
and disruptions of coordinated timing in cellular activity and
associated synchronization dynamics (Herbert, 2005; Uhlhaas
and Singer, 2007), many reports have appeared indicating, some-
times, contrasting evidence. This should not be surprising if we
consider the wide spectrum of autistic syndromes, and of course
the great variety in the experimental and analytical methods
used to assess brain dynamics. In our study, no main differences
were found comparing the ASD and the non-ASD participants,
other than a tendency to exhibit more synchrony in non-ASD
individuals when performing the tasks, thus having in general less
frequent power law features than in the ASD data (see percentages
in the tables). Thus, the current assortment of observations seems
to indicate that, as we already noted in previous publications
(Pérez Velázquez and Frantseva, 2011; Garcia Domínguez et al.,
2013; Pérez Velázquez and Fernández Galán, 2013), it may not be
a matter of more or less connectivity in the ASD brain, rather a
different type of brain coordinated activity that manifests in the
particular information processing characteristics and associated
special cognitive style of individuals with autism.
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