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Human existence can be viewed as an “animal in a microbial world.” A healthy interaction 
of the human host with the microbes in and around us heavily relies on a well-functioning 
immune system. As development of both the microbiota and the host immune sys-
tem undergo rapid changes in early life, it is not surprising that even minor alterations 
during this co-development can have profound consequences. Scrutiny of existing 
data regarding pre-, peri-, as well as early postnatal modulators of newborn microbiota 
indeed suggest strong associations with several immune-mediated diseases with onset 
far beyond the newborn period. We here summarize these data and extract overarching 
themes. This same effort in turn sets the stage to guide effective countermeasures, such 
as probiotic administration. The objective of our review is to highlight the interaction of 
host immune ontogeny with the developing microbiome in early life as a critical window 
of susceptibility for lifelong disease, as well as to identify the enormous potential to 
protect and promote lifelong health by specifically targeting this window of opportunity.
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iNTRODUCTiON

A key function of the immune system is to interact with and respond to the environment (1). 
Microbes are a major part of this environment. In fact, all animals harbor diverse, host-specific 
microbial communities, each discretely assembled in organ-specific microhabitats across nearly all 
parts of the body (2). Not surprisingly then, the host–microbiome interphase was found to be key 
for optimal immune function in adults (3, 4). However, emerging data strongly indicate that the 
most formative period for this interaction occurs very early in life (5–8), possibly starting even 
before birth (9, 10). One of the first detailed longitudinal surveys of the intestinal microbiota in its 
first year of postnatal development found a rapidly changing succession of bacterial taxa beginning 
with aerobes such as Streptococcus and Staphylococcus in the first week of life that soon are replaced 
by obligate anaerobes like Prevotella and Veillonella, which then continue to feature prominently 
into adult life (11). A later seminal work compared the genetic potential, or microbiome, of babies 
compared to adults across geographically distinct populations and found that with dramatic shifts 
in colonization early in life also came functional shifts, while infant bacteria contain folate synthesis 
genes, those in adults contain more genes for folate metabolism and cobalamin, vitamin B7, and B1 
synthesis (12). Since then, the development of microbiota throughout infancy has been the topic of 
numerous reviews (13–16).
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Given the rapid changes of the microbiome in early life 
(16), even minor perturbances during this highly dynamic 
phase could have negative long-lasting consequences (17). For 
example, in atopy, an at least partly immune-mediated disease, 
alterations of the microbiota in early life appear to be the culprit 
(18). Specifically, atopic infants harbor fewer Bifidobacteria, 
Lactococci, and Enterococci as early as 1 week of age as compared 
to non-atopic controls (19); and infants diagnosed with atopy at 
5 years of age had been less likely colonized at 1 week of age with 
Bacteroides adolescentis and Lactobacilli Group I as compared to 
non-atopic infants (20). Furthermore, colonization at 1 month of 
age with E. coli and C. difficile is associated with increased risk of 
eczema in first 2 years of life, and for C. difficile specifically with 
recurrent wheeze, allergic sensitization, and atopic dermatitis 
at 2 years (21). How such differences in the microbiota lead to 
clinically symptomatic atopic disease is not understood, but given 
the underlying immune pathogenesis of atopy, the mechanisms 
likely involve altered immune ontogeny (22). One recent study 
identified newborns with a distinct microbiota enriched in fungal 
species Rhodotorula and Candida together with decreased relative 
abundance of Bifidobacterium, Lactobacillus, and Akkermansia 
who suffered an increased risk for atopy at 2  years of age and 
physician-diagnosed asthma at 4 years of age. Moreover, sterile 
fecal waters from such at-risk infants induced a higher propor-
tion of IL-4-secreting compared to IFNγ-secreting adult CD4+ 
cells, linking fecal metabolites to possible immune cell alterations 
that could play a role in increased asthma risk for these children 
(23). Other studies have linked particular early-life microbiota 
to variation in immune ontogeny later in infancy. For example, 
newborns colonized with Bacteroides fragilis express lower levels 
of TLR4 and TLR2 mRNA in their peripheral blood leukocytes at 
1 year of age and produce lower levels of inflammatory cytokines 
(24). However, in another study, infants with a greater abundance 
of Bacteroides dorei in the microbiota during infancy displayed 
a higher incidence of inflammatory diseases (25). As these 
contrasting results involve distinct human populations as well 
as different strains of Bacteroides, they caution against general-
izing properties of different, but related microbial species across 
populations.

Assigning molecular cause–effect relationships to alterations 
of the microbiome with impact on the developmental trajectory 
of the immune system is difficult given the complexity of the 
systems involved and the rapidity with which each changes (5, 
26). However, B. fragilis is an exception as it provides one of the 
best studied examples of a human commensal driving immune 
ontogeny. Specifically, polysaccharide A (PSA), a sphingolipid 
specific to B. fragilis, was among the first bacterial products 
shown to induce maturation of CD4+ T cells in both the mucosa 
and spleens of germ-free mice (27). B. fragilis PSA in particular 
was shown to play a critical role in neonatal immune develop-
ment, where colonization with PSA-expressing B. fragilis was 
necessary for regulatory T cell (Treg) development and invariant 
NKT cell inhibition in the intestine—the absence of which led 
to exacerbated inflammation in adulthood (28). Importantly, 
colonizing adult mice with B. fragilis failed to correct this defect 
(28), indicating critical early-life window of susceptibility for 
the microbiota to educate the immune system (5). This is again 

reflected on the clinical level, where differences in microbiota at 
3 months of age better predict atopic outcome at 1 year than the 
microbiota collected at 1 year (29), and microbiota at 3 months 
predict milk allergy resolution at 8 years of age better than micro-
biota collected at 6–12  months (30). Further evidence for the 
existence of a critical early-life window was found when studying 
the effects of early-life microbial exposure on NK cell phenotypes, 
where conventionalization of germ-free mice at either 1 week or 
3 weeks of life resulted in higher splenic IFNγ-expressing CD4 
cells, and higher frequencies of NK and NKT  cells compared 
to conventionally housed mice (31). Immune-regulatory genes 
were also underexpressed in ileal tissues of the same mice after 
conventionalization at 1 or 3 weeks of age (32). Clostridial species 
(specifically, Clostridium clusters IV and XIVa) have also been 
shown to induce Treg accumulation in mouse colons if present 
during specific early-life periods. Colonizing mice with these 
bacteria at two weeks of age protects them from colitis in adult-
hood and lowers their systemic IgE levels (33). On the other hand, 
exposure to segmented filamentous bacteria (SFB) in early life 
of mice is uniquely able to induce large numbers of Th17 cells 
(34) using a mechanism dependent on their adherence to the 
intestinal epithelium (35). Through induction of Th17 cells, SFB 
were also shown to exacerbate autoimmune arthritis in colonized 
germ-free mice (36). While the role of SFB, or similar bacteria 
in the neonatal period has yet to be defined, one survey of SFB 
abundance across species and ages found SFB to colonize humans 
by 2 years of age, but could no longer be found after the third year 
of life suggesting a possible early-life restricted colonization for 
these bacteria in humans (37).

While much of the necessary detailed knowledge is still amiss, 
current data clearly support the notion that perturbations of 
microbiota in the early-life imprint the host immune phenotype 
for a long time (maybe lifetime) and can manifest as immune-
mediated disease later in life. We here extract overarching themes 
of how pre-, peri-, as well as early postnatal environmental modu-
lators of newborn microbiota associated with changes in immune 
ontogeny that predispose to disease; given the little data there are 
on this topic, we focus on those disease states for which existing 
data suggest this to be a plausible if not reasonable connection. In 
doing so, we also begin to delineate the windows of opportunity, 
knowledge of which should help guide to target research efforts 
into mechanisms and interventions. The goal of this review then 
is to highlight the potential harm as well as benefit of early-life 
alteration of the host immune–microbiome interaction and its 
long-lasting impact on homeostasis and health.

IN UTERO COLONiZATiON iNFLUeNCeS 
iMMUNe DeveLOPMeNT AFTeR BiRTH

The dogma of a sterile intrauterine environment as necessary 
for normal, healthy term pregnancies was recently challenged 
when bacteria were found in human placental membranes (38, 
39), amniotic fluid and umbilical cords (40) as well as meconium 
(41, 42) of healthy term newborns. Even more surprising was the 
finding that these fetal tissues contained not a random collection 
of microbes but an organ-specific microbiome. Specifically, the 
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TABLe 1 | effect of perinatal perturbances on newborn’s microbiota.

Perturbance Sampling age Microbiota trends

Cesarean delivery First week 
of life

Fewer Bifidobacteriaceae, 
Enterobacteriaceae, Bacteroides, 
and Lactobacilli, and greater relative 
abundance of Haemophilus, Veillonella, 
Clostridiaceae, and Klebsiella (66)

First 3 months 
of life

Fewer Bacteroidaceae and greater 
abundance of Clostridiaceae (with more 
striking differences for emergency vs. 
elective C-sections) (70)

First 12 months 
of life

Fewer Bacteroidales other taxa like 
Clostridiales and more abundance of 
Enterobacteriaceae (68)

Intrapartum 
antibiotic exposure

Day 3 of life Reduced Bacteroides and 
Parabacteroides, increased abundance of 
Enterococcus and Clostridium (70)

Day 7 of life Reduced bacterial diversity with lower 
levels of Bifidobacteria and Bacteroides, 
and higher levels of Enterobacteriaceae or 
Streptococcaceae (77, 78)

Day 7 and 30 
of life

Reduced proportions of Bifidobacteria 
and increased proportions of 
Enterobacteria; no changes in 
Lactobacillus and Bacteroides at any 
time (80)

Neonatal antibiotic 
exposure

First weeks 
of life

Increased abundance of 
Enterococcaceae (70, 77–80)

Formula feeding Reduced abundance of Bifidobacteria 
and Lactobacilli (85)
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human placenta harbors a unique microbiome with a taxonomic 
profile that is most similar to the oral cavity of the mother (41, 
43). Previously, maternal oral flora had only been thought to be 
associated with preterm delivery or stillbirth, not healthy term 
feti (44–46). However, using in  situ hybridization, bacterial 
organisms are detectable in 70% of the placental membranes that 
harbor no sign of inflammation (chorioamnionitis) (39). And in 
a cross sectional study designed to randomly sample the placental 
basal plates at delivery revealed via histological analysis that of a 
total of 195 human pregnancies, Gram-positive as well as Gram-
negative bacteria of diverse morphologies were detectable in 27% 
(47). Transmission of bacterial DNA from the oral cavity of the 
mother to the fetus was directly proven when genetically labeled 
bacteria orally inoculated into pregnant mice could be detected 
by PCR in the meconium of the pups delivered by C-section 
(42). While transmission of maternal microbial products (not 
live microbes) during pregnancy across the murine placenta to 
the fetus can be enhanced by the presence of maternal antibodies 
(10), the mechanism that promotes transfer of live maternal oral 
flora across the placenta to the fetus has not yet been elucidated.

Given not all the human placentas of term pregnancies exam-
ined contained bacteria (39, 47), and the fact that germ-free mice 
deliver their litter at term (48), it is likely that a placental and fetal 
microbiome may not be necessary to carry normal pregnancies 
to term, but serve another function, such as shaping the devel-
opment of host immune responses in the offspring (9, 49). For 
example, germ-free newborn mice born to mothers transiently 
colonized by E. coli during pregnancy are better able to avoid 
postnatal hyper-inflammatory responses and also more readily 
curtail systemic invasion with intestinal microbes than offspring 
born to non-colonized dams (10). Maternal colonization appeared 
to reprogram intestinal transcriptional profiles in the offspring 
including increased expression of genes encoding epithelial anti-
bacterial peptides as well as metabolism of microbial molecules; 
gestational colonization also increased intestinal group 3 innate 
lymphoid cells as well as F4/80+CD11c+ mononuclear cells 
(10). The data of this study support the notion that the maternal 
microbiota and its products transferred to the fetus prepare the 
newborn for optimal host–microbial mutualism, rather than 
solely enhancing antibacterial immune responses (10).

The findings summarized above suggest that actively modulat-
ing the maternal microbiome via probiotics during pregnancy 
may provide avenues to modulate immunity in her offspring. For 
example, in a randomized double-blind placebo-controlled trial 
where 29 women who were to undergo an elective C-section at 
term received Lactobacilli and/or Bifidobacterium lactis 14 days 
prior to delivery, the presence of the specific probiotic admin-
istered orally to the mother was detectable in the placenta, the 
amniotic fluid, as well as the meconium of the offspring (50). 
Furthermore, administration of the probiotic to the mother was 
associated with changes in the expression of Toll-like receptors 
(TLRs) in the placenta and the infant meconium (50). In particu-
lar, a reduced TLR7 mRNA expression was detected in intestinal 
samples of infants whose mothers received B. lactis, while the 
combination of B. lactis with Lactobacillus GG was associated 
with decreased TLR6 mRNA expression in the fetal intestine (50). 
Moreover, oral supplementation with Lactobacillus rhamnosus 

or B. lactis probiotics during pregnancy significantly increased 
cord blood interferon-gamma (IFNγ) production as compared 
to the placebo group (51). However, given that the presence of 
bacterial products in fetal tissues was only recently discovered, 
the relevance of in  utero colonization for clinical outcomes in 
humans has not yet been determined.

PeRiNATAL MeDiCAL iNTeRveNTiONS 
PROFOUNDLY ALTeR THe NewBORN 
MiCROBiOMe wiTH LASTiNG iMPACT ON 
iMMUNe DeveLOPMeNT AND HeALTH 
OUTCOMeS

Delivery mode (cesarean vs. vaginal delivery) and intrapartum 
antibiotic use represent two rather common perinatal events that 
significantly alter a newborn’s microbiota, immune ontogeny, and 
health outcomes even later life (see Tables 1 and 2).

Cesarean Delivery (CD)
Cesarean deliveries have increased globally from 6.7% in 1990 
to 19.1% in 2014, with rates above 30% in several countries 
such as the United States, Brazil, and China (52). While CD can 
certainly be lifesaving for indications such as placenta previa and 
uterine rupture, the growing use of CD has been under increasing 
scrutiny as data suggest that increased use of elective primary 
cesareans for low-risk pregnancies can be associated with 
increased morbidity and mortality to mother and child compared 
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TABLe 2 | effect of perinatal perturbances on newborn’s health.

Perturbance Health condition and/or disease associated Age at onset Reference

Cesarean delivery Type 1 diabetes, celiac diseases, childhood and adult obesity, asthma, allergic disease, 
bronchitis

First 2 years of life to adult life (54–63)

Antibiotics exposure (before 
6 months of age)

Increased risk for corticosteroid-treated wheezing, necrotizing enterocolitis, late-onset 
sepsis, early mortality, obesity, and exacerbation of hypersensitivity to pneumonitis

First year of life—school age (108–113, 117)

Formula feeding Increased risk for diarrheal disease, mortality, diabetes, and overweight. Possible 
association with a higher occurrence of early-onset inflammatory bowel disease, atopic 
disease, and ankylosing spondylitis when compared to breastfed infants

First year of life up to 8 years 
of life

(84, 97, 103)

4

Amenyogbe et al. Early-Life Host–Microbiome

Frontiers in Pediatrics | www.frontiersin.org May 2017 | Volume 5 | Article 111

to spontaneous vaginal delivery (53). Further, and more relevant 
to this review, CD has been associated with range of immune-
mediated diseases in the offspring, such as an increased risk for 
type 1 diabetes (54, 55), celiac disease (55), childhood and adult 
obesity (56–58), asthma (59, 60), and allergic disease (61, 62). 
CD may also be associated with susceptibility to infections, as 
CD born infants are more likely to be hospitalized for bronchitis 
throughout the first 2 years of life (63). In all this, the microbiota 
has often been implicated as a driver of these various immune-
mediated diseases.

The vagina provides vaginally delivered (VD) newborns 
with their first ex utero microbial inoculum. The skin and oral 
microbiota of VD newborns moments after birth, and rectum 
24 h after birth, closely resembles the mother’s vaginal micro-
biota (64). In contrast, CD infants’ microbiota most closely 
resembles skin microbes and is no more like their mother’s than 
to another women’s skin microbiota. For example, in Swedish 
infants and their mothers, 72% of operational taxonomic units 
(a DNA sequence-based classification of bacteria) detected in 
stools of VD infants at 1 week of age could also be found in the 
mother’s stool; this was reduced to only 40% for CD infants 
(65). In a recent meta-analysis, microbiota of CD newborns was 
found to be less diverse within the first week of life, harbored 
fewer Bifidobacteriaceae, Enterobacteriaceae, Bacteroides, and 
Lactobacilli, and greater relative abundance of Haemophilus, 
Veillonella, Clostridiaceae, and Klebsiella than VD infants (66). 
Furthermore, increased abundance of Clostridiaceae was detect-
able up to 2 months, and both lower diversity and relative abun-
dances of Bifidobacteria and Bacteroides were detectable up to 
3 months of age. However, the microbiota of CD and VD infants 
became increasingly less distinguishable over the first 3 months 
of life, suggesting an equalizing influence of the environment. 
This has again been noted in more recent studies, where the 
microbiota of infants differed by mode of delivery at birth for 
the nares, mouth, and skin but not for meconium, with few dif-
ferences still seen at 6 weeks of age (67). And another survey of 24 
VD and 19 CD newborns showed that while the stool microbiota 
of both groups converged by 2 years of age, CD infants were less 
colonized by Bacteroidales during the first year of life, while other 
taxa such as Clostridiales and Enterobacteriaceae became more 
abundant (68).

It is interesting to note that microbiota of elective vs. emergency 
cesarean deliveries can often be not distinguished. Only one small 
study reported lowest bacterial diversity among three infants 
delivered by elective CD compared to three infants delivered by 
emergency CD, which were more similar to VD infants (69). In 

another study, the skin, nares, mouth, and meconium or stool 
microbiota of infants were surveyed alongside their mothers at 
the same four sites in addition to the vagina at birth or 6 weeks of 
age (67). Here, the differences seen by delivery mode at birth were 
most apparent for CD infants born without labor, compared to 
CD or CD after labor onset. However, the sample size of this study 
also was limited, as only 13 mother–infant dyads were sampled 
at the 6-week time points for combined labored- and unlabored-
CD compared to 40 VD diads. In a more highly powered study 
comparing 17 elective CD, 23 emergency CD, 40 VD infants born 
to mothers given intrapartum antibiotic prophylaxis (IAP), and 
96 VD infants not exposed to any antibiotics found the opposite, 
namely, that both elective and emergency CD infants harbored 
fewer Bacteroidaceae and greater Clostridiaceae at 3  months of 
life compared to VD infants irrespective of IAP exposure, but 
these differences were more striking for emergency CD infants 
rather than elective. Moreso, these differences persisted up to 
1  year of age more in emergency CD infants compared to any 
other group (70). As such contradictory findings may be due to 
sample size, larger cohorts are needed to provide more insight 
into colonizing differences between elective vs. emergency CD 
infants, together with changes due to antibiotic use alone—espe-
cially since the effect of CD on the microbiota overall has been 
minimal—explaining only 2% of total variance in the first year of 
life (68) and less than 4% even at birth (67). Large, well-defined 
cohorts will be necessary to capture these differences.

However, such equalization was not seen for immune 
responses, where differences between CD and VD infants remain 
detectable up to 2 years of age. For example, human CD newborns 
harbor fewer IgA, IgG, and IgM-secreting cells throughout the 
first year of life (71), as well as lower levels of Th1-supporting 
chemokines CXCL10 and CXCL11 (72), lower levels of IFNγ and 
IL-8, and lower CD4+ T-cell responses to tetanus toxoid (73) over 
the first 2 years of life. Mouse studies further support imprinting 
of immune differences in the immediate period after CD vs. VD. 
Mice delivered by CD display distinct microbiota at weaning, 
but not later in adulthood. On the contrary, immune differences 
persist from the newborn period into adulthood, where CD mice 
display a lower tolerogenic mucosal immune profile with fewer 
Tregs and IL10 gene expression in their mesenteric lymph nodes 
as compared to VD mice (74).

In summary, while the epidemiological data regarding a 
causative links between CD and any of the aforementioned 
immune-mediated diseases were not drawn from randomized 
trials and have yet to be confirmed using relevant animal models, 
CD infants appear to display an increased risk to suffer from 
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several immune-mediated diseases. The evidence that CD born 
infants display an immune developmental trajectory that differs 
from VD born infants on the other hand is sound. Equally robust 
is the finding that microbiota of CD infants differs substantially 
from that of VD infants, but more so during the first 3 months 
of life, after which differences become increasingly less appar-
ent. Thus, if the microbiota were to represent the mechanistic 
link between CD, altered immunity, and with that increased 
disease susceptibility, then early-life differences must have 
been imprinted during an early-life “window of susceptibility.” 
However, such window and its associated mechanistic links have 
yet to be defined sufficiently well in the human setting to address 
it clinically.

intrapartum Antibiotics
Intrapartum antibiotic prophylaxis is the intravenous adminis-
tration of penicillin or ampicillin to women during labor, who 
were found to be vaginally or rectally colonized with group B 
Streptococcus (GBS). Prior to its routine use in the 1990s, 
early-onset GBS was a leading cause of newborn morbidity and 
mortality in the United States (75). Following implementation of 
IAP, early-onset GBS disease incidence fell from 1.7 per 1,000 
live births in the 1990s to 0.37 per 1,000 live births by 2008 (76).

Beyond the clinical success of IAP in the prevention of GBS 
infection in the newborn, the impact of IAP on the newborn 
infant microbiome has barely been investigated, despite the 
obvious implications. Most surveys of microbiota alterations 
due to IAP have been conducted by on group (77–80). This 
group recruited a cohort of mothers receiving ampicillin for 
GBS prophylaxis alongside GBS negative mothers not receiving 
any antibiotics at or within a month of delivery. Stools from 
their newborns were collected at postnatal days 7 and 30. A 
fist set of studies compared microbiota of 10 IAP to 10 controls 
at postnatal day 7 using sequence-based approaches, finding 
that IAP infants displayed reduced bacterial diversity, lower 
levels of Bifidobacteria and Bacteroides, and higher levels of 
Enterobacteriaceae or Streptococcaceae (77, 78). In a follow-up 
study comparing effects of exclusive breast- to mixed-feeding 
at both 7 and 30  days, microbiota of 13 IAP and 13 controls 
were assessed with a sequence-based approach, finding that 
differences between IAP and controls were more prominent in 
exclusively breastfed (BF) compared to mixed-fed babies, and 
moreso at 7  days compared to 30. However, IAP infants had 
reduced proportions of Bifidobacteria and increased propor-
tions of Enterobacteria regardless of feeding group. And while 
Bifidobacteria proportions equalized by day 30, exclusively BF 
IAP infants still had especially high proportions of Enterobacteria 
compared to unexposed infants (80). The highest-powered study 
compared 35 IAP to 49 control infants at days of life 7 and 30 
using quantitative PCR for select bacterial taxa, finding fecal bac-
terial counts of Bifidobacterium alone were reduced at day of life 
7 only, while Lactobacillus and Bacteroides were unaffected at any 
time (79). Only one other group has described alterations of the 
microbiota due to IAP, and did so for a cohort of Canadian infants 
receiving IAP either for GBS prophylaxis or CD, and compared 
their microbiota at 3 months and 1 year of life, finding that IAP 
was also associated with lower Bacteroides as well as lower levels 

of Parabacteroides but higher Enterococcus and Clostridium levels 
at 3 months of life among both vaginally and cesarean delivered 
infants (70). The major differences to persist to 1  year of life 
were among emergency CD infants only (as discussed above), 
whereby VD infants were now indistinguishable by IAP exposure 
aside from a minor increase in Clostridiaceae. There is only one 
study that assessed effects of IAP on the whole genetic content of 
the microbiota using whole-genome sequencing (67), with few 
differences found overall, yet functional pathways in the stool 
at 6 weeks of age revealing correlations to IAP among delivery 
mode, feeding, maternal weight, and gestational age.

The impact of IAP on immune ontogeny has to our knowledge 
not been addressed at all. Furthermore, despite the striking simi-
larity of the changes of the microbiota in infants exposed to IAP 
and those born by CD, and the many health implications associ-
ated with CD, the clinical impact of IAP on health outcomes other 
than neonatal GBS infection has not been addressed at all. The 
first study addressing this serious knowledge gap is currently in 
progress, following 240 mother–infant pairs prospectively, assess-
ing IAP and control infant microbiota at 3 months and 3 years of 
age (81).

In summary, IAP has undoubtedly prevented many newborn 
GBS-related deaths. However, given that 10–30% of women in 
North America are colonized with GBS and receive IAP during 
labor (82, 83), there has been a surprising lack of effort to address 
long-term effects of IAP on immune development and the health 
of their offspring.

eARLY POSTNATAL eveNTS 
DRAMATiCALLY ALTeR THe 
MiCROBiOMe wiTH iMPACT ON LONG-
TeRM HeALTH OUTCOMeS, BUT A 
CAUSATive ROLe OF iMMUNe CHANGeS 
iN THiS ReMAiNS UNeXPLOReD

Feeding mode (breast vs. formula) as well as antibiotic exposure 
during the neonatal period (here defined as up to day of life 28) 
have clearly been linked to changes in microbiota (Table 1); their 
causal relationship to immune development and clinical outcome 
have surprisingly not been well delineated (Table 2).

Feeding Mode
Differences in the microbiota of BF and formula-fed (FF) infants 
were first reported nearly 100  years ago with compounds in 
breast milk found to promote the growth of Bifidobacteria (this 
“bifidus factor” is now recognized as human milk oligosaccha-
rides) (84). As a result, BF infants harbor more Bifidobacteria 
and Lactobacilli in their colons than FF infants (85). Interestingly, 
there is little effect of mixed vs. exclusive BF on the microbiome, 
as the profound shift in microbiota to an adult-like composition 
occurs not with the addition of solid food, but rather at cessation 
of BF (65).

Immune protective functions provided by breast milk were 
first reported in the 1970s (86). While immunoglobulins were 
among the first immune molecules recognized in breast milk, 
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breastfeeding has further profound anti-inflammatory influences 
mediated largely by high concentrations of TGF-β and IL-10, and 
other immunomodulatory influences mediated by molecules 
such as soluble CD14, defensins, lactoferrin, and lysozymes that 
survive passage to the intestinal tract and together act to maintain 
homeostasis in the colonizing gut (87–90). Indeed, one study has 
found higher concentrations of anti-inflammatory TGFβ and 
lower concentrations of pro-inflammatory TNFα and IL-2 in sera 
of BF compared to FF infants throughout the first year of life (91).

Breast milk contains its own microbiome, harboring a wide 
range of microbes from 100 to 105  CFU per ml depending on 
the study (92), with Streptococcus and Staphylococcus being most 
common, but others such as Lactobacillus, Bifidobacterium, 
Enterococcus, and Propionibacterium readily isolated from milk of 
healthy women (92). Many short-chain fatty acid producing bac-
teria such as Veillonella, Propionibacterium, and Faecalibacterium 
have also been isolated from breast milk (92). Breast milk itself 
contains lactic acid bacteria, double-stranded RNA from which 
stimulates intestinal dendritic cells via TLR3 to produce IFNβ, 
which in turn promotes an anti-inflammatory environment and 
protects mice against colitis (93, 94). However, the key mediator 
of the immune homeostatic function of breast milk is presumed 
to relate to its impact on gut microbiota. In mice, for example, 
the presence of maternal sIgA in early-life molds the composi-
tion of the gut microbiota long into in adulthood, with pups 
born to sIgA-deficient dams harboring more Pasteurellaceae and 
Lachnospiraceae than controls (95).

Many of breast milk’s health-promoting properties were rec-
ognized starting over 100 years ago when BF infants were found 
to suffer less diarrheal disease and reduced mortality rates, and 
reduced risk for diabetes, and overweight compared to FF infants 
(84). These were recently reviewed in great detail (87). Beyond 
diarrhea, BF has since been found to protect from other infec-
tions, and in BF newborns who did not receive antibiotics prior 
to weaning, every additional month of breastfeeding is associ-
ated with a 5% decrease in number of postweaning antibiotic 
courses (96). A recent meta-analysis summarized the powerful 
evidence that BF is associated with decreased risk for infectious 
diseases and mortality (97). Specifically, BF infants have only 
12% of the risk of FF infants to die in the first 6 months of life. 
Other data further support an immune-mediated mechanism 
of BF as one of the possibly responsible mechanisms. For exam-
ple, BF is associated with lower risk for eczema and recurrent 
wheeze in first year of life (98), with exclusive BF for >4 months 
associated with reduced risk for asthma up to 8  years of age 
(99), and in another study breastfeeding for less than 4 months 
was associated with increased corticosteroid-treated wheezing 
episodes in the first year of life (100). However, it is important 
to note that while meta-analyses do detect a protective effect of 
BF on asthma and allergic rhinitis, these effects are weaker when 
limited to studies with the lowest risks of confounding (97, 101). 
And in a cohort of familial ankylosing spondylitis patients and 
their families, disease prevalence was 25% in children who were 
breast fed while it was 40% in the FF comparator (102). Finally, 
while BF is weakly associated with decreases in early-onset 
inflammatory bowel diseases but with non-significant differ-
ences found for ulcerative colitis and Crohn’s disease separately 

(103), it is protective against Crohn’s disease-related surgery 
later in life (104).

Despite the many documented clinical benefits of BF, as well as 
the known profound impact on immune ontogeny and the micro-
biome, direct cause–effect relationships between BF-induced 
changes in the microbiome leading to immune-mediated clinical 
benefit have not yet been provided.

Antibiotic exposure in the Neonatal Period
Empiric antibiotic treatment (EAT) is often given to newborns at 
risk of developing early-onset sepsis (EOS). Clinical diagnosis of 
EOS is imprecise and based on non-specific signs and symptoms; 
rapid, sensitive tests to differentiate infected from uninfected 
newborns are also lacking (105). Therefore, EAT is administered 
to a very large number of newborns (106, 107). While this empiric 
approach can readily be justified given the potentially horrific 
outcome of treatment delay in EOS (105), the impact on the 
microbiome, immune development, and clinical outcome beyond 
sepsis has barely been investigated. The little that is known sug-
gests a profound alteration of normal physiology may occur. For 
example, antibiotic administration in early life is associated with 
being overweight at age 12  years (108). Contrary to the previ-
ous study that only found associations between overweight and 
antibiotic use throughout the first year (108), in another study 
antibiotic use in infants less than 6 months was associated with 
obesity in childhood, but antibiotic use after 6  months of age 
was not (109). Moreso, antibiotic administration specifically in 
the neonatal period was associated with an increased risk for 
corticosteroid-treated wheezing in the first year of life (100) and 
allergic rhinitis in school age children (110). Longer duration 
of antibiotic use in premature infants has been associated with 
increased risk for necrotizing enterocolitis, late-onset sepsis, and 
death in early life (111, 112). Even the choice of antibiotic regi-
men has effects, where ampicillin combined with cefotaxime was 
associated with increased mortality as compared to ampicillin 
with gentamicin (113).

As early-life antibiotic use has become a topic of increasing 
interest, mouse studies have begun to reveal possible cause–effect 
relationship between early-life antibiotic and later life disease: 
administration of penicillin to pregnant dams right before birth 
and through weaning increases body mass of the pups in adult-
hood, and transferring such perturbed microbiota to germ-free 
mice is sufficient to replicate this phenotype (114). An associa-
tion of early-life antibiotic use and altered immune ontogeny is 
suggested by findings in mouse models where mice exposed 
to antibiotics prenatally and shortly after birth had increased 
susceptibility to Vaccinia virus infection and altered CD8 T cell 
responses at 2 weeks of age (115). Antibiotic exposed infant mice 
also harbored a microbiota rich in Enterococcus faecalis (115), 
consistent with findings above where human newborns born to 
mothers given IAP had a microbiota enriched in Enterococcaceae 
(70, 77–80). Further, a series of studies exposing mice to vanco-
mycin in drinking water through pregnancy and weaning exac-
erbated asthma in pups after weaning (116), an effect that was 
later linked to greater numbers of eosinophils and neutrophils in 
bronchoalveolar lavage fluid, increased serum IgE, and reduced 
frequency of colonic regulatory T-cells (117). While intranasally 
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administered streptomycin had little effect on asthma, it exac-
erbated hypersensitivity pneumonitis and increased IL-17 and 
IFNγ expression in the lung (117). It is important to note that 
while these mouse studies are informative, none of these capture 
the dose, frequency, or route of neonatal antibiotic exposure seen 
in humans. Furthermore, while these murine studies suggest a 
possible connection along the microbiome–immune–clinical 
outcome axis (which is the topic of this review), studies to inves-
tigate this in the human setting have to our knowledge not been 
conducted.

CONCLUSiON

It has been over 100  years that Elie Metchnikoff has popular-
ized the notion of a healthy microbiome as important for a 
healthy human existence (118, 119). Over the last decade in 
particular, it has increasingly been recognized that much of 
this health-promoting interaction is mediated via interaction 
of the microbiome with the human immune system (3, 4, 13, 
120–122). Not surprisingly then, perturbations of this evolution-
ary conserved, beneficial interaction increase the risk for several 
immune-mediated diseases (17). Emerging now is the concept 
of an early-life window of increased susceptibility, during which 
perturbations of this immunity–microbiome interaction cause 
the most severe and long-lasting damage (5–10). In other words, 
perturbation of this host–microbiome interphase in early life has 
to be viewed as a “newborn disease with childhood/adult onset” 
(Figure 1). With this view in mind, and as reviewed here, it is 
disturbing to realize that many of these early-life disease-causing 
perturbations are in fact “man-made,” such as CD, FF, IAP, and 
EAT. On the other hand, this realization provides us with the 
opportunity not only to take control and change these choices 
but also to design well-informed interventions to counteract 
these perturbations, which are often life-saving and cannot be 
avoided. In doing so, we can turn the window of susceptibility 
into a window of opportunity via, e.g., timely administration of 
probiotics (Figure 1) (29, 121–124).

The interaction of the developing microbiome with the host is 
clearly highly complex, and much of it is currently still unknown 
(5). But given that the impact of perturbations of the host–micro-
biome interaction affect clinical outcome far beyond the period, 
an altered microbiome is detectable suggests the mechanisms 
involved imprinted themselves into the host in ways beyond the 
microbiota. In part at least, this relates to the finding of such 
perturbations often manifesting themselves as immune-mediated 
diseases; the immune system after all is equipped with long-term 
memory within both the adaptive as well as innate immune 
system (125). Innate immune memory already is known to relate 
to epigenetic alterations (125). However, long-lasting changes in 
the epigenetic make up of the host in response to alterations of 
the microbiome extend even beyond the immune system to affect, 
e.g., metabolism, and connects the theme of this review to the 
developmental origin of health and disease (126). Specifically, 
this includes bacterial products that function as substrates for 
one-carbon metabolism (e.g., vitamins B2, B6, B9, and B12), 
and substrates for epigenetic modification (e.g., vitamin B7 for 
biotinylation and vitamin B5 for acetylation), or metabolites 

that interfere with the host epigenetic machinery (e.g., SCFA-
mediated histone deacetylase inhibition) (127). Furthermore, 
pre- and early postnatal life is thought to be critical window for 
epigenetic modification specifically because growth and cell divi-
sion are then at their highest rate. As such, dividing cells require 
larger amounts of methyl donors to retain cellular methylation 
patterns that would otherwise be diluted out. Furthermore, 
bacterial SCFAs such as butyrate and propionate can function as 
histone deacetylase inhibitors (128), and the Bacteroides genus 
is a major source of propionate in the gut (129). As outlined 
above, Bacteroides colonization is delayed in CD infants and 
their abundance is reduced in newborns of IAP-treated mothers. 
While SCFA levels in stools have yet to be investigated in term 
newborns, propionate levels were found to be reduced in colons 
of VD piglet colons compared to CD piglets (130). This supports 
the possibility of a far-reaching impact of the early-life microbiota 
on our epigenome. On the other hand, such a far-reaching and 
long-lasting impact also predicts that targeted interventions 
are likely to have broadly beneficial and long-lasting benefit. 
For instance, a small study has shown promise that inoculating 
neonates born by elective cesarean section with vaginal secretions 
from their mothers leaves them with a microbiota more similar to 
VD infants compared to infants born by CD that were not inocu-
lated (131). And enteral probiotics administered to premature 
newborns reduce not only the risk of necrotizing enterocolitis 
but broadly reduce infection-related mortality (132–138).

From our review of this topic here, several overarching insights 
can be extracted that help guide future research and intervention 
efforts:

 1. The earlier in life the perturbation, the more profound the 
impact (both in terms of range as well as duration) (Figure 1) 
(5–10, 17). This suggests that interventions (e.g., probiotics) 
would have the most beneficial impact administered as early 
as possible [e.g., prenatally to the mother (50, 51)].

 2. Different perturbations (e.g., cesarean delivery, formula feed-
ing, and intrapartum antibiotic prophylaxis) merge toward a 
similar final common that often is immune mediated. This 
suggests that interventions targeting these pathways will likely 
provide far-reaching, broadly beneficial benefit.

Future research priorities:

 1. Impact of prenatal microbiota and viability of organisms 
found in placenta and amniotic fluid.

 2. Understanding effects of cesarean delivery: elective vs. emer-
gency, medical indications, primary vs. repeat, etc.

 3. Antibiotic use: reasons for antibiotic administration, com-
parison to suitable control groups to minimize possible 
frailty bias. Animal models with comparable exposures to 
human use.

 4. Impact of perinatal events such as chorioamnionitis, neonatal 
sepsis, and necrotizing enterocolitis on immune and microbi-
ome development.

 5. Long-term health impacts of probiotic use in preterm infants.
 6. Not discussed in this review is the insight that this  interaction 

of host–microbiome is not restricted to bacteria in the 
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FiGURe 1 | Microbial and immune homeostasis from preconception to early childhood. Early-life perturbances (intrapartum antibiotics, neonatal antibiotics, 
cesarean delivery, and formula feeding) are associated with colonizing differences in the intestinal microbiota that are mostly evident in the first weeks to months of 
life—with the exception of feeding mode, which is associated with a unique microbiota until cessation of breastfeeding. These perturbers are also associated with 
immune dysfunction and immune-mediated diseases that manifest later in childhood. The window of susceptibility and opportunity represents the period around 
birth when promoters of microbial homeostasis may have the largest effect on correcting microbial dysbioses, with an unknown extension into gestation and 
possibly even preconception. Neonatal probiotics, vaginal delivery, and breastfeeding have strong associations with healthy colonization and decreased risk for 
immune-mediated disease. Maternal probiotics and vaginal swabbing are possible interventions that need to be further studied. Early-life microbiota and immune-
mediated disease in later life need to be studied for cause and effect relationships.
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gastrointestinal tract, but also includes fungi, viruses, and 
other microbes across many other body sites (2).

The complexity of the host microbiome–immunome 
interaction is astounding, but likely will be deciphered using 
modern tools of systems biology. The future of this field of 
study is poised to finally bring about the revolution that Elie 
Metchnikoff already brilliantly foreshadowed over a century 
ago (118, 119).
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