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It is been over 100 years since glial cells were discovered by Virchow. Since then, a great

deal of research was carried out to specify these further roles and properties of glial cells

in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes,

microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an

important role in supporting and enabling the effective nervous system function in CNS.

After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this

review, we will discuss in detail about the role of glial cells in the healthy CNS and how

they respond to SCI.
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INTRODUCTION

Spinal cord injury (SCI) is a devastating and debilitating neurological and pathological condition
with temporary or permanent major motor, sensory and autonomic dysfunctions. It is estimated
that there are about 250,000∼500,000 people suffering from SCI around the world every year.
Besides, ∼90% of these cases are caused by traumatic factors, despite the proportion of non-
traumatic SCI appears to be growing (1). People with SCI are 2–5 times more likely to die
prematurely than people without SCI. Meanwhile, these people with SCI have worse survival rates
in low- and middle-income countries. In recent years, more and more studies have begun to
reveal the pathophysiology, molecular mechanisms, and possible therapeutic strategies of spinal
cord injury. Over the past 50 years, it is gradually realized that glial cells have critical roles in
health and disease. Glial cells were first postulated by Virchow in the 19th century and called this
unique tissue “Nervenkitt” (2). With time, scientists have been committed to specify these further
roles and properties of glial cells in the central nervous system (CNS). The glial cells include four
major groups: astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells
(OPCs). A large number of studies show that these glial cells play an important role in SCI. In this
review, we will discuss how these glial cells function in the healthy CNS and respond to SCI.

GLIAL CELLS ARE VITAL IN HEALTHY CNS

Glial cells play a vital role in supporting and enabling effective nervous system function in
the healthy CNS. During the development of the CNS, glial cells can constitute a cellular
framework that contributes to the development of the nervous system, and induce the survival and
differentiation of neuron. The main glial cells types include astrocytes, microglial, OLs, and OPCs.
They cooperate with each other and perform different important functions in CNS (Table 1).

ASTROCYTES IN THE HEALTHY CNS

Astrocytes are the most abundant glial cells in CNS that have a large amount of complicated
and fundamental functions in the healthy CNS. According to the differences in their cellular
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TABLE 1 | Function of glial cells in the healthy CNS.

Glial cells types Function in CNS

Astrocytes Construction of BBB and BSB, regulating blood flow (1)

Formation, function, and connection of synapses (2)

Synthesis and maintenance of the ECM (3)

Neuronal development, migration and differentiation,

function (4)

Energy provision (5)

Fluid and ion homeostasis (6)

Microglia Guide neurons and axons in forming prenatal circuits (7)

Control synaptic density, connectivity and plasticity (8)

Phagocytose cellular and myelin components (9)

Regulate development and responses of neuron and

other glial cells (10)

OLs Myelination of Axons and speed conduction velocity

(11, 12)

Support the function and survival of axons (13, 14)

Information processing (15)

OPCs Differentiate into oligodendrocytes (12)

Modulate neuronal activity (16)

Immunomodulatory capacity (12)

BBB, blood brain barrier; BSB, blood spinal barrier; ECM, extracellular matrix; OLs,

oligodendrocytes; OPCs, oligodendrocyte progenitor cells.

morphologies and anatomical locations, astrocytes are divided
into two types: protoplasmic astrocytes with the morphological
feature of several stem branches are found in gray matter
while fibrous astrocytes with the morphological feature of many
long fiber-like processes are found in white matter (3). In
addition, both astrocyte subtypes have critical roles in health and
disease. Astrocytes contribute to the construction of blood-brain
barrier (BBB) and blood-spinal barrier (BSB) by combining with
endothelial cells and perivascular pericytes through astrocytic
endfeet (4–6). Previous studies have indicated that astrocytic
endfeet show specialized feature characteristic as the astrocytic
endfeet membrane expresses a large number of water channel
aquaporin 4 (AQP4) and the Kir4.1 K+ channel, which is
important for the properties of BBB (7–9). The Kir4.1 and AQP4
both bind to α-Syntrophin that could contribute to the inductive
influence on BBB (10). Astrocytes are proved to produce a series
of humoral agents, such as glial cell line-derived neurotrophic
factor (GDNF), transforming growth factor-β (TGFβ), and
angiopoetin-1 that can induce the aspects of BBB phenotypes
(11–13). What’s more, it is now recognized that the control of
blood flow in brain is mediated by astrocytes. Neuronal activities
may result in releasing potassium ions from astrocytic endfeet,
extracellular K+ concentration can dilate the vessels through
hyperpolarizing smooth muscle cells (14). The rise of Ca2+

concentration in astrocytic endfeet can also constrict vessels (15).
Astrocytes contribute to the formation, function, and

connection of synapses as astrocytes have a close connection with
synapses. The “tripartite synapse” concept was first described
by Alfonso Araque, it includes the classic pre- and post-
synaptic neuronal structures and astrocytes which should be

viewed as integral modulatory elements of tripartite synapses
(16). The role of astrocytes in synapses formation was first
studied in 1995. Meyer-Franke et al. observed that retinal
ganglion cells (RGCs) make very few synapses by purifying
and culturing RGC neurons, however, RGCs can make many
synapses if they are cultured in an astrocyte feeder layer or a
culture medium that is previously conditioned by astrocytes (17).
On the basis of the RGC culture system, subsequent studies
identified that multiple factors secreted by astrocytes could
control the formation of synapses. Thrombospondins (TSPs),
the extracellular matrix (ECM) proteins secreted by astrocytes,
have been proved to contribute to the formation of synapses
(18, 19). By adding purified TSPs to cultured neurons greatly
increased the number of synapses. In addition, Cagla Eroglu et
al. showed that the von Willebrand factor A (VWF-A) domain
of the calcium channel subunit α2δ1 interacts with the EGF-like
receptors common to all TSPs which enhanced synaptogenesis
both in vitro and in vivo (20). Hevin, another synaptogenic
protein secreted by astrocytes, also induces an increase in the
number of structural synapses by bridging presynaptic neurexin-
1alpha (NRX1α) (21). Astrocytes can control the specific aspects
of synapses function through many different signals, such as
positive [cholesterol, glypican 4,6, ECM, tumor necrosis factor
a (TNF-a)] and negative (SPARC, TSP) signals (22–27). For
example, astrocyte-secreted cholesterol plays an important role in
regulating the glutamatergic presynaptic function by complexing
to apolipoprotein E-containing lipoproteins (27). Besides,
astrocyte-secreted glypican 4/6 has an ability to upregulate
the surface level of alpha-amino-3-hydroxy-5-methyl isoxazole
propionic acid (AMPA) receptors (AMPARs) at synapses and
increase the synaptic activity in neurons (26). As we all know,
synapses can undergo rapid formation and elimination under
certain conditions. Recent studies have identified some potential
mechanisms, such as direct and indirect role of astrocytes in
mediating synapses elimination. Microglia have been shown to
recognize and phagocytose C1q/C3-coated synapses (28), and
astrocytes would express TGF-β to induce the C1q expression
which is critical for the phagocytic functions of microglia,
and finally astrocytes mediate microglial-dependent synapses
elimination (29). Meanwhile, astrocytes contribute to synapses
elimination through MEGF10 and MERTK pathways (30).

Astrocytes are actively involved in the synthesis and
maintenance of the ECM by secreting various substances in CNS.
Tenascin-C, a glycoprotein, is expressed by astrocytes which
can regulate cell growth, adhesion, and migration (31). Besides,
astrocytes produce a large number of proteoglycans, such as
chondroitin sulfate proteoglycans (CSPGs), which are suited for
regulating neural development (32).

Other aspects of the role in CNS, such as astrocytes can
store glycogen granules and make important contributions to the
metabolism in CNS (33). The astrocyte-neuron lactate shuttle
hypothesis which explains how astrocytes support neurons
energy metabolism in detail. Glutamate released by neurons
during the neuronal activity can bind to glutamate transporters
(GLT-1), expressed by astrocytes, whichmediate astrocytes taking
up glucose from the blood circulation via glucose transporters
(GLUT1). Then, glucose is subsequently metabolized to lactate
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and pyruvate. On the one hand, intracellular lactate can be
shuttled to extracellular matrix via monocarboxylate transporter
(MCT) 1 and MCT4 expressed by astrocytes and then could
be absorbed by neurons through neuronal MCT2. Neuronal
lactate can participate in the neuronal cell energy metabolism
and promote ATP synthesis in the mitochondria directly or after
conversion to pyruvate (34, 35). Similarly, ammonium (NH+

4 )
released by neurons increase lactate levels in astrocytes which can
be shuttled to neurons (36). In summary, as astrocytes possess
unique cellular properties, they play a vital role in the function
and integrity of CNS (Table 1).

MICROGLIA FUNCTIONS IN THE HEALTHY
CNS

Debate on microglial origin still continues in this field, recent
studies showed that microglia were derived from erythromyeloid
precursors in the yolk sac through Pu.1- and Irf8-dependent
pathways (37). Microglia are crucial for the development of
CNS. They arise around the same time as neurons and critically
contribute to the establishment of complex neuronal networks.
During the early development of CNS, microglia act as guidepost
cells to guide neurons and axons to form prenatal circuits
(38). Moreover, microglia are involved in the regulation of
surrounding cellular milieu by secreting trophic factors [brain-
derived neurotrophic factor (BDNF) (39), insulin-like growth
factor-1 (IGF-1) (40), and hepatocyte growth factor (HGF) (41)]
which could promote the survival of neurons. For instance, the
best-known trophic factors, IGF-1, can enhance the survival
of cortical neurons. On contrary, inhibiting IGF-1 signaling
(minocycline, CD11b-DTR, and Cx3cr1GFP/GFP) would result in
the cell death in layer V (40). Besides, microglia are the sensors
of damage as they can phagocytose apoptotic neuron driven by
both TAM receptor ligands Gas6 and protein S (42). Additionally,
they engulf excess new born neural progenitor cells via primary
phagocytosis which is beneficial to the homeostasis during the
development of CNS (43).

Microglia play an important role in the control of synaptic
density, connectivity, and plasticity. Microglia can selectively
remove synapses from injured neurons which is termed “synaptic
stripping” (44, 45). This process is identified to be mediated
through several mechanisms. C3 receptors (CR3) expressed by
microglia can bind to C1q and C3, the complement proteins
expressed by damaged cells, which could lead the microglia
to be involved in the active removal or “stripping” of these
synaptic contacts and finally contribute to synaptic elimination
(46). Microglia can also activate “synaptic stripping” through
the fractalkine/CX3CR1 signaling pathway (47). Except for the
receptor binding mode, microglia can also shape the strength and
plasticity of synapses by releasing reactive oxygen species (ROS)
(48), nitric oxide (NO) (49), TNF-α (50) as well as neurotrophic
factors [BDNF (51)]. For example, microglia-derived BDNF
activates Trk in spinal neurons that could impact synapse activity
(52). Above all, microglia are vital for neuronal health and
survival during the development of CNS (Table 1).

OLs AND OPCs FUNCTIONS IN THE
HEALTHY CNS

Another major glial cell type is OLs, generated from OPCs, are
fundamental to the myelin formation in CNS. The newborn
OPCs can express DM-20 during embryonic development,
and first appear in a restricted region of the embryonic
ventral neural tube at embryonic day 12.5 in mice (53).
Then, they finally differentiate into OLs through a complicated
process. Importantly, OPCs are observed to differentiate into
OLs throughout development and adulthood. Except for
differentiating into OLs, OPCs can tile throughout the entire
CNS and constitute ∼5% of all cells (54). The fate of OPCs to
keep as precursor cells or differentiate into OLs is influenced by
many factors, such as mechanical environment and extracellular
matrix elasticity (55–57). OPCs continue to be precursor cells
by self-renewal to achieve homeostasis in CNS. Besides, OPCs
express GABA receptors, kainite glutamate receptors, and AMPA
receptors to form neuron-OPC synapses which modulate the
neuronal activity (58, 59).

Oligodendrocytes are crucial for maintaining the function and
integrity of axons. The most important function of OLs is to
generate myelin sheath, as we all know that myelin sheath is
an extension structure of the OLs plasma membrane wrapping
the nerve axons. Myelination is a complex and tightly regulated
process: OLs in the growth zone of CNS undergo proliferation
under certain factors, then contact and arrange along the axon,
respectively. The inner and outer plasma membrane wrapping
the nerve axons interact with each other through cytoplasmic
channels which pushes the inner plasma membrane layer after
layer to generate the compact myelin. Once the appropriate
number of plasma membrane wrapping per axon is generated,
this process is called myelination (60). Functionally, the myelin
sheath enables fast and efficient nerve conduction in the nervous
system and provides metabolic support to the axons (61).

Oligodendrocytes have a physiological role in supporting
the function and survival of axons that is independent of
myelination. In the absence of PLP and DM20, the membrane
proteolipids of myelin sheath that are integral for myelinated
axons, myelination is not disrupted but with subsequently
widespread axonal dysfunction (62). Subsequent studies found
that PLP/DM20 was important for OLs in supporting the axonal
energymetabolism (63, 64).With the further study, it is nowwell-
recognized that OLs are essential for supporting the axons energy
metabolism (65). The mechanisms how OLs provide neuronal
metabolic support are described in detail as following. OLs can
express a large number of MCT1, which can mediate metabolic
support to neurons by co-transporting lactate and pyruvate (66).
OLs can take up glucose from the extracellular matrix viaGLUT1
expressed by OLs and then convert glucose into lactate and
pyruvate by glycolysis. Besides, glutamate released by neuron
after neuronal activity can bind to NMDA receptors (NMDARs)
expressed by OLs which subsequently result in an increased
glucose uptake as well as more lactate and pyruvate production
in OLs (67). Moreover, the gap junctions between astrocytes
and OLs may contribute to OLs metabolic support as lactate
and glucose derived from astrocytes could be shuttled into OLs

Frontiers in Neurology | www.frontiersin.org 3 May 2022 | Volume 13 | Article 844497

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wang et al. Spinal Cord Injury

through gap junctions, such as Cx32-Cx30, Cx32-Cx26, Cx47-
Cx30, and Cx47-Cx43 (68–70). All the functions of OLs and
OPCs in healthy CNS are shown in Table 1.

GLIAL CELLS RESPOND TO SCI

As discussed above, glial cells, such as astrocytes, microglia,
OLs, and OPCs all are crucial for the development of CNS and
maintaining homeostasis in healthy CNS. They have different
and vital physiological functions for the CNS due to their
cytological properties and cellular interactions. After SCI, the
noxious mechanical forces cause tissue damage, such as cells
death and disrupt the homeostasis of local CNS, as a result, these
events trigger diverse multi-cellular responses and can lead either
to the neural repair or secondary cellular injury. Glial cells exhibit
various pathophysiological functions to repair the damage and
maintain local microenvironment homeostasis due to various
internal and external factors after SCI. Next, we will describe in
detail the response of various glial cells to SCI.

ASTROCYTES: REACTIVE ASTROCYTES
AND GLIAL SCAR FORMATION

Astrocytes, as discussed above, are essential to maintain the
homeostasis in healthy CNS. Similarly, astrocytes also play an
important role after SCI. After SCI, various intrinsic and extrinsic
factors subsequently regulate astrocytes into reactive astrocytes
with significant morphological, phenotypical, and functional
changes, such changes are mainly based on different factors,
such as the injury severity, the injury time, and the distance of
astrocytes to the lesion. Reactive astrocytes have characteristics
in morphology, such as cellular hypertrophy, thicker processes,
and increased expression of intermediate filament proteins.
Besides, the degree of changes are proportional to the stimulus
intensity (71). On the basis of discrete gene-expression identifiers
and functions, different types of reactive astrocytes have been
recognized, such as A1, A2, and scar-forming astrocytes (72,
73). For example, complement component 3 is highly expressed
by A1 astrocytes, and S100A10 is a specific hallmark for A2
astrocytes while type I collagen for scar-forming astrocytes
(73, 74). Compared with the normal astrocytes, accumulating
evidence suggests that reactive astrocytes show various abnormal
functions, such as releasing proinflammatory chemokines and
cytokines (71).

Molecules and Signaling Pathways
Implicated in Formation of Reactive
Astrocytes
Mechanical forces usually cause direct damage to the normal
tissue and disrupt local homeostasis when patients or animals
undergo SCI, which on the other hand triggers multitudinous
multi-cellular responses. Although it is incompletely understood
how mechanical forces and damaged tissues initially trigger
the activation of astrocytes after SCI. The previous study has
identified that astrocytes are susceptible to membrane distortions
and debris (75). Traumatic membrane deformation could

TABLE 2 | The activation of astrocytes.

Factors Signaling pathways Molecules and gene

expression

Membrane stretching

(17–19)

ATP (19), debris (20)

IL-1β, IL-1α, IL-2, IL-6,

IL-10, IL-17, TNF-α,

IFN-γ, CNTF, TGFβ1,

INFγ, IL-2, LIF, C1q,

oncostatin M, SHH

(21–26)

Glutamate,

norepinephrine (27)

NO, ROS (26)

MCP-1, FGF-2, IGF,

MMP-9, Sox9 (4)

Amyloid-beta (28),

α-synuclein (29)

Estrogens (30),

glucocorticoids (31)

LPS, Toll-like receptor

ligands (32)

Laminin, fibronectin (33)

Erythropoietin,

ET-1 (34)

STAT3 signaling (35)

NFκB signaling (36)

TGF-β signaling (37)

JNK/c-Jun signaling

(34)

MAPK Signaling (38)

Olig2 (39)

SOC3 (40)

RhoA (4)

Smads (4)

cAMP (41)

IGF1-calcineurin (42)

CCL2, CCL3, CCL4, CCL5,

CXCL1, CXCL2, CXCL10,

CCL12, CXCL20 (37, 43, 44)

VEGF, FGF-2, BDNF, GDNF

(24, 45, 46)

IL-1β, IL-6, IL-10, TNF-α,

INF-γ, TGF-α, TGF-β, CNTF,

LIF, CLCF1 (23, 37, 43, 47,

48)

CSPGs, IGFBP6, BMP,

connective tissue growth

factor, collagen I, fibronectin,

MMP-9 (49–52)

ROS, NO, NOS (53–55)

GABA, glutamate, d-serine

(56–58)

Nestin, vimentin, GFAP (49,

52)

EGFR, KCa3.1, AQP4 (59–

61)

STAT3, NF-κB, Olig2, SOX9,

mTOR, SOCS-1, SOCS-3

(40, 47, 48)

Adenosine, glutathione (4)

IL, interleukin; CNTF, ciliary neurotrophic factor; LIF, leukemia inhibitory factor; SHH,

Sonic hedgehog; MCP-1, Monocyte chemoattractant protein-1; FGF-2, fibroblast growth

factor-2; NO, nitric oxide; ROS, reactive oxygen species; IGF, insulin-like growth factor;

LPS, lipopolysaccharide; MMP-9, matrixmetalloproteinase-9; ET-1, endothelin-1; VEGF,

vascular endothelial growth factor; BDNF, brain derived neurotrophic factor; GDNF, glial

cell derived neurotrophic factor; CSPGs, chondroitin sulfate proteoglycans; BMF, bone

morphogenetic protein; GFAP, glial fibrillary acidic protein; EGFR, epidermal growth

factor receptor.

activate mechanosensitive ion channels and result in the rapid
influx of extracellular calcium and sodium in astrocytes (76–78).
Other studies show that plasmamembrane stretching can rise the
release of intracellular calcium and ATP via extracellular signal-
regulated protein kinase (ERK) and PKB/Akt signaling pathways
(79, 80). Besides, astrocytes may also release endothelin-1 (ET-
1), isoprostanes, and matrix metalloproteinases 9 (MMP-9) after
stretch-induced injury (81, 82). More studies are needed to have
a deeper understanding of these.

Accumulating studies have identified that a lot of molecules,
such as chemokines, cytokines, transcription factors, and growth
factors are the mediators for the activation of astrocytes (factors
are shown in Table 2). For example, proinflammatory cytokines,
such as TNF-α, interleukin (IL)-6, and IL-1β initially trigger
the reactivity of astrocytes during the acute phase after SCI
while other molecules maintain astrocytes reactivity in the later
stages (83–85). Additionally, it is worth mentioning that reactive
astrocytes can release triggering molecules, such as TNF-α, IL-6,
andMMP-9, which in turn activate more astrocytes (86). Besides,
other glial cells, such as activated microglia, are identified to
induce the activation of astrocytes by secreting various factors,
such as Il-1α, TNF, and C1q (87). Other related molecules
involved in the activation of astrocytes are shown in Table 2.
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Many signaling pathways are closely involved in the activation
of astrocytes, such as STAT3, TGF-β, NF-κB, JNK/c-Jun, and
MAPK (more signaling ways are shown in Table 2). Here we
will mainly introduce TGF-β and STAT3 signaling pathways. The
STAT3 signaling pathway is one of the most important signaling
pathways to mediate the formation of reactive astrocytes. Mice
with STAT3 knock-out in astrocytes showed the attenuated
upregulation of GFAP, unsuccessful cell hypertrophy, and failed
scar formation after SCI (88). Other groups also identified that
selective STAT3 deletion in mice could limit the migration
of astrocytes and result in the widespread infiltration of
inflammatory cells, degeneration of neurons, and demyelination
of axons that can lead to severe motor deficits. However,
by the activation of STAT3 signaling pathway, they observed
that reactive astrocytes migrated rapidly around the lesion and
secluded inflammatory cells that lead to a notable improvement
in functional recovery (89). These results provided a potential
intervention target of STAT3 signaling pathway in the treatment
of SCI. TGF-β signaling pathway greatly contributes to the
formation of reactive astrocytes. As discussed above, TGF-β is
a key upstream trigger in the formation of reactive astrocytes.
The previous study has shown that TGF-β could increase
the expression of anti-regenerative molecules, such as CSPGs,
laminin, and fibronectin by several-fold in reactive astrocytes
(90). Interestingly, fibrinogen could act as a stimulating factor
which can activate TGF-β signaling pathway, as a result, it
could induce the activation of astrocytes and formation of
CSPGs (91). In addition, it could induce astrogliosis by injecting
fibrinogen into the mouse cortex (91). On contrary, with the
genetical ablation of fibrinogen in mice, they found inhibited
TGF-β activation and hampered glial scar formation (91). Other
signaling pathways are shown in Table 2.

Reactive Astrocytes Expression Change
and Their Functions
Recent years, numerous studies have identified that the activation
of astrocytes could lead to the change of functions with releasing
a range of molecules, such as cytokines [TNF-α, IL-6, IL-10, IL-
1β, etc. (85, 92, 93)], chemokines [CCL2, CCL3, etc. (94, 95)],
growth factors [BDNF, GDNF, etc. (96, 97)], toxic amino acids
[GABA and glutamate (98, 99)], extracellular matrix [CSPGs,
collagen I, fibronectin, MMP-9, etc. (100–102)], and intermediate
filaments [Nestin, vimentin, and GFAP (100, 102)], which would
have a significant influence on the spinal cord microenvironment
after SCI (Table 2). The molecules released by reactive astrocytes
can activate more normal astrocytes into reactive astrocytes and
contribute to glial scar forming. On the other hand, they also
affect other cells, such as neurons, OPCs, and microglia through
a variety of complexed effects (71).

Over the past years, reactive astrocytes were thought to be
detrimental for recovery after SCI. However, recent studies have
identified that reactive astrocytes also contribute to SCI repair.
Here, we will discuss the beneficial and detrimental effects of
reactive astrocytes after SCI (Table 3).

Reactive astrocytes are considered to be a defense mechanism
of astrocytes responding to SCI. After SCI, BBB breaks down
and becomes leaky to endogenous and exogenous blood-borne
macromolecules that can result in disastrous consequence. These

TABLE 3 | Positive and negative influence of reactive astrogliosis.

Positive influence of reactive astrocytes

Seclude inflammatory cells and limit the extent of inflammation (62)

Repair damaged BSB and modulate blood flow (62)

Clearance of debris, alleviation of glutamate excitotoxicity (53, 63)

Mediate neuroimmune response (32)

Formation of glial scar (64, 65)

Defend against oxidative stress (64)

Contribute to remyelination (66)

Negative influence of reactive astrocytes

Obstruct axon growth, facilitate axon degeneration (67)

Formation of glial scar (64)

Inhibition in NPCs and OPCs (68)

Contributes to the development and persistence of chronic pain (69)

changes will mediate reactive astrocytes to upregulate Sonic
hedgehog (SHH) and activate signaling cascades to repair the
tight junctions of the BBB (103). Interestingly, with the absence
of reactive astrocytes, it was failure in repairing the damaged
BBB (104). At acute stage after SCI, reactive astrocytes migrate
rapidly around the lesion to seclude inflammatory cells and limit
the extent of inflammation that has a notable improvement in
functional recovery (89). Further, Jill et al. found significantly
increased and prolonged infiltration of inflammatory cells
around the lesion with selective and conditional reactive
astrocytes ablation in mice (104). Various endogenous and
exogenous factors result in the release and accumulation of
cell debris and neurotoxic factors in the extracellular spaces
after SCI. Recently, reactive astrocytes were identified to play
a crucial role in removing these cell debris and neurotoxic
factors. More importantly, reactive astrocytes have the ability to
phagocytose dead cells in vitro and in vivo via the upregulation
of ABCA1 (105, 106). Reactive astrocytes can also reduce the
impact of glutamate excitotoxicity on neurons and OPCs by
clearing excess glutamate from the blood or necrotic neuronal
cell death (107). Besides, reactive astrocytes can affect immune
cells through releasing various molecules, such as TNF-α, TGF-β,
and proteoglycans. CSPGs have a close relationship with immune
activity as they can recruit chemokines and growth factors that
enhances the connection of immune cells (71).

Glial scar formation has been recognized for many years.
After SCI, inflammatory cells (macrophages, neutrophils, and
lymphocytes), fibrotic cells, and other cells, such as pericytes,
fibroblasts, and OPCs migrate rapidly into the lesion, and
subsequently newly proliferated, elongated reactive astrocytes
come around the lesion to form a border which could separate
necrotic tissue from healthy tissue (108–110). The border formed
by reactive astrocytes can limit further expansion of the lesion
and restrict inflammatory cells within damaged tissue that will
protect the surrounding viable neural tissue from secondary
damage (111). Further, selective inhibition of astrocyte reactivity
results in the widespread propagation of inflammatory cells
beyond the lesion.
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In addition to the above protective effects, reactive astrocytes
also have detrimental effects. As discussed above, reactive
astrocytes can form a physical barrier to confine the lesion,
however, it can also obstruct axonal growth. Besides, reactive
astrocytes secrete inhibitory proteins, such as CSPGs, which are
considered to be the major inhibitors of axonal regeneration.
CSPGs derived from reactive astrocytes inhibit the growth of
axons in vitro, and axonal regeneration is observed to stop at
CSPG-rich regions in vivo. On the contrary, Chondroitinase
ABC, by removing CSPG glycosaminoglycan (GAG) chains,
attenuates the inhibitory activity of CSPGs, which is shown
to facilitate axonal regeneration and functional recovery (112).
Further, Hyunjung Lee et al. found that using thermostabilized
Chondroitinase ABC through a hydrogel-microtube scaffold
system could enhance the axonal regrowth, sprouting, and
improve functional recovery after SCI (113). Additionally, other
studies have shown that CSPGs inhibited axonal regeneration
while the inhibition of CSPGs could improve functional
recovery (114).

Reactive astrocytes play a modulatory role in NPCs and OPCs
post-SCI. OPCs have extremely powerful ability in remyelination
as they can proliferate and differentiate into OLs that will
replenish a large number of lost OLs after SCI. Recently,
Justin R Siebert et al. have discovered that astrocytes-derived
CSPGs highly inhibited the migration and differentiation of
OPCs in vitro, and the number of OPCs surrounding the
lesion significantly increased when treated with the enzyme
chondroitinase ABC (115). Other study also proved that CSPGs
had a dampening effect on the outgrowth and differentiation of
OPCs, and treated with chondroitinase ABC could completely
eliminate this inhibition (116). In addition to CSPGs, other
molecules, such as BMP and ET-1 released by reactive astrocytes
can also inhibit the differentiation of OPCs and finally influence
remyelination (117, 118). Besides, reactive astrocytes have a role
in inhibiting the neuronal differentiation of NPCs by expressing
insulin-like growth factor binding protein 6 (IGFBP6) and
CSPGs (119).

MICROGLIA/MACROPHAGES:
NEUROINFLAMMATION

Microglia/macrophages maybe the most potent modulators to
launch the innate immune response after SCI. As discussed
above, we know that microglia are resident in CNS while
macrophages derive from the periphery. However, activated
microglia and macrophages are difficult to distinguish through
the morphology or antigenic markers following CNS injury,
so they are referred as microglia/macrophages. Over the past
years, the studies have revealed that microglia/macrophages
had both the detrimental and beneficial effects on neurological
recovery due to their different phenotypes at different stages after
SCI (120).

Microglia/Macrophages Phenotypes
Microglia/macrophages phenotypes are mainly determined by
the focal lesion and new stimuli can change the phenotypes.
It is now well-acknowledged that microglia/macrophages are

activated into different functional phenotypes after SCI. M1/M2
dichotomy is the earliest and simplest concept. M1 macrophages
(or ‘classically’ activated macrophages) are activated by the
prototypical T helper 1 cytokine (TH1), interferon-γ (IFNγ), and
lipopolysaccharide (LPS), which typically release inflammatory
cytokines (IL-1, IL-6, TNFα, etc.), chemokines (CCL8, CCL
15, CXCL 10, CXCL 11, etc.), and the high levels of
oxidative metabolites (ROS and NOS). On the contrast, M2
macrophages (or “alternatively” activated macrophages) are
activated by the prototypic TH2 cytokine IL-4 and IL-13, which
can produce numerous protective factors (TGFβ, IL-10, IL-
1Ra, etc.) and clear cellular debris (120–122). However, the
status and functional phenotypes of microglia/macrophages are
much more complicated in vivo. Accumulating studies have
identified the multiformity in M2 phenotype subpopulations,
such as M2a, M2b, and M2c phenotypes, each phenotype
is characterized by unique physiological features and distinct
biological functions (121). Nowadays, microglia/macrophages
in many other situations did not show a clear M1 or M2
phenotype or showed phenotypic plasticity during the disease
progression. Single cell techniques and other new tools are,
contributing to the understanding of polarization heterogeneity
(123). By single-cell analysis, Lindsay M Milich at el. identified
four microglial subtypes in the injured mouse spinal cord,
which were labeled homeostatic, inflammatory, dividing, and
migrating microglia. Homeostatic microglia were identified by
several annotated markers of steady-state microglia, such as
P2ry12, Siglech, and Tmem119. Inflammatory microglia were
identified by the low expression of purinergic receptor P2ry12
and increased expression of Igf1. Dividing microglia expressed
low levels of P2ry12, increased expression of Msr1, and high
levels of cell cycle–related genes, such as Cdk1. Migrating
microglia had the low levels of P2ry12, and the high levels of
Msr1 and the growth factor Igf1 (124). Besides, two macrophage
subtypes were named chemotaxis-inducing macrophages and
inflammatory macrophages in addition to the border-associated
macrophages based on their gene ontology terms. Both subtypes
expressed the lysosomal gene Cd63, however, chemotaxis-
inducing macrophages preferentially express heme oxygenase
Hmox1 while inflammatory macrophages express Apoe (124,
125).

Microglia/Macrophages Respond to SCI
Activated microglia could release a large number of pro-
inflammatory cytokines, chemokines, and other cytotoxic factors
after SCI. They respond to SCI within minutes by producing
pro-inflammatory molecules which can lead to the influx of
multiple inflammatory cells from the circulation. Neutrophils
are the first circulating leukocytes to infiltrate into the lesion
and are prominently located in severely damaged site (126, 127).
Besides, peripheral macrophages will infiltrate into the lesion
and help clear apoptotic cells (127). However, these neutrophils
and macrophages may be destructive to the lesion as they can
produce various molecules, such as MMP-9 and disrupt the
functions of the BSB (128). Besides, T and B lymphocytes are
found to infiltrate into the injured lesion and cause a systemic
autoimmune response (129). Here, we will mainly discuss the
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harmful and beneficial effects of neuroinflammation induced by
activated microglia/macrophages after SCI.

Activated M1 microglia/macrophages induce neurons death
and contribute to the secondary damage by releasing pro-
inflammatory factors, such as IL-1β, IL-6, TNF-α, CCL5, and
iNOS. Here we mainly elaborate IL-1β and TNF-α that play a
detrimental role after SCI. IL-1β expressed by astrocytes and
microglia was detected to reach peak at 12 h after SCI in
rodents (130). IL-1β and TNF-α were proved to involve in the
recruitment and activation of peripheral immune cells and the
activation of astrocytes and microglia. In rats, the infusion of IL-
1βmarkedly enhanced the cortical neuronal loss, on the contrast,
it could significantly inhibit neuronal damage by IL-1 receptor
antagonist (IL-1ra) (131). Other study also identified that IL-
1β contributed to ischemic brain damage while IL-1ra markedly
protected the focal cerebral from ischemia in the rat (132).
TNF-α, another proinflammatory cytokine, expressed mainly by
activated microglia/macrophages, contributes to neuronal cells
death after SCI by binding to TNFRI and TNFRII (133). In
addition, soluble TNFRI, which can compete with TNF-α by
binding to TNFR, eventually reduces the neuronal cells death
(133). Tiziana Genovese et al. indicated that the genetic inhibition
of TNF-α significantly reduced the degree of inflammation, tissue
injury, and apoptosis in an experimental model of spinal cord
trauma (134). Besides, overexpressing TNF-α was shown to
mediate OLs, OPCs death, and myelin vacuolization which could
finally result in spontaneous demyelination (135).

ActivatedM2microglia/macrophages have anti-inflammatory
and neuroprotective effects by increasing the expression of anti-
inflammatory molecules, such as IL-10, TGF-β, IGF-1, and
BNDF. For example, IL-10 shows a wide range of regulatory
activities in response to SCI. Tiziana Genovese et al. found that
there was a significant augmentation of TNF-α, IL-1β and S100β
which worsened the recovery of limb function in IL-10 KO
mice (136). Recently, the group of Jessica Y Chen delivered IL-
10 into mice SCI model by loading an implantable biomaterial
scaffold. They observed that IL-10 could significantly reduce
damage to tissue and improve subsequent motor deficits (137).
IGF-I is a potent neurotrophic factor released by activated
microglia/macrophages with anti-inflammatory response. The
previous study showed that IGF-I gene transfer after SCI
could inhibit the loss of neurons and significantly improve the
neurological dysfunction (138). Besides, other study showed that
BDNF and IGF-I could significantly enhance neuroprotective
effects, such as repairing BSCB damage, alleviating edema, and
cells injury by the downregulation of nNOS after SCI in rat
model (139).

OLs AND OPCs: DEMYELINATION AND
REMYELINATION

OLs and Demyelination
In addition to the immediate trauma damage, there is a prolonged
secondary damage after SCI. OLs are quite susceptible to changes
in the surrounding microenvironment after SCI which can result
in the necrosis, apoptosis, and autophagy of OLs (140–142).

Acute OLs death has previously been investigated to occur
within 15min after injury and the number of OLs steadily
declined by 7 days post-injury (143, 144). Previous studies
have identified several aspects of subsequent damage that can
lead to the death of OLs. Ischemia is an apparent reason to
result in OLs death in the damaged areas of white matter
(145). Ischemia and reperfusion contribute to the formation of
free radical, such as reactive oxygen and nitrogen species, and
OLs are particularly vulnerable to the oxidative stress. After
SCI, ROS (hydroxyl radicals and superoxide) and RNS (nitric
oxide, peroxynitrite, and nitrated protein) were detected to be
at the increased levels (146–148). By oxidizing protein, lipids
and nuclear material, ROS and NOS damage OLs which results
in the necrosis and apoptosis of OLs. Besides, excitotoxicity is
another major factor leading to the OLs death after SCI. The
glutamate will reach a toxic level after SCI that can lead to the OLs
death in vitro and in vivo. Glutamate binding to AMPA/kainate
glutamate receptors expressed in OLs leads to OLs death via
receptor overactivation and the specific inhibitors of AMPA
receptors can block OLs death (149). As discussed above,
extracellular ATP released by multiple cell types after SCI can
also contribute to OLs death. ATP is proved to cause OLs death
via an activation of calcium-permeable P2X(7) and treatment
with P2X(7) antagonists reduces demyelination and improve
neurological symptoms (150). In addition, recent studies reveal
that proinflammatory cytokines potentially contribute to OLs
cell death. An overexpression of TNF-α was observed to induce
OLs apoptosis which could contribute to the degenerative change
and demyelination via TNFR1 and TNFR2 expressed in OLs
(151). Other cytokines, such as IL-2, IL-1, IFNγ, and proNGF, all
contribute to OLs apoptosis (142). In addition to apoptosis and
necrosis, autophagy is activated in SCI, and Beclin1, a promoter
of autophagy, is highly expressed in OLs (152).

Oligodendrocytes are fundamental to myelin formation as
described earlier. The injury or death of OLs results in the
degeneration of myelin sheaths and the support of axons by
OLs would be disrupted after SCI which eventually lead to
the widespread demyelination of spared axons. As a matter of
fact, accumulating studies have demonstrated that demyelination
indeed occurred in animal models and human after SCI (153,
154). For example, demyelinated axons were seen within 2 weeks
after injury in paraplegic domestic animals in previous study
(153). More interestingly, the extent of demyelination mainly
contingents on the type and severity of injury. The normal
myelinated axons are characterized by the regular distribution
of sodium and potassium channels, after demyelination, the
distribution of sodium and potassium channels is disrupted
that contributes to an axonal conduction block (155). Besides,
demyelination is identified to increase voltage-gated Na+
channels, which may result in Na+ influx during action
potential propagation. To eliminate the excess Na+, more ATP
is required which can disrupt the axonal internal energy balance.
Additionally, the excess Na+ may lead to axonal Ca2+ overload
via the Na+/Ca2+ exchangers. These events eventually result in
axonal degeneration (156, 157). Besides, the demyelinated axons
are vulnerable to damage in the microenvironment after SCI and
ultimately lead to axonal degeneration (158).
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TABLE 4 | Factors regulate remyelination via different effects on OPCs.

Classifications Factors Effect on OPCs

Growth factors PDGF-A; EGF; FGF-2; IGF;

Nrg-1 (70–72)

Survival ↑

Neurotrophins BDNF; NT-3 (73, 74) Proliferation↑

Chemokines CXCL1; CXCL12 (74) Migration ↑

Cytokines CNTF; LIF; IFN-γ; IL-17A; IL-1β

(66, 75, 76)

Differentiation ↑

Transcription OLIG1; OLIG2 (77)

factors SOX5; SOX6; SOX8; SOX9;

SOX10 (78, 79)

ZFP191; ZFP488 (80)

MYT1; MASH1; NKX family; YY1

(81–83)

PDGF-A, platelet-derived growth factor; Nrg-1, neuregulin-1; IL, interleukin; BDNF, brain

derived neurotrophic factor; FGF-2, fibroblast growth factor-2; IGF, insulin-like growth

factor; EGF, epidermal growth factor; NT-3, neurotrophin-3; LIF, leukemia inhibitory factor.

OPCs and Remyelination
After SCI, OPCs are multipotential stem cells which can
differentiate into remyelinated cells to involve in axonal
remyelination and contribute to the glial scar formation.
McTigue et al. assessed the proliferation of NG2+ cells and OLs
by bromodeoxyuridine incorporation and they found increased
proliferation of NG2+ cells persisting throughout the first 4 weeks
post-injury while the number of OLs continuously reduced by 7
days post-injury. However, they detected an increased number of
OLs at 14 days post-injury. These results showed that proliferated
NG2+ cells may differentiate into OLs after injury (159). Besides,
the study using fate mapping confirmed that 30% of new
OLs responsible for myelin regeneration were derived from
OPCs while OPCs differentiate into the majority of myelinating
Schwann cells (160). Other group also revealed that OPCs
from the PDGFRα-expressing lineage could be transformed into
functional myelinating Schwann cells after SCI (161). Moreover,
by using genetic fate mapping, Hackett et al. found that ∼25%
of astrocytes were derived from NG2+ cells in the glial scar by 4
weeks after SCI (162). It is worthmentioning that the functions of
OPCs are intricately modulated by a complex network including
various factors (Table 4). We will not go into further discussion
here. In addition to OPCs, the endogenous NPCs can also
contribute to OLs replacement as they will be activated and
migrate into the lesion after SCI (163, 164).

Remyelination occurs spontaneously on residual axons after
SCI. Remyelination is difficult to detect until genetic fate
mapping approaches are applied, the scientists can distinguish

newmyelin from preexistedmyelin via labeling newmyelination.
Assinck et al. found that spontaneous remyelination was induced
by OLs and myelinating Schwann cells in mice after SCI (160).
Besides, other group detected remarkably clear visualization
of spontaneously regenerated myelin in vivo (165). However,
endogenous remyelination was limited due to multi-factors
(166). Nashmi et al. found that the spontaneous remyelination
in the injured white matter was non-optimal and incomplete
because the newly formed myelin around the injured axons was
thinner than normal myelinated axons (167). Recent studies
have uncovered that multiple factors affected remyelination,
such as (1) the myelinating OLs derived from OPCs are
inadequate (168), (2) OLs maturation and myelination are
limited (142), (3) axonal ensheathment and remyelination
is influenced (169), and (4) OPCs, neural progenitor cells
(NPCs) are affected by the unfriendly microenvironment (166).
Therefore, more endogenous mechanisms of remyelination are
needed to be explored.

CONCLUSIONS

Glial cells play a crucial role in maintaining the function and
homeostasis of the CNS. Once the homeostasis of the CNS is
disrupted, glial cells will respond to the different kinds of damage
by multiplying, differentiating, activating, and so on. Nowadays,
based on the animal models of SCI, we have gained a better
understanding of the pathophysiological changes of glial cells
after SCI. For example, after SCI, various factors lead to the
activation of astrocytes, which can secrete various molecules,
such as cytokines and chemokines in response to SCI. Besides,
multicellular and multi-molecular components are involved in
forming glial scar that has beneficial and detrimental effects in
axonal regeneration and neuro-inflammation. Therefore, an in-
depth exploration of the role of glial cells in SCI is conducive
to the development of SCI repair strategies. Further studies
should develop novel targets and strategies that contribute to the
post-SCI reparative responses of glial cells.
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