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Abstract

The networks of sexual contacts together with temporal interactions play key roles in the spread of sexually transmitted
infections. Unfortunately, data for this kind of network is scarce. One of the few exceptions, the ‘‘Romantic network’’, is a
complete structure of a real sexual network in a high school. Based on many network measurements the authors of the
work have concluded that it does not correspond to any other model network. Regarding the temporal structure, several
studies indicate that relationship timing can have an effect on the diffusion throughout networks, as relationship order
determines transmission routes. The aim is to check if the particular structure, static and dynamic, of the Romantic network
is determinant for the propagation of an STI. We performed simulations in two scenarios: the static network where all
contacts are available and the dynamic case where contacts evolve over time. In the static case, we compared the epidemic
results in the Romantic network with some paradigmatic topologies. In the dynamic scenario, we considered the dynamics
of formation of pairs in the Romantic network and we studied the propagation of the diseases. Our results suggest that
although this real network cannot be labeled as a Watts-Strogatz network, it is, in regard to the propagation of an STI, very
similar to a high disorder network. Additionally, we found that: the effect that any individual contacting an externally
infected subject is to make the network closer to a fully connected one, the higher the contact degree of patient zero the
faster the spread of the outbreaks, and the epidemic impact is proportional to the numbers of contacts per unit time.
Finally, our simulations confirm that relationship timing severely reduced the final outbreak size, and also, show a clear
correlation between the average degree and the outbreak size over time.
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Copyright: � 2012 Carvalho, Gonçalves. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Brazilian agencies: Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) (http://www.cnpq.br/),
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel (CAPES) (http://www.capes.gov.br/) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
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Introduction

The progress in medical and biological sciences by the end of

sec XIX eventually led to the identification of the organisms

responsible for the diseases, making it possible for the systemati-

zation of mathematical descriptions for epidemics. While the first

attempt to model mathematically epidemics was probably in 1760

by Daniel Bernoulli in his study of vaccination on the spread of

smallpox [1], it was Hamer who introduced the idea of mass action

[2] to model epidemics. Then Kermack and McKendrick used the

idea which evolved into the present form of the susceptible-

infective-removed (SIR) model [3], and its variants, so ubiquitous

in the theoretical description of epidemics nowadays [4,5]. As a

mass action or mean field model, the SIR model (and its SIS,

SIRS, etc, variants) assumes that all classes are superimposed in

space. Even in the more elaborated case of space distributed

classes (Fisher’s equations) it is locally assumed the superposition of

classes. However, in the last decade, it became clear that the

transmission of a disease could be influenced by the contact

network [6,7]. Such a network depends on the structure of

interactions among the individuals, which in turn may depend on

the peculiar disease. Several articles have addressed the disease

propagation problem of networks using paradigmatic examples

such as small-world [8] or scale-free networks [9]. The high

heterogeneity of some extreme topologies lead to important

consequences such as the persistence of epidemics for any value of

the spreading rate in an infinite scale-free network [10,11]. The

reason comes from the non epidemic threshold of the infinite-

variance degree distribution of such infinite network, however

human networks dubiously present such extreme behavior; for

more details see Ref [12]. General results regarding the threshold,

size and distribution of epidemic bursts were given for small-world

networks in one and two dimensions [13].

While there have been recent efforts to incorporate human

behavior into disease models (see ref [14] for a review), to

implement disease-spreading agent based models, including

attributes at real human populations sizes, is still a very difficult

task [15]. Until that level of sophistication is a reality, the study of

the spread of hypothetical diseases in real networks can be of great

help. Until recently, the complete description of a real network —

at least one that could be related to a specific disease— was

something that did not seem feasible. Consequently, the only

information at hand was statistical data such as the degree

distribution of the network associated to the disease. That is the

case of the Sweden study [16], in which a questionnaire addressing

sexual behavior was completed by 4781 subjects. Unfortunately,

that kind of questionnaire is not only subject to bias (for our

purposes, the most relevant questions are about the number of

partners in the last year and in a lifetime, the latter has a

particularly strong bias [17]), but also does not allow us to build
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the real network behind the individuals, because the subjects

represent a small sample of a larger population, the links of which

are unknown. However, some years ago, the picture of a small, but

real, sexual and romantic network became available. The

‘‘Romantic Network’’, as called by the authors [18], is one of a

few examples of a complete network, so simulation of epidemics

with it can be very important, although its limited validity must be

taken into consideration. There are other two networks more

recently available and made from real data: the Likoma network

[19] and the Internet sex network of Brazil [20]. However, from

the figures of the first one it is not possible to code the network as

we did with the romantic network. The second one was obtained

indirectly from posts to a forum and restricted to sex commerce

contacts. For a broad picture of the available human networks and

how the data were obtained see Ref [21]. Moreover, information

on the dynamic formation of links is available for the Romantic

network [22], which makes this particular example even more

interesting. If we take the static network and run a simulation of an

epidemic, with some values of infectivity and infection time, at the

end we can have for example 10% of the subjects infected. But if

we take into account the dynamics of the formation of links, what

will the final result be? In other words, how different will the final

outcome be from the static scenario? There is no answer to that

question without doing a simulation in the dynamic network and

that is one of the principal aims of the present study.

Therefore, in the present work we implement and analyze

computer simulations of the evolution of a hypothetical sexually

transmitted infection (STI) in the Romantic network. From such

simulations it is possible to evaluate the risk and impact of a

potential epidemic in this and similar networks. The analysis is

based on the specific structure of that network and it is compared

to several well known model networks, which are potentially

representative of human interactions. Once the network is

established and known, one is faced with different schematic ways

of conducting the disease spreading simulations. Consider an

infected node with some other susceptible nodes connected to it.

The different ways in which the contagion can go from this node

to its neighbors can be schematically divided into three cases: at

each time step (which can represent a day for example) it can be

through only one link, through some of them simultaneously, or

through all of them in the same period. Among the three

possibilities and for matters of simplicity we chose the first one (one

contact per time step) for all the simulations of the Results section,

leaving one specific sub-section to discuss the other possible

choices. In contrast to the usual approach of mass action models

and static networks, several recent articles [23–27] have addressed

the problem of disease propagation from the perspective of the

dynamic formation of links. As was emphasized in those researches

we believe that the timing present in all social networks is a key

factor regarding the flow of information (disease, rumors, etc) that

goes through them. Therefore one section of our study is devoted

to this subject.

Materials and Methods

Empirical network
In 2004 the first picture of an almost complete sexual network of

a social group was published [18]. This network, called by the

authors ‘‘Romantic and Sexual Network’’ emerged from data

taken from the National Longitudinal Study of Adolescent Health,

a longitudinal study of students in grades 7–12 in the US. Among

the 140 schools included in the study, 14 had saturated field-

settings. In ‘‘saturated’’ cases all students of the school took the in-

home interviews, which ask to nominate their partners, so

complete sexual and/or romantic networks could therefore be

constructed with these data. From those, one of the two largest

(N&1000) was used to depict the aforementioned network. The

data was obtained after home interviews covering a period of 18

months, where students were asked to identify their sexual or

romantic partners from a list of the student attending their school.

‘‘Jefferson High School’’ is the fake name of the only public high

school in ‘‘Jefferson City’’, a non-identified mid-sized mid-western

town of the US, with a homogeneous (all-white, mostly working

class students) and isolated community. Participating in the in-

school survey were 90% of the school roster and a total of 873

completed the questionnaires. After data was collected a network

of 573 nodes emerged, from which probably the most remarkable

feature is a ring-like component involving 288 students. The 288

nodes component emerged as a result of superimposing all

contacts among the students during the 18 month period, see

Fig. 1B. However, taking into account the temporal sequence,

James Moody published a dynamic version of this network in his

site [22]. In order to see the evolution of an hypothetical infection

both in the static and dynamic network, the animated figure cited

above was broken into its 45 frames, each one corresponding to a

period of 12 days, which for simplicity we assume evenly

distributed in time. The nodes and links between them were

identified and converted to input data for the simulation of the

epidemic models. Each frame taken individually looks very

different from the superposition of all of them (the giant static

component). To give an idea of what it looks like, we show in Fig. 2

two frames at times t1~10 and t2~34, which represent times of

low and high activity in the network, respectively. Therefore, it

could not have been guessed before the picture was finished, nor

by the researchers, neither by the participants. Besides, we

manually mapped the graphical representation of the giant

component (static and dynamic versions) and checked with Pajek

[28] that our transcription gave the same graphical representation

as the original. The ‘‘Romantic Network’’ has obvious limitations

mainly due to its small size as compared to the networks of other

important cases, such as the AIDS related sexual networks of

South Africa for example. However, in contrast to those large

networks examples, the Romantic network is an almost complete

graph of a closed community on which we have extensive dynamic

information, it is therefore an example worth studying.

Artificial networks
For the artificial networks we use the Watts-Strogatz (W-S) [29]

and Krapivsky-Redner (K-R) [30] which are good models for

representing human relations. They cover many scenarios from

ordered to disordered, and from homogeneous to heterogeneous,

respectively, by means of one control parameter. They also allow

for the easy control of the average degree. The W-S networks are

implemented starting from a ring of 288 nodes linked up to first

neighbors. We give the disorder parameter p different values from

0 (the original ordered ring) to 1 (a random network), avoiding the

break up of the component, see Fig. 1A. So all degrees of disorder

are tested including the normally accepted small-world values

(p&0:01). For the heterogeneous K-R networks we use the

redirection procedure (see Fig. 1C): at every time step, a new node

is added to the system and an earlier node i is selected uniformly,

as a possible target for attachment. With probability 1{r a

directed edge from the new node to i is created; with probability r

the edge is redirected to the ancestor node j of node i. Starting

from two connected nodes we let the network evolve until it

reaches a 288 nodes component. This model leads to a power-law

degree distribution —when it grows to large sizes— with degree

Epidemics Scenarios in the ‘‘Romantic Network’’
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exponent c~1z
1

r
, which can be tuned to any value equal or

larger than 2. The real network is bipartite (145 males and 143

females), but for all the epidemic dynamics in the real and artificial

networks we consider all nodes of the same kind, because we

assume them to be non directional networks, without distinction

between links. Apart from the size, the most relevant feature for

the implementation of model networks which have to mimic the

largest connected component of the Romantic network, is the

average degree vkw. Its value is vkw~2, so all artificial

networks were built with this same value.

Simulation of epidemics
Epidemics in these networks are studied using computational

simulations of the SIR model. For each specific network topology

and realization —in which each vertex represents a person, with

links representing the sexual relation—, one individual is randomly

chosen to be the first infected, leaving the rest in the susceptible

state. That is the initial state i.e., one node in the I state and the

other 287 nodes in the S state. The simulation proceeds as follows:

at each time step (which could represent one day or one week),

each infected person chose a partner randomly from the list of

subjects connected with him/her. If the chosen node is in infected

or removed state, nothing happens, but if is in susceptible state it

becomes infected with probability b. Such procedure mimics a

sexual contact of two persons in which one of them has an STI.

The simulation step is completed after all nodes have contacted

one of its partners, so we assume that the sexual activity is

homogeneous among the population and independent of the

number of partners. We will discuss other options later. There are

three random processes in the simulations which are implemented

by the use of a pseudo-random number generator in the computer

(we use Marsaglia random generator [31]): the selection of the first

infected among the N (288) nodes, the selection of one of the

partners of each infected node at each time step, and the stochastic

process of infection with probability b. The first two are like

throwing a dice, while the last one is implemented in a Monte

Carlo (MC) procedure: by generating a random number uniformly

in the [0,1) interval, and comparing it to b, if the number is smaller

(or equal) to b, the infection occurs, otherwise not. Besides, a MC

procedure is used previously to generate the W-S and K-R

networks. Once infected, the subject remains so for a fixed period

t —being potentially contagious to its list of contacts as the

dynamics proceed. After this period, the infected individual is

removed (or becomes permanent immune). The process is

repeated until no infected individual remains in the population.

For a given situation, the disease parameters b and t are fixed and

have the same value for all subjects. The time step, as we

mentioned before, can represent one day or one week or any other

reasonable time period. If it is one day that means that every

subject is having one intimate or sexual contact per day, which is

probably an overestimation. If it is set at a week, it is probably too

long. However the frequency related to sexual activity is absorbed

in the bt product, and a broad range of values will be tested in this

presentation.

For the static scenario, the Romantic and artificial networks are

characterized by the following quantities relevant to the SIR

model: the final size of the epidemic, R(?), the maximum value of

infected subjects or epidemic peak, Imax, the time to arrive at that

peak, tp, and the epidemic probability. All of these values were

obtained by considering only the realizations with a final value of

more than 5% of subjects infected. It is indeed the ratio between

the number of those realizations over the total which we use to

define the probability of an epidemic occurring. The number of

different realizations for each kind of network (and for each value

of bt) is two thousand, which corresponds to ten different graphs

for each kind of network and two hundred different random

sequences of the random number generator (i.e. different seed)

used to simulate the infection.

Other possibilities in relation to the Romantic network are

explored: external field, contact degree of the seed, and rules of

interaction. By external field, B, we mean the probability that a

subject within the static empirical network interacts with an

outsider, who is assumed to be infected. Therefore, the chosen

subject, selected at random from the entire population, is infected

with probability b. Obviously, B~0 is equivalent to the normal

dynamics without external excursions, while B~1 means that at

each time step someone definitely encounters an infected outsider.

Bb is then the likelihood of a spontaneous infection in the network.

We studied the influence of the degree of the seed, i.e. how the

number of connections the seed has and how that affects the

spread of the disease. The rationale for this is that someone with

many links should have more potential to infect than someone

with only one link. We think this is a very important question to

clarify before going on to epidemics in real situations. In order to

Figure 1. Networks realizations used in this work. (A) Watts-
Strogatz: from left to right, p~0 (ring), p~0:1, and p~1 (random); (B)
Romantic; (C) Krapvisky-Redner: from left to right, r~0:1, r~0:5, and
r~1. All of them have the same number of vertices, N~288, and the
same average degree, vkw~2. Figures generated with PAJEK [28].
doi:10.1371/journal.pone.0049009.g001

Figure 2. Snapshots of the network taken from frames at times
(A) t1~10 and (B) t2~34. The hatched vertices correspond to the
interacting individuals. Figures generated with PAJEK [28].
doi:10.1371/journal.pone.0049009.g002
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test this, we defined the seed individual according to its degree,

from the minimum value ki~1 to the maximum ki~9,

comparing them and the random selection of the seed. When ki

has its maximum value there is only one option for the seed,

because only one subject in the static empirical network has this

value. Then, as the degree of the seed goes down, i.e. exploring

lower values of ki, we have more options for the seed (there are

more individuals with lower values of connectivity). In these cases

we average outcomes over several initial choices of subjects. In all

cases, we calculate these over many random number sequences, so

even in the one possible initial case (ki~9) it represents the

average of different possible ‘‘histories’’, starting from this

situation.

In real social dynamics the frequency of interactions is not

uniformly distributed, i.e. one person could visit one or many of its

contacts during a fixed period of time. In order to capture this

feature in the epidemic models we face different possibilities when

an infected subject interacts with their contacts; we call them rules

of interaction. One: from all contacts, only one is chosen randomly

at each time step. Fraction: a subset of the links is selected at

random to contact at the same time step. All: all connected vertices

are contacted at the same time step.

The dynamic network brings a new scenario. The inclusion of

the dynamic formation of links modulates one of the basic

properties of the network, the degree. In order to characterize the

evolution of the dynamic network we measure (using the snapshots

of the animated gif) the degree of each node over time and we use

this data to obtain the dynamic degree distribution, Pt(k). This

distribution represents the probability that a randomly chosen

node, at a given time t, has degree k. With this quantity, we follow

the changes of the average degree over time, vkwt. Since at

different times, many sub-graph are disconnected from the giant

component, another relevant measure is the size of the largest

connected component, G. Lastly, we characterized the spread of

the epidemic in this scenario. For this, we measure the fraction of

infected nodes I . The dynamic study is done by separating the 45

frames that represent switching the links among the subjects on

and off. Examples of these frames are the two snapshots depicted

in Fig. 2 at times t~10 and t~34. Each of these frames (i.e. the

links between hacked nodes) are active for 12 days, after that the

frame is replaced by the next one, and so on. The superposition of

the 45 frames makes the giant component. As we can see in Fig. 2,

the only possible path for the infection to propagate is through the

active links, which are the ones between marked nodes. If the seed

happens to be a node with no active links at that time, for the

corresponding time window of 12 days the infection can not pass

to anybody; in other words the propagation of the infection from

the seed to one of its partners will only be possible when the link

between them is active.

Results

Static Scenario
Romantic network vs artificial networks. Before present-

ing the results we want to make two important comments. In the

graphic representation of the Romantic network originally

presented in Bearman et al. paper [18], apart from the giant

component of 288 nodes, there are many small components

ranging from pairs, triplets up to ten nodes which give a total of

573 students. However any infection started in any one of those

small components will be restricted to it. Consider the whole

network of 573 elements will be equivalent to a renormalization of

the giant component results by a 288=573 factor, which we have

checked (see Fig. 3A). The second comment refers to Figure 3B,

which clearly shows that different pairs of b and t values, but with

the same value of bt, collapse to the same point. This is well

known from the differential equation of the classical SIR model

[5], however we want to show explicitly that it holds true for

numerical simulations on static networks. So the statistical

properties of disease outbreaks depend only on the product bt
which, along with the degree distribution P(k), defines the

theoretical value of the basic reproductive number R0. Therefore,

our results will be shown in terms of bt which, as expected,

appears to be a good parameter to characterize all of them. From

a general perspective, we observe that, except for the K-R

networks with r&1 (the most heterogeneous networks), many

topologies give similar epidemic results provided that bt is below

4. This can be concluded from the comparison between the

Romantic and the W-S networks, as can be seen in Fig. 4, and the

Figure 3. Behavior of the disease spread in the (static)
Romantic network regarding. (A) Comparison between giant
component and complete network (scaled by 573=288, i.e. the complete
network/giant component size relation) and (B) the bt product. Each
point of the curves is the result of an average over 200 independent
runs (different sequences of the random number generator).
doi:10.1371/journal.pone.0049009.g003

Figure 4. Epidemic simulation of the SIR model in different
topologies. Watts-Strogatz, Romantic, and fully connected networks.
Results for (A) time to the epidemic peak, (B) maximum number of
infected subjects, (C) total number of removed or final prevalence, and
(D) epidemic probability, defined as the fraction of realizations that end
up with more than 5% of the population affected. Each point of the
curves is the result of an average of over 200 independent runs on 10
different graphs (except for the Romantic network which is only one
graph). Error bars, only displayed at some selected points, correspond
to the standard deviation over the 200 runs in the Romantic network
case. Green shadows help to visualize the variation of the outcome due
to the progressive disorder in the W-S networks.
doi:10.1371/journal.pone.0049009.g004
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K-R for rv1, as shown in Fig. 5. Moreover, if we consider a small

group of topologies, the W-S with large p (&1) and the K-R with

small r (&0), the behavior of the results, specially R(?) and the

epidemic probability (Figs. 4,5 C,D) are very similar to the

corresponding results from the Romantic network, up to values of

bt equal to 8. Considering individual realizations, the displayed

error bars in Fig. 4A–C and Fig. 5A–C correspond to the

Romantic network and give an idea of the observed dispersion

associated to its small size. We observed that the mean field (all

mixed) is the worst possible scenario from the epidemic point of

view. Any other situations, i.e., any other network structure in

which not everybody is connected even the K-R heterogeneous

networks yield a less unfavorable picture. The only exception is the

K-R network with r~1 (which would give a scale-free network for

an infinite system) but for values of bt less than 1. Comparing the

outcome between the different networks and the Romantic

network, it is possible to see that the latter does not fit into any

of the models we have tried. Nevertheless, within the uncertainties

of the fluctuation associated with the small (288 nodes) network

considered here, an epidemic in a random network obtained with

large p (&1) is statistically indistinguishable from an epidemic in

the Romantic network. On the other hand, the topology that

diverges more from the Romantic network (and from all the

others) is the K-R network with r~1. This particular value or r

gives a power law distribution network with exponent c~2 (scale-

free) for large network sizes. In the present case, however, due to

the small size of the networks, results in a star topology, very

different from the ring-like type of the Romantic network.

External field. The Romantic network was constructed

taking into account all the sexual contacts of the surveyed school

but excluding any possible contact outside the school. This section

is devoted to exploring the effect of a possible contact of a member

of the network with an infected subject from outside the network

and the effect it can have in the epidemic dynamics inside the

school. This effect is controlled by the parameter B which

represents the probability of the external excursion happening. As

can be see in Fig. 6, the effect of the external field makes the

outcome of the infection, measured by the total number of infected

individuals as a function of bt, closer to what is expected from the

standard SIR model. This suggests that the practical effect of the

external field is to make the network similar to a fully connected

network.

Degree of the seed. The results, presented in Fig. 7, are open

to interpretation. Looking at Fig. 7B,C (Imax and R(?)
respectively) we are tempted to conclude that the influence of

Figure 5. Epidemic in different topologies. Krapivsky-Redner,
Romantic, and fully connected networks. Results for (A) time to the
epidemic peak, (B) maximum number of infected subjects, (C) final
prevalence, and (D) epidemic probability. Number of runs, average per
point, and error bars as in Fig. 4. Green shadows help to visualize the
variation of the outcome due to the progressive heterogeneity in the K-
R networks.
doi:10.1371/journal.pone.0049009.g005

Figure 6. Effect of the ‘‘external field’’, B, applied to the
Romantic network. Results for (A) time to the epidemic peak, (B)
maximum number of infected subjects, (C) final prevalence, and (D)
epidemic probability. Comparison with standard mean field results in a
network of the same size. Number of runs, average per point, and error
bars as in Fig. 4. Green shadows help to visualize the variation of the
outcome as increasing the B parameter.
doi:10.1371/journal.pone.0049009.g006

Figure 7. Effect of degree of the subject chosen to be the seed
in the Romantic network. Results for (A) time to the epidemic peak,
(B) maximum number of infected subjects, (C) final prevalence, and (D)
epidemic probability. Comparison with standard mean field results in a
network of the same size. Number of runs, average per point, and error
bars as in Fig. 4. Green shadows help to visualize the variation of the
outcome as response to the degree variation of the seed subject.
doi:10.1371/journal.pone.0049009.g007
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whom is the seed, if it is more o less connected, is irrelevant —

which we have to admit is not obvious. However, the other two

figures (Fig. 7A,D), representing the time to the infection peak and

especially the last one, i.e., the epidemic probability, show a clear

divergence from low (ki~1) to high (ki~9) degree of the seed. At

bt~4 for example, we clearly see in Fig. 7C that, independent of

who the seed was, the average number of subjects removed at the

end is around 10%. Nevertheless, Fig. 7D remind us that in the

low degree case that situation only happens in 30% of instances, in

contrast to the 90% observed in the high degree case. Therefore,

as expected, the degree of the seed is a key factor in the aftermath

of disease propagation in the Romantic network.

Rules of interaction. The three different measurements

shown in Fig. 8 all point to the same general trend: from rule

‘‘one’’ to rule ‘‘all’’ we gradually approach the mean field all mixed

case, which remains as the upper limit. Even the extreme ‘‘all’’ rule

is below that limit, because subjects in the romantic network are

not fully connected.

Dynamic Scenario
Measurements. The Fig. 9A displays the degree distribution

at different times. The inspection of that figure makes it clear that

any measurement we can think of for networks will give very

different values if applied to an individual frame, instead of the

static network that results from the superposition of all the frames.

That can be appreciated in Fig. 9B, where we compare the degree

distribution at three different times around the most active frame,

with the static network degree distribution. Over time, we have:

for tv15 the interactions are only in pairs, with no connection

between different pairs at the same time; the time window

30vtv40 is where the activity increases to its maximum at t~35;

for tw40 the degree distribution returns to low values. This is an

extremely important point, because unlike some proposed models

for the spread of epidemics in dynamic networks [25,26,32], this

scenario can not be represented by an asymptotic degree

distribution. The effect is greater over the average degree,

vkwt, which has a peak value vkw~1 at t&35, but most of

the time it is much lower than the static value vkw~2 (Fig. 9C).

Probably the most important effect of such measurements —in fact

the reason for that difference— is that in all frames, many

individuals have no contacts at all (k~0). Following the behavior

of random networks [33], we observed that the variation of the

average degree directly influences the giant component size, G.

Another important measurement, related to the dynamic forma-

tion of links, is the fraction of time that each individual participates

in the sexual activity, which is represented in Fig. 9D. That figure

shows, for example, that while the majority of the students

(*90%) participates less than 45% of the time, a small fraction of

them (*10%) are active for more than 55% of the total time.

Dynamic disease. The first result (see Fig. 10A,F) is

remarkable: for the wide interval of bt values explored, the final

size of the epidemic is always much smaller than the correspond-

ing static results. For the comparison to be possible we used the

same unit of time (a day) for the time step in both cases; each of the

45 frames in the dynamic scenario lasts 12 days, which gives a total

of 540 days. So, in the static scenario we use a total of 540 time

steps. Practically, no epidemic will be observed in this scenario. In

fact, only when the infection time t is close to the entire duration

of the dynamics, we observe some effects in the susceptible

population, although it is very weak indeed. Therefore, it is

interesting to consider an extreme epidemic case, the SI epidemic

dynamics, which means a lifetime infection time, so the relevant

time is the duration of the dynamics. Some diseases, notoriously

infection by HPV virus, have this kind of dynamics where t is

equal to the lifetime. This is what is presented in Fig. 10 with

parameters t~540 and b~0:2, except in Fig. 10A where all

possibles values of these two parameters are explored (up to the

extreme value b~1, which means a certain infection every time an

S-I contact is tried). Even with this extreme setup the total number

of infected individuals at the end is under 15%. However, when

simulations using every student as a seed are averaged, the number

of infected subjects is not greater than 5% (see Fig. 10B and 10C).

Fig. 10D shows the number of infected subjects at the end of the

Figure 8. Effect of the different rules of interaction on. Results
for (A) time to the epidemic peak, (B) maximum number of infected
subjects, (C) final prevalence, and (D) epidemic probability. Comparison
with standard mean field results in the same network. Number of runs,
average per point, and error bars as in Fig. 4.
doi:10.1371/journal.pone.0049009.g008

Figure 9. Characterization of the dynamic network. (A) Evolution
of the degree distribution of the giant component of the Romantic
network, when the frames are taken separately. (B) Degree distribution
at three selected times (t~20,30,35) compared with the static degree
distribution. (C) Average degree vkwt and largest connected
component size G=N (normalized by N~288) as a function of time.
(D) Cumulative distribution of interaction times, as a fraction of the total
time.
doi:10.1371/journal.pone.0049009.g009
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observation time as a function of the number of seeds, and we see

that even with more than 50 over 288 seeds (17%) the final

proportion of infected subjects is under 80%. All together these

results strengthen the key role of the dynamic formation of pairs,

which presents a novel scenario for modeling epidemics in

networks. In the dynamic network, the total number of infected

individuals is strongly affected by the initial condition, as can be

seen in Fig. 10E. In this case, whoever is the seed is very

important, not because of the personal activity, but due to the

particular sequence in which the individuals connect to each other.

It is the whole sequence which matters, not a particular initial

subject. From the dynamics we see that the number of infected

subjects grows substantially from tw360. Figure 10F shows the

comparison between the static and dynamic Romantic network

within the SI disease. The difference is remarkable. The static

network, for any of the transmission rules, is much more efficient

for the disease propagation than the dynamic version.

Discussion

In this study we addressed the problem of STI epidemics in a

real network (the so called ‘‘Romantic or Jefferson School

network’’) in two ways. First, to compare epidemics in this

network with epidemics in model networks to see whether the

latter (or which one of them) represent a real network. Particularly,

if the disease propagation is sensitive enough to details in the

topology. The second aspect, the effect of the dynamic formation

of links and how this can affect the epidemic dynamics, is far more

relevant, especially because of the conclusions we have drawn.

Regarding the static network and the comparison between the

Romantic network and the model networks, the maximum

incidence and the final size or prevalence of the epidemic are

sensitive to the topology for relatively large values of bt (w5). For

smaller values of bt (v4), the different topologies —except the

high heterogeneous ones— are hard to distinguish in terms of

epidemic outcome. Even more if we consider the wide dispersion

of the overall results due to the small size of the networks (bars in

Figs. 4,5). Homogeneous networks, like the Watts-Strogatz with

p&1 and the Krapvisky-Redner with r&0 are statistically similar

to the Romantic network in terms of epidemic outcome. This is

valid when bt is not very large and it is due to the peculiar average

value of the degree (vkw~2) which makes all the structures ring

or tree like, as can be seen by direct eye inspection of Fig. 1 (A-

right, B, and C-left). The main difference between these artificial

networks and the real network is the ring structure. However,

there is only one relatively large ring. Among all artificial static

networks tested in this study, we can conclude that the Watt-

Strogatz network with p&1 (random network with vkw~2) is

indistinguishable from the Romantic network in terms of disease

spread, for values of bt up to 8. A marginal conclusion is that any

network structure, in which not everybody is connected, including

the K-R heterogeneous networks, gives a less severe scenario than

the mean field all mixed result. The only exception is the K-R

network with r&1 (and for btv1:5) because it approaches a scale-

free network. Considering the external field, the degree of the

seed, and rules of interactions, our results suggest that the

epidemic dynamics is affected by all of these variants. Regarding

the external field, an individual contacting an infected subject from

outside the network brings the results closer to that of the fully

connected network. Concerning the degree of the seed (or the

sexual activity of the starter of the infection) its importance is

confirmed in the Romantic network. At bt~4 for example, the

chances of a burst involving more that 5% of the subjects triples

when going from the least to the most connected as the seed. The

higher the degree of the seed the shorter the time to reach the peak

of infection. Our results on frequency of contact (rules of

interactions) confirm that the spread of an epidemic not only

depends on the number of contacts available, but also on the

frequency of contact with them [34], and as the frequency

increases the results approach the mean field results.

In the dynamic network situation, that is considering the

sequence of connections and disconnection between the subjects,

we arrive at very interesting conclusions. We have shown with

simulations (the only possible tool in this case) that in the dynamic

network we always observe less severe epidemics. Not only because

are there periods in which we see only small isolated components

(at those times the infection can not jump from one component to

the others), but the time windows in which they are connected

(and not all at the same time) are relatively short. In other words,

relationship timing directly influences the course of the epidemics

[24]. Clearly, the propagation of a disease that depends on the

links, which are created for definite time intervals, will be strongly

affected by such dynamical processes. We have seen that the

average degree in the dynamic case has a peak of value vkw~1,

but usually it is much lower than the static value vkw~2.

Besides, in the dynamic case the distribution of interaction times,

Figure 10. Epidemics simulations on the ‘‘Dynamic Romantic
network’’. (A) Final fraction of non-infected subjects vS(tf )w as a
function of the infective time t and the infection probability b (white
region means almost no infection); (B) distribution of infection size
(fraction of total ever infected) depending on the seed subject; (C)
histogram of the distribution (B); (D) average infection size (fraction of
total ever infected) vs. the number of seeds; (E) fraction of infected
subjects vs time; different runs with different seeds in gray, average in
black; (F) average number of infected subjects vs time, comparison
between dynamic network and static network with different dynamics
rules. Each point of the curve is the result of an average over 200
independent runs. In figures B–F t~540 and b~0:2 (notice however
that figure A shows that for such value of t the dependence on b is
weak above 0:2).
doi:10.1371/journal.pone.0049009.g010

Epidemics Scenarios in the ‘‘Romantic Network’’

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49009



absent in the static case, is crucial for disease propagation. By

testing a hypothetical extreme epidemic situation, the Susceptible-

Infective model with maximum infection probability, we obtained

a final number of infected subjects of around 15% in the worst

case (starting the infection with the most connected subject).

However, the average number of infected subjects, from all the

possible choices of the seed student is not bigger than 5%. Put

together, these results show the key role of the dynamic formation

of pairs, which brings a different scenario from previous results in

static networks. Remarkably, in the dynamic network the total

number of infected individuals is strongly affected by the initial

condition. In this case, whoever the seed is, is important, not due

to personal activity, but because of the particular sequence in

which the individuals connect among themselves. It is the whole

sequence that matters, not the particular subject. Moreover,

comparing Fig. 9C and Fig. 10E we see a clear correlation

between them. Thus, the dynamic of the largest component is

related to the evolution of the fraction of infected subjects. Like a

random network, the giant component follows a close relation with

the average degree, as can be seen comparing vkwt and G=N in

Fig. 9C. This leads us to conclude that the fraction of infected

people is related to the dynamics of the average degree, which can

be important for public health. Additionally, we observed that the

static network, in any of the transmission rules, is much more

efficient for the disease propagation than the dynamic version. The

effect of the dynamic formation (and break) of links is quite clear:

A disease that depends on the structure of the links which are not

available all the time, but in very specific time windows, will be

influenced by them; but in a ‘‘desirable way’’, because the worst

scenario is always the static one, when all links are available all the

time.

Although our results are of a restricted applicability, because of

the small size of the network, we emphasize that the Romantic

network is one of the rare examples of real and complete sexual

network of a whole (closed) community. So even though we can

not make a direct extrapolation of all the present results to a larger

sexual network, like the AIDS related ones of South Africa for

example, we think that our conclusions, regarding the similarity

with random networks and the key role of the dynamics

modulating the epidemic outcome, are important results with

probably general validity.
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