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Abstract
Magnetic Resonance properties of tissues can be quantified in several respects: relaxation

processes, density of imaged nuclei, magnetism of environmental molecules, etc. In this

paper, we propose a new comprehensive approach to obtain 3D high resolution quantitative

maps of arbitrary body districts, mainly focusing on the brain. The theory presented makes it

possible to map longitudinal (R1), pure transverse (R2) and free induction decay (R�
2) rates,

along with proton density (PD) and magnetic susceptibility (χ), from a set of fast acquisition

sequences in steady-state that are highly insensitive to flow phenomena. A novel denoising

scheme is described and applied to the acquired datasets to enhance the signal to noise

ratio of the derived maps and an information theory approach compensates for biases from

radio frequency (RF) inhomogeneities, if no direct measure of the RF field is available.

Finally, the results obtained on sample brain scans of healthy controls and multiple sclerosis

patients are presented and discussed.

1 Introduction
Multi-parametric quantitative Magnetic Resonance Imaging (qMRI) based on the relaxometry
properties of intracranial tissues has long been and still is an active field of research in medicine
and physics [1]. Several approaches have been used, aiming at obtaining quantitative estimates
of the longitudinal relaxation rate (R1), transverse relaxation rate (R2) and proton density (PD)
of brain tissues [2–7]. Other relaxation parameters whose MR signals can be usefully exploited
to discriminate the microstructure of brain tissues are the free induction decay (FID) rate (R�

2)
[4] and the magnetic susceptibility (χ) [8]. In this paper, we present a new acquisition and pro-
cessing procedure that, starting from a set of conventional high resolution 3D Steady State
sequences, makes it possible to achieve full brain coverage for absolute measurements of intra-
cranial compartments. For the first set of tissue properties, Radio Frequency (RF) B1 inhomo-
geneities can create problems. As pointed out in [9], a 3D acquisition protocol is preferred to
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remove intra-voxel biases, known to arise from imperfect 2D RF-pulse profiles that cause dif-
ferent isochromat evolutions in response to different effective flip angles.

Here, we prove that a set of steady-state sequences, acquired with variable flip angles and
different phase coherence, makes it possible to derive quantitative volumetric R1, R2, PD, R�

2

and χmaps of the brain tissues. We also show that high Signal-to-Noise Ratio (SNR) full brain
coverage with a sub-millimeter resolution may be obtained in a total acquisition time of 14
minutes. The proposed solution for the relaxation rates is fully analytic and allows for the
inversion of the signal equations for R1, R2, PD and R�

2 maps in a typical 3D dataset within a
few seconds (5 s for a 320 × 270 × 128 voxel array on a 2.7 GHz Intel Core i5 processor).

The plan of the paper is as follows. In §2, the Bloch equations of the sequences are briefly
reviewed; then, the proposed mathematical scheme to derive R1, R2, PD, R�

2 and χmaps is pre-
sented in full detail. In §3, we provide a description of a sample experimental setup performed
to prove the feasibility of the general theoretical scheme of §2. Finally, results are presented in
§4 and discussed in §5.

2 Theory

2.1 Sequence Bloch equations
Within the steady-state sequence family, we selected the spoiled Gradient Echo (GRE) and the
balanced Steady-State Free-Precession (bSSFP) sequences because of their low sensitivity to
flow artifacts in both CSF in ventricles and blood within vessels.

The complex signal of a spoiled GRE sequence is

SFL ¼ K �M0 � sin y �
1� E1

1� E1 cos y
� e�TE �ðR�2þignDBÞþi�0 ; ð1Þ

where K is the complex coil sensitivity,M0 is the equilibrium magnetization, θ is the flip angle,
E1 � exp(−TR � R1) (TR being the repetition time), TE is the echo time, γn is the gyromagnetic
ratio of the imaged nucleus, ΔB is the local magnetic field variation and ϕ0 is the phase-shift
induced by the RF-pulse.

The complex signal of a bSSFP sequence is

STF ¼ K �M � 1� E2 � e�iφ

1� a cosφ
e�TE �ðR2þi~φ=TRÞ ; ð2Þ

where

M � iM0 �
ð1� E1Þ sin y

b
; ð3Þ

a � E2 �
ð1� E1Þð1þ cos yÞ

b
; ð4Þ

b � 1� E1 cos y� ðE1 � cos yÞE2
2 ; ð5Þ

E2 � exp(−TR � R2), φ = γnΔBTR + Δφ is the resonance offset angle and φ� depends on how the
phase-cycling Δφ is achieved: if the frequency of the Larmor reference frame is formally shifted,
then φ� ¼ φ; otherwise, if a constant phase term is added to the previous RF phase each time a
new RF pulse is applied, then φ� ¼ gnDBTR.
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2.2 Band-free bSSFP reconstruction
Due to the dependence of (Eq 2) on φ, bSSFP images are well known to be affected by severe
banding artifacts, particularly in regions with rapidly varying susceptibility or main magnetic
field [9]. To avoid a biased R2-map, in the following a new dataset S0 (independent of φ) is
derived from a set of n bSSFPs (n� 3) acquired with increasing resonance offset angles (phase
cycling) as described in [10, 11].

The φ-independent contrast S0 we aim to derive corresponds to

S0 � K �M � e�TE �R2 : ð6Þ

For each phase-cycling j 2 {1, . . ., n}, we can formally introduce

~Sj � STF;je
�ið~φ j=TR�gnDBÞTE ; ð7Þ

a � S0e
iφTE=TR ; ð8Þ

b � S0E2e
iφðTE=TR�1Þ ; ð9Þ

g � aeiφ : ð10Þ

Defining

A �

1 0 � � � 1 0

0 1 � � � 0 1

� cos ðDφ1Þ sin ðDφ1Þ � � � � cos ðDφnÞ sin ðDφnÞ
� sin ðDφ1Þ � cos ðDφ1Þ � � � � sin ðDφnÞ � cos ðDφnÞ

<ð~S1Þ cos ðDφ1Þ Ið~S1Þ cos ðDφ1Þ � � � <ð~SnÞ cos ðDφnÞ Ið~SnÞ cos ðDφnÞ
�<ð~S1Þ sin ðDφ1Þ �Ið~S1Þ sin ðDφ1Þ � � � �<ð~SnÞ sin ðDφnÞ �Ið~SnÞ sin ðDφnÞ

2
66666666664

3
77777777775

T

; ð11Þ

y �

<ð~S1Þ

Ið~S1Þ

..

.

<ð~SnÞ

Ið~SnÞ

2
6666666666664

3
7777777777775

and x �

<ðaÞ

IðaÞ

<ðbÞ

IðbÞ

<ðgÞ

IðgÞ

2
666666666666664

3
777777777777775

ð12Þ

from Eqs (2)–(10) it can be shown that

y ¼ A � x : ð13Þ

If n� 3, the Moore-Penrose pseudoinverse of A provides the least-squares estimate of the
unknown variables α, β and γ (cast into x form) as a function of the bSSFP datasets (cast into y

form—each ~Sj is known and corresponds to the acquired scan multiplied by a function of the
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acquisition parameters):

x ¼ ðATAÞ�1
AT � y : ð14Þ

From Eqs (8)–(9), it follows that

φ ¼ ff a
b
; ð15Þ

whence, from (Eq 8), we obtain

S0 ¼ ae�iφTE=TR : ð16Þ

2.3 R1-map
The acquisition of two or more spoiled GRE scans performed at different flip angles and fixed
TRmakes it possible to estimate R1 [9]. The magnitude of (Eq 1) satisfies

jSFLj
sin y

¼ E1

jSFLj
tan y

þ jKjM0ð1� E1Þe�TE �R�2 : ð17Þ

(Eq 17) represents the equation of a straight line with slope E1 in a plane whose coordinate
pairs are (SFL/tan θ, SFL/sin θ). Therefore, if we write the signal intensity of the j-th echo (j 2 {1,
. . .,m},m� 2) of the i-th spoiled GRE acquisition (i 2 {1, . . ., l}, l� 2) as

Si;j ¼ Mi � exp ð�TE;j � R�
2Þ ; ð18Þ

where

Mi ¼ jKjM0 � sin yi �
1� E1

1� E1 cos yi

; ð19Þ

R1 can be estimated via simple linear regression of (Eq 17) as

R1 ¼
1

TR

� log Var½fSi= tan yig	
Cov½fSi= tan yig; fSi= sin yig	

; ð20Þ

with

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

S2i;j

s
: ð21Þ

2.4 R�
2-map

If we define

sj �
ffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1

S2i;j

s
; ð22Þ

from (Eq 18) it follows that

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1

M2
i

s
� exp ð�TE;j � R�

2Þ ; ð23Þ

whence R�
2 turns out to be the linear coefficient between log s�1

j and TE,j. A simple linear
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regression yields therefore to

R�
2 ¼ �Cov½fTE;jg; f log sjg	

Var½fTE;jg	
: ð24Þ

2.5 PD-map
Once both R1 and R�

2 maps are known, it is also possible to provide an estimate of proton den-
sity (in arbitrary units) by inverting (Eq 18) for each i, j with respect to jKjM0 from (Eq 19),
and averaging the results over the acquired echoes:

jKjM0 ¼
P

i;j S2i;j �
1� E1 cos yi
ð1� E1Þ sin yi

� eTE;j �R�2
� �

P
i;jSi;j

:
ð25Þ

2.6 χ-map
An extensive description of the susceptibility quantitation techniques is reported in [8]. Here
we briefly summarize the actually adopted strategy.

The net magnetic field B(r) resulting from the magnetizationM induced within a matter
distribution by an external magnetic field B0 is given by

BðrÞ ¼ B0 þ
m0

4p

Z
V

d3r0
3Mðr0Þ � ðr� r0Þ

jr� r0j5 ðr� r0Þ � Mðr0Þ
jr� r0j3

( )
: ð26Þ

For the linear magnetic materials, (Eq 26) is completed by the magnetostatics constitutive
equation:

MðrÞ ¼ wðrÞ
m0ð1þ wðrÞÞBðrÞ ; ð27Þ

which reduces to

MðrÞ ¼ wðrÞ
m0

BðrÞ ð28Þ

for diamagnetic and paramagnetic substances whose susceptibility jχj 
 1.
As in the MRI contextB0 ’ B0ẑ , the ẑ component of the field variation due to susceptibility

inhomogeneities is therefore given by

DBzðrÞ ¼ B0

4p

Z
V

d3r0
3wðr0Þ � ðz � z0Þ2

jr� r0j5 � wðr0Þ
jr� r0j3

( )
ð29Þ

¼ B0 � ðw � GÞðrÞ ; ð30Þ

where

GðrÞ � 1

4p
� 3z

2 � r2

r5
: ð31Þ
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As we acquire a spoiled GRE sequence, the phase associated to susceptibility (see (Eq 1)) is
therefore given by

�wðrÞ ¼ �gnTEB0 � ðw � GÞðrÞ : ð32Þ

In order to extract ϕχ(r) from the original wrapped phase ψ(r)

cðrÞ ¼ �ðrÞ � 2pb�ðrÞ
2p c ð33Þ

(which also depends on background magnetic field inhomogeneities, the imaginary coil sensi-
tivity I(K), RF-pulse design etc.), phase unwrapping was performed using the 3D-SRNCP
algorithm [12], followed by the SHARP filter [13], which exploits the harmonicity of static
magnetic fields within homogeneous media (r2(ϕ−ϕχ) = 0) [14]:

�wðrÞ ¼ SHARP½�ðrÞ	 : ð34Þ

The inversion of (Eq 32) requires a regularization of the inverse of g(k)� FT[G(r)] (see [8,
15]), whence we finally obtain

wðrÞ ¼ � FT�1½g�1
reg ðkÞ � ~�wðkÞ	
gnTEB0

: ð35Þ

2.7 R2-map
Once the R1- and the PD-maps are known, (Eq 6) makes it possible to derive the R2-map.
From the following combination of Eqs (3), (5) and (6)

jS0j
jKjM0

¼ ð1� E1Þ sin y � ETE=TR
2

1� E1 cos y� ðE1 � cos yÞE2
2

; ð36Þ

if the acquired bSSFP scans are set with TE = TR/2, it follows that

a4x
4 þ a1x þ a0 ¼ 0 ; ð37Þ

where

x � ffiffiffiffiffi
E2

p
; ð38Þ

a0 � jS0j
jKjM0

ðE1 cos y� 1Þ ; ð39Þ

a1 � ð1� E1Þ sin y ; ð40Þ

a4 � jS0j
jKjM0

ðE1 � cos yÞ : ð41Þ

From the standard theory of the quartic equations it follows that the physically meaningful
solution of (Eq 37) is given by

x ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
S
� 4S2

r
� S ; ð42Þ
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where

q � a1
a4

; ð43Þ

S � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3a4
Qþ D0

Q

� �s
; ð44Þ

Q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 � 4D3

0

q
2

3

vuut
; ð45Þ

D0 � 12a4a0 ; ð46Þ

D1 � 27a4a
2
1 : ð47Þ

The transverse relaxation rate is then found from the expression

R2 ¼ � 2 log x
TR

: ð48Þ

3 Materials and Methods

3.1 Study design
We set up an experimental configuration to test the practical feasibility of the above general
theoretical algorithm (schematically shown in Fig 1). It should be noted that, depending on the
specific features of the available MR system, different strategies may be adopted.

First, we describe the acquisition protocol; then we present the image restoration algorithm
we applied to increase the Signal to Noise Ratio (SNR) of the datasets. Further, as on our scan-
ner there is no protocol for mapping B1 sensitivity profile, we describe the method developed
to account for non-ideality of the B�

1 profiles within the Field of View (FOV). Finally, we detail
the way devised to estimate the overall reproducibility of the results.

3.2 Acquisition protocol
MR data were collected on a 3 T scanner (Trio, Siemens Medical Systems, Erlangen, Germany)
with a volume transmitter coil and 8-channel head receiver coil. The “Carlo Romano” ethics
committee for biomedical activities of “Federico II”University of Naples (Italy) specifically
approved the study and the written informed consent form, which was signed by the subjects
(one Healthy Control (HC) and one Relapsing-Remitting Multiple Sclerosis (MS) patient)
undergoing the MR scan.

The 3D Steady-State sequences were acquired with a pseudo-axial orientation (along the
anterior commissure-posterior commissure line) and shared the same FOV covering the whole
brain (230 mm in anteroposterior direction; 194 mm in laterolateral direction; 166 mm in cra-
niocaudal direction) with an in-plane resolution of 0.65 mm (laterolateral phase encoding
direction) and a slice thickness of 1.3 mm (voxel size ΔV = 0.55 mm3).

We acquired 2 fully flow-compensated double-echo spoiled GRE (FC-FLASH) sequences
with flip angles of 3° and 20°, repetition time of 28 ms, echo times of 7.63 ms and 22.14 ms, a
GRAPPA factor of 2 and a bandwidth of 190 Hz/pixel (acquisition time: 2 × (4’ 46”)). For each
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echo, a magnitude/phase reconstruction was enabled, thus obtaining a total of 4 complex vol-
ume datasets.

Then, a set of 4 phase-cycled bSSFP (TrueFISP) sequences was acquired with resonance off-
set angle steps of π/2 (i.e. Δφ 2 {0, π/2, π, 3π/2}), flip angle of 10°, repetition time of 7.3 ms,
echo time of 3.65 ms, a GRAPPA factor of 2 and a bandwidth of 252 Hz/pixel (acquisition
time: 4 × (1’ 20”)). For each echo, a magnitude/phase reconstruction was enabled, thus obtain-
ing a total of 4 complex volume datasets (i.e. one for each resonance offset angle).

It may be noted that, depending on the parameter subset of actual interest, this acquisition
protocol may be shortened following the recipes shown in Table 1.

3.3 Image restoration
In order to control the noise propagation in the relaxometry maps derived by inversion of the
Bloch equations, the FC-FLASH and S0 image series were pre-processed with a novel ad hoc
version of the Non-Local Means (NLM) filter, adapted for parallel MRI (see [16]) and multi-

Fig 1. Schematic flowchart of the implemented algorithm. From FC-FLASH phase data the χ-map is directly derived (see §2.6). The TrueFISP collection
is used to extract the band-free S0 dataset (see §2.2). Then, FC-FLASH and S0 series are denoised by the SVN-MNLM scheme (see §3.3). The R�

2-map is
computed from resulting FC-FLASH series (see §2.4). The introduction of an estimate of the B1-map (actually measured or simply guessed) allows for the
extraction of the R1- (see §2.3), PD- (see §2.5) and R2- (see §2.7) maps. Depending on the reliability of the B1-map estimate, a B1-correction scheme may be
iteratively applied (dashed lines—see §3.4).

doi:10.1371/journal.pone.0134963.g001

Table 1. Design guidelines for minimal acquisition protocols (second column) making it possible to reconstruct each parameter listed in the first
column. The corresponding total acquisition time and the list of other maps that can be obtained for free are reported in the third and fourth columns,
respectively.

Parameters Required sequences Acquisition time Collateral maps

R�
2, χ FC-FLASH (Ernst FA) 4’ 46”

R1, PD FC-FLASH (FA = 3°) 9’ 32” R�
2, χ

FC-FLASH (FA = 20°)

R2 FC-FLASH (FA = 3°) 14’ 52” R�
2, χ, R1, PD

FC-FLASH (FA = 20°)

TrueFISP

doi:10.1371/journal.pone.0134963.t001
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spectral images (see [17]) with an improved handling of the arbitrary noise power in each
image component.

Spoiled GRE ({Si,j}) and bSSFP (S0) datasets were considered as a discrete version of a gen-
eral multi-component image X: RN ! R

M (N = 3 andM = 5) with a bounded support O� R
N.

In this sense, the Spatially-Varying-Noise Multi-component NLM (SVN-MNLM) is a class of
endomorphisms of the image space, each identified by 2 parameters (ρ and B), that act as fol-
lows:

½SVN�MNLMr;BðXÞ	m ~xð Þ ¼ Ym ~xð Þ ¼
R
OWmð~x;~yÞXmð~yÞd~yR

OWmð~x;~yÞd~y
; ð49Þ

where

Wmð~x;~yÞ � exp � d2
rð~x;~yÞ
B2

� Qmð~xÞPM
l¼1 Qlð~xÞ

" #
; ð50Þ

d2
rð~x;~yÞ �

XM
m¼1

Z
R
N

jXmð~x þ~t Þ � Xmð~y þ~t Þj2
s2
mð~xÞ þ s2

mð~yÞ
�
exp � k~tk2

2r2

ð ffiffiffiffiffiffi
2p

p � rÞN d~t

8>><
>>:

9>>=
>>; ; ð51Þ

Qmð~xÞ �
fOX

2
mð~yÞd~y
s2
mð~xÞ

; ð52Þ

r � 10 � ffiffiffiffiffiffiffi
DV3

p
is the similarity radius, B * 1 is an adimensional constant to be manually tuned

that determines the filter strength and smð~xÞ is the standard deviation of noise of themth image
component at~x 2 O (the noise power maps were estimated following [16]).

Due to the high computational complexity of the above scheme, a multi-Graphics Process-
ing Unit (GPU) implementation of the NLM algorithm [18] was adapted to (Eq 49) and
exploited for fast image processing.

3.4 B�
1 -inhomogeneity correction

The derivation of R1, PD and R2 maps in §2.3, §2.5 and §2.7 critically depends on the flip angle
sensed by each voxel all-over the FOV. However, transmission coil design issues, the non-ideal-
ity of 3D slab profiles and the dielectric resonances, which are more prominent on high field
scanners, may appreciably alter the Bþ

1 homogeneity, thus resulting in a low frequency varia-
tion of the derived relaxometry parameters as we move from internal to peripheral brain
regions. Moreover, the PD map also depends on the B�

1 map of the receiver coil, while the
other maps do not depend on the receiver coil sensitivity, as this constant factor is eliminated
in the ratios of signal intensities in Eqs (20), (24) and (36).

Taking advantage of the large scale nature of the Bþ
1 variation pattern, we adopted an infor-

mation theory approach to remove the biases due to FA inhomogeneities. Essentially, a useful
approximation of the peripheral FA decay is given by its second order Taylor logarithmic
expansion about its stationary point rþ0 , modulated by a slab profile term:

FAðrÞ ¼ FA0 � exp
(
1

2
ðr� rþ0 ÞT �Hþ � ðr� rþ0 Þ � kjzjx

)
ð53Þ

(z is the offset from the slab center in the slab select direction). As the Hessian tensorH+ is
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symmetric, rþ0 is a vector and k, ξ 2 R, a total of 11 free parameters need to be estimated in (Eq
53).

Similarly, the B�
1 map can be estimated by a different second order Taylor logarithmic

expansion (this time no slab profile affects the receiver coil sensitivity, thus reducing the num-
ber of free parameters to 9):

KðrÞ ¼ K0 � exp f
1

2
ðr� r�0 ÞT �H� � ðr� r�0 Þg : ð54Þ

Finally, the parameters are estimated by minimizing, with the Nelder-Mead method, the
entropy of the 3D joint histogram related to R1, PD and R2 maps in low gradient regions of the
maps.

The effectiveness of the obtained B1 inhomogeneity correction was evaluated by acquiring
the full set of sequences on a cylindric homogeneous phantom (diameter: 18 cm; height: 30
cm) and computing the relative Full Width at Half Maximum (FWHM) of the R1 and R2 distri-
butions reconstructed with and without the B�

1 -inhomogeneity correction.

3.5 Reproducibility estimation
To estimate the confidence interval of the proposed maps (taking into account image uncorre-
lated noise, variations in signal amplification of the MR scanner, tissue temperature fluctua-
tions, etc.), each FC-FLASH was acquired twice and each TrueFISP three times in the HC
during the same exam session, without moving the subject. Given the redundant set of complex
datasets, an ensemble of 24 (spoiled GRE) × 3 (S0) different complete relaxometry protocols
was produced. Forty-eight different estimates of the relaxometry maps were thus derived and
used to estimate the degree of reproducibility via mean and standard deviation maps.

3.6 Image processing and analysis
All data processing was performed using an in-house developed library for Matlab (MATLAB

1

Release 2012b, The MathWorks, Inc., Natick, MA, USA), partly described in previous works
[16–18], on a commercial workstation (Intel

1

Core™ i7-3820 CPU @ 3.6 GHz; RAM 16 GB)
equipped with 2 GPU boards (NVIDIA GeForce

1

GTX 690).
The definition of the brain structures was qualitatively assessed in consensus by three expe-

rienced neuroradiologists, who were asked to indicate the specific diagnostic contribution pro-
vided by each map.

To further assess the capability of the quantitative parameters to distinguish between differ-
ent intracranial structures, a set of bilateral ROIs (see Fig 2) was manually drawn on the R1-
maps (and then automatically transferred to the other maps) of both the HC and MS subjects.
ROIs were intentionally drawn well within the anatomical structures to avoid partial volume
effects.

4 Results

4.1 Effectiveness of B�
1 -inhomogeneity correction

The test of the effectiveness of the proposed B�
1 -inhomogeneity correction on R1 and R2 is

reported in Table 2.

4.2 Map assessment
R1, R2, PD, R�

2 and χmaps were obtained for each subject in about 30 minutes after completion
of the acquisition. Examples of the maps for the 43-year-old female HC are displayed in Fig 3.
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Fig 2. Axial brain slices at the 4 different levels showing the position of ROIs drawn for measurement of mean relaxometry values in selected brain
structures: cortex, white matter and CSF (a); head of caudate and thalamus (b); globus pallidus and putamen (c); red nucleus and substantia nigra
(d).

doi:10.1371/journal.pone.0134963.g002
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Thanks to the acquired voxel size, the reconstructed datasets allow for reasonably good multi-
planar reconstructions.

In Fig 4 we report the mean quantitative maps and their corresponding voxel-by-voxel stan-
dard deviation maps, obtained as described in §3.5. On the whole, the standard deviation ran-
ged from 2% to 4% of the quantitative absolute values, showing an excellent reproducibility of
the map estimates.

4.3 Morphological evaluation
Fig 5 is an example of the maps assessed by the neuroradiologists in the qualitative analysis. In
both HC and MS patient the R1-map was rated as the most representative of the brain anatomy,
with excellent differentiation between grey (GM) and white (WM) matter. The R�

2- and χ-maps
clearly showed the subcortical structures known to induce significant local field inhomogenei-
ties due to build-up of paramagnetic substances. In addition, in the MS patient, demyelinating
lesions were clearly displayed on both R1- and R2-maps, even in critical areas, such as the peri-
ventricular WM (Fig 6).

The mean and standard deviation of the quantitative values of each structure and map are
reported in Table 3.

5 Discussion
We have described a 3D acquisition protocol that yields multiple quantitative parametric maps
(R1, R2, R�

2, PD and χ) based on the relaxometric properties of brain tissues.
Image quantitation in MRI has been widely studied in the last decades, with particular

regard to tissue relaxometry, and almost any subset of the quantitative parameters obtained
with our approach has been the subject of at least one study [1, 8, 9, 19]. However, a great
majority of the proposed schemes largely rely on 2D acquisition sequences [3, 20–24], which,
in this context, may be detrimental for at least two reasons. First, SAR issues limit the slice
thickness to values considerably larger than the voxel thickness achievable in 3D acquisitions.
Second, and most important, voxel intensities reconstructed from 2D acquisitions derive from
the integration of isochromat signals over a non-ideal slice profile. Their Bloch equations in
fact evolve according to flip angles that greatly vary over each voxel, unlike 3D sequences, in
which intra-voxel flip angle variation is usually small compared to its mean value [9]. There-
fore, 2D sequences usually lead to biases in R1 and R2 calculations, which are particularly hard
to estimate if the RF-pulse is not completely known or for sequences leading to entangled
relaxometry equations (e.g., any type of SSFP [25]).

Conversely, other groups have adopted 3D acquisition strategies to recover R1- and
R�
2-maps of the brain [6, 23], but not the quantitation of pure transverse relaxation rate (R2) or

susceptibility (χ). These may provide useful information when R1 and R�
2 fail to provide ade-

quate information or contrast to reveal the pathophysiological conditions of specific areas (e.g.

Table 2. Percentual FWHM of the R1 and R2 distribution obtained without (pre) and with (post) B�
1 -inhomogeneity correction. For each case, we

report the values for the entire phantom and for its eroded version (defined by a spherical structuring element with radius of 1 cm) simulating the brain without
the skull.

R1 FWHM R2 FWHM

entire eroded entire eroded

B1 correction pre 36.47% 38.26% 21.28% 20.81%

post 12.30% 8.95% 9.69% 8.71%

doi:10.1371/journal.pone.0134963.t002
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Fig 3. Axial (left), coronal (middle) and sagittal (right) brain slices ofR1 ([0* 2] s-1), R2 ([0* 50] s-1), R�
2

([0* 50] s-1), PD ([0* 1] arbitrary units) and χ ([−300* 300] ppb) maps (from top to bottom) in a
43-year-old female HC. As coronal and sagittal images are derived by a multi-planar reconstruction of the
original axial dataset, their in-plane resolution is 0.65 × 1.3 mm2, with a slice thickness of 0.65 mm. Small
insets pointing out the position of the slices on a perpendicular plane are shown as anatomical reference in
the upper row.

doi:10.1371/journal.pone.0134963.g003
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Fig 4. R1 ([0* 2] s-1), R2 ([0* 50] s-1), R�
2 ([0* 50] s-1), PD ([0* 1] arbitrary units) and χ ([−300* 300]

ppb) (from top to bottom) maps (left) and corresponding confidence interval (right) in a 43-year-old
female HC, displayed with a markedly different (scale factor of 20) grayscale to highlight tiny
differences in measure uncertainties. A small inset pointing out the position of the slices on a sagittal plane
is shown as anatomical reference in the upper row.

doi:10.1371/journal.pone.0134963.g004
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Fig 5. Axial brain slices at the level of midbrain (left), basal ganglia (middle) and fronto-parietal
convexity (right) of R1 ([0* 2] s-1), R2 ([0* 50] s-1), R�

2 ([0* 50] s-1), PD ([0* 1] arbitrary units) and χ
([−300* 300] ppb) maps (from top to bottom) in a 43-year-old female HC. Small insets pointing out the
position of the slices on a sagittal plane are shown as anatomical reference in the upper row.

doi:10.1371/journal.pone.0134963.g005
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Fig 6. R1 (a), FLAIR (b), R2 (c), PD (d), R�
2 (e) and χ (f) axial brain slices at the level of the lateral

ventricles in a 45-year-old female MS patient (Expanded Disability Status Scale—EDSS: 3.5; disease
duration: 7 years). A small inset pointing out the position of the slices on a sagittal plane is shown as
anatomical reference in the upper row.

doi:10.1371/journal.pone.0134963.g006
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in presence of high susceptibility gradients near petrous bones, nasal sinuses, etc. that cause an
R�
2 enhancement uncorrelated to any tissue alteration).
Recently, some 3D approaches have been proposed to derive R1- and R2-maps based on dif-

ferent modes of unbalanced SSFP signals [5, 7], with promising results in the study of joints,
cartilage and, in general, of the musculoskeletal system [26, 27]. However, 3D unbalanced
SSFP sequences are known to be highly sensitive to pulsatile flow of fluid with relatively long
T2, thus making the brain study unfeasible, due to CSF pulsation, unless switching to 2D [28].

In this respect, the family of DESPO methods [2, 29–31], while neglecting R�
2- and χ-maps,

do provide a full 3D high SNR R1- and R2-maps [2], using sequences poorly prone to motion
artifacts (spoiled GRE and bSSFP [32, 33]). Moreover, the numerical approach described in
[31] is able to subtract the banding artifacts due to B0 inhomogeneities sensitivity of bSSFP.
However, some drawbacks of DESPOT2 may raise crucial issues even if R�

2 and susceptibility
information are not of interest. In particular, even if bSSFP sequences are usually quite insensi-
tive to motion, when flip angle gets close to 90 degrees, CSF pulsatile flow may cause some peri-
ventricular hyperintensities due to ghosting artifacts in phase encoding directions. This, in
turn, leads to a biased estimate of R2 in the periventricular WM that may mimic, for example,
demyelinating lesions. Moreover, the same high flip angle values prescribed for at least one
bSSFP of the DESPOT2 protocol are likely to exceed SAR constraints, especially if a short TR is
desired to shorten total acquisition time.

The scheme we propose is meant to solve the above mentioned issues. As DESPO, our
approach entirely relies on widely available 3D acquisition sequences. Moreover, it allows for
the quantitation of 5 independent parameters and gets rid of the sensitivity to B0 inhomogene-
ity by means of a fully analytical solution (thus speeding up the computation step). As for the

Table 3. Relaxometry and susceptibility properties measured in selected brain locations. In each cell, ROI mean and standard deviation are reported.

Structure Area (mm2) R1 (s
−1) R2 (s

−1) R�
2 (s

−1) PD (A.U.) χ � 109

HC RN 42 0.750 ± 0.009 17.24 ± 0.63 27.1 ± 1.0 0.811 ± 0.004 64 ± 21

SN 63 0.727 ± 0.028 18.1 ± 1.1 29.3 ± 2.2 0.815 ± 0.013 155 ± 43

Thalamus 486 0.689 ± 0.063 14.1 ± 1.0 20.1 ± 1.4 0.829 ± 0.029 8 ± 17

Caudate 114 0.614 ± 0.023 13.91 ± 0.96 21.0 ± 1.5 0.853 ± 0.014 57 ± 14

Putamen 325 0.645 ± 0.028 13.6 ± 1.6 22.8 ± 2.3 0.849 ± 0.013 50 ± 33

Pallidus 230 0.797 ± 0.029 22.5 ± 1.5 35.6 ± 2.6 0.829 ± 0.020 153 ± 24

WM 102 1.130 ± 0.010 12.11 ± 0.63 20.73 ± 0.54 0.676 ± 0.002 -10 ± 8

GM (cortex) 91 0.648 ± 0.045 10.3 ± 1.0 14.9 ± 1.1 0.798 ± 0.016 16 ± 13

CSF (ventricle) 35 0.179 ± 0.013 0.68 ± 0.45 2.9 ± 2.1 1.000 ± 0.028 26 ± 29

MS RN 34 0.655 ± 0.018 21.0 ± 1.8 27.8 ± 1.0 0.831 ± 0.020 149 ± 26

SN 47 0.725 ± 0.025 18.6 ± 1.1 29.0 ± 1.1 0.749 ± 0.015 132 ± 33

Thalamus 463 0.644 ± 0.053 14.3 ± 1.1 20.8 ± 1.7 0.805 ± 0.024 6 ± 20

Caudate 183 0.601 ± 0.030 13.2 ± 1.2 22.5 ± 2.2 0.811 ± 0.012 43 ± 22

Putamen 215 0.653 ± 0.024 16.7 ± 1.2 26.2 ± 2.0 0.821 ± 0.014 74 ± 35

Pallidus 194 0.779 ± 0.014 24.5 ± 1.9 38.9 ± 2.9 0.807 ± 0.011 157 ± 32

WM 91 1.039 ± 0.012 12.25 ± 0.72 20.68 ± 0.87 0.651 ± 0.003 -18 ± 14

GM (cortex) 93 0.625 ± 0.047 11.0 ± 1.9 16.6 ± 1.5 0.757 ± 0.017 11 ± 17

CSF (ventricle) 40 0.158 ± 0.003 0.87 ± 0.58 2.7 ± 2.4 1.000 ± 0.013 24 ± 25

PD values are expressed in arbitrary units (A.U.). RN = Red Nucleus; SN = Substantia Nigra; Caudate = Head of Caudate Nucleus; Pallidus = Globus

Pallidus; WM = White Matter; GM = Grey Matter; CSF = Cerebrospinal Fluid.

doi:10.1371/journal.pone.0134963.t003
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B�
1 inhomogeneity dependence, one can completely remove it using a measured B1 field map, if

an ad hoc protocol is available on the scanner; otherwise, as shown in §3.4 and §4.1, an infor-
mation theory approach can be exploited to largely recover the map homogeneity. Further-
more, a judicious use of the Bloch equations for the acquired MR signals enabled us to skip the
acquisition of high flip angle bSSFPs, thus limiting the required acquisition time and avoiding
both SAR issues and CSF pulsation artifacts.

As for the quantitation of brain tissue parameters, the results are encouraging. From a pure
theoretical point of view, it is noteworthy that the well known physical constraints on relaxa-
tion rates (R1 < R2 < R�

2) are satisfied for any structure/tissue analyzed in Table 3, despite the
highly uncorrelated acquisition strategies we adopted to estimate the associated maps. A com-
parison of ours with the corresponding estimated values present in the literature also confirms
the reliability of the ranges we found in the different compartments. In particular, a good agree-
ment is found for longitudinal relaxation (GM: 0.609 ± 0.008 s-1 in [6] or 0.622 ± 0.043 s-1 in
[34]; WM: 1.036 ± 0.036 s-1 in [6] or 1.190 ± 0.071 s-1 in [34]; caudate nucleus: 0.683 ± 0.022 s-
1 in [6] or 0.719 ± 0.025 s-1 in [34]) and transverse FID (GM: 15.2 ± 0.4 s-1; WM: 21.0 ± 0.8 s-1;
caudate nucleus: 18.2 ± 1.2 s-1 in [6]) rates measured at 3 T. As for R2 values, which are usually
less sensitive to B0 magnitude than R1 and R�

2, 3D measures performed at 1.5 T substantially
match our findings (GM: 10.20 ± 0.73 s-1; WM: 18.5 ± 1.4 s-1; caudate nucleus: 11.24 ± 0.76 s-1

in [29]), except for an unusually high value found in WM by [29], which significatively differs
also from several other 2D measures [3, 9, 20, 35]. Also, our PD estimates are in line with those
reported in the literature (GM/CSF: 0.796 ± 0.078 in [20] or 0.844 ± 0.019 in [6]; WM/CSF:
0.742 ± 0.070 in [20] or 0.683 ± 0.006 in [6]; caudate nucleus/CSF: 0.851 ± 0.084 in [20] or
0.827 ± 0.016 in [6]). Finally, our χmeasures fit well with the results of previous studies (GM:
16 ± 10 parts-per-billion (ppb); WM: −18 ± 9 ppb; globus pallidus: 200 ± 40 ppb; putamen:
70 ± 20 ppb; substantia nigra: 200 ± 60 ppb; red nucleus 90 ± 30 ppb in [13]). However, it
should be borne in mind that plenty of variable factors (such as inter-subject variability, B0,
voxel size, ROI definitions, scanner-specific biases, 2D or 3D imaging modality, etc.) may alter
the qMRI results and, as such, should recommend caution in interpreting differences or simi-
larities [6].

Visual inspection of our parametric maps also showed the expected features of normal
structures (Fig 5) and of pathological tissue changes, such as demyelinating lesions (Fig 6).

We are aware that the present study is not without limitations. Due to the absence of a pro-
tocol for mapping the RF-transmission profile and the receiver coil sensitivity, we were forced
to enable the B�

1 -inhomogeneity correction introduced in §3.4, which can greatly limit the
map inhomogeneities, but not completely compensate for it. Moreover, the underlying
assumption of the present version of our scheme is that both longitudinal and transverse
relaxations follow a mono-exponential recovery of the equilibrium condition. Even if this is a
common assumption in relaxometry studies, there is evidence that WM shows multiple relax-
ation components, each with its own relaxing water pool [30]. In this respect, further theoreti-
cal and clinical analysis will be devoted to extend the present scheme to a multicomponent
generalization.

In conclusion, we found a fully analytical solution to a 5 parameter qMRI problem that
enables the reconstruction of 3D brain datasets with submillimiter resolution in a clinically fea-
sible acquisition time (less than 15 minutes in our experimental setup). Our maps do not suffer
from many of the issues affecting previously reported strategies, and allow for a more accurate
characterization of brain structures. We believe this will trigger a convenient access to uncon-
ventional ways of studying a large spectrum of pathophysiological conditions.
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