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Abstract

Background: The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which
are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented
beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation
are well described, little is known about the genetic mechanisms underlying variations between strains in the
production of these aroma compounds.
To increase our knowledge about the links between genetic variation and volatile production, we performed
quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains.
The segregants were individually genotyped by next-generation sequencing and separately phenotyped during
wine fermentation.

Results: Using different QTL mapping strategies, we were able to identify 65 QTLs in the genome, including
55 that influence the formation of 30 volatile secondary metabolites, 14 with an effect on sugar consumption
and central carbon metabolite production, and 7 influencing fermentation parameters. For ethyl lactate, ethyl
octanoate and propanol formation, we discovered 2 interacting QTLs each. Within 9 of the detected regions,
we validated the contribution of 13 genes in the observed phenotypic variation by reciprocal hemizygosity
analysis. These genes are involved in nitrogen uptake and metabolism (AGP1, ALP1, ILV6, LEU9), central carbon
metabolism (HXT3, MAE1), fatty acid synthesis (FAS1) and regulation (AGP2, IXR1, NRG1, RGS2, RGT1, SIR2) and
explain variations in the production of characteristic sensorial esters (e.g., 2-phenylethyl acetate, 2-metyhlpropyl
acetate and ethyl hexanoate), higher alcohols and fatty acids.

Conclusions: The detection of QTLs and their interactions emphasizes the complexity of yeast fermentative
aroma formation. The validation of underlying allelic variants increases knowledge about genetic variation
impacting metabolic pathways that lead to the synthesis of sensorial important compounds. As a result, this
work lays the foundation for tailoring S. cerevisiae strains with optimized volatile metabolite production for
fermented beverages and other biotechnological applications.
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Background
The aroma of fermented beverages is the result of a
complex blend of volatile compounds. In wine, these
volatiles originate either directly from grape must or are
produced de novo by yeast during alcoholic fermenta-
tion. Yeast utilizes the nutrients contained in grape
must, which are mainly hexoses, nitrogen and lipid
sources, for proliferation, whereas ethanol, CO2 and
various minor metabolites are produced as byproducts.
Many of these metabolites are volatile with sensorial
properties, which give wine its vinous character [1]. Al-
though the flavor and aroma profile of wine is influenced
by vine environment and management techniques, the
choice of yeast strain plays a central role [2].
Higher alcohols and esters are the most abundant

groups of fermentative aromas that are produced de
novo in yeast metabolism [3]. Higher alcohols can im-
part a strong, pungent smell and taste when present in
higher concentrations, but they result in a fruity charac-
ter at low concentrations [4]. The formation of higher
alcohols is carried out through decarboxylation and re-
duction of α-keto acids, which derive either from central
carbon metabolism or from the transamination of amino
acids. Therefore, the synthesis of higher alcohols is
linked to both carbon and nitrogen metabolism.
Acetate esters, which are produced by yeast from

higher alcohols during fermentation, increase aroma
complexity by imparting aromatic notes of pear, apple
and banana to general fruitiness [5, 6]. They are synthe-
sized through acetyl transfer from acetyl-CoA to an al-
cohol by the acetyltransferases Atf1 and Atf2 [7]. Ethyl
esters also contribute to global fruitiness perception and
are synthesized through acyl transfer from an acyl-CoA
to ethanol by the esterases Eeb1 and Eht1 [8]. The
carboxylic acid molecules for ethyl ester synthesis pre-
dominantly originate from the degradation of α-keto
acids or fatty acid synthesis in lipid metabolism.
As a consequence, fermentative aroma can be seen as

a complex mix of volatile compounds intimately associ-
ated with yeast metabolism. The diversity of yeast strains
and variability in the regulation of yeast metabolism
have a large impact on their production [9]. Even though
biochemical pathways have been established for most of
these compounds and major genetic determinants have
been identified, the genetic basis for the variation of
volatile compound production between strains remains
largely unknown.
The formation of several compounds important for

wine aroma has been shown to be a quantitative and
complex trait, as it is influenced by the contribution of
multiple genes [10]. Quantitative trait locus (QTL)
mapping has been demonstrated to be a powerful ap-
proach for deciphering the genetic bases of numerous
complex traits [11, 12] and has been applied in several

biotechnological applications. From its first use in
enological studies to characterize allelic variants influ-
encing acetic acid production [13], it has been extended
to decipher the genomic bases of fermentation parame-
ters [14], the production of main metabolites and re-
sidual sugar concentrations [15], nitrogen utilization
[16], sulfite production [17] and secondary fermenta-
tion [18]. QTL mapping was also used for the detection
of genomic regions influencing the production of
volatile compounds by yeast during wine alcoholic fer-
mentation [10] using a population of 30 F1-segregants
originating from a cross between an S. cerevisiae wine
and a lab strain. One major QTL and seven minor
genomic regions were found to influence the produc-
tion of different volatile compounds despite high trait
heritability. This result suggested that more analytical
power is required in order to decipher the genetic bases
of the production of volatiles during alcoholic fermen-
tation. The sensitivity of QTL analysis and the ability to
find loci with small contributions to phenotype varia-
tions can be increased by assessing a larger number of
individuals [19]. Moreover, the resolution of the map-
ping can be improved and nearby QTLs can be un-
linked by increasing the recombination rate of the
segregants [20]. When multiple loci influence one trait,
their contribution to trait variation can either be addi-
tive or interacting. Recent studies with a large yeast
cross estimated that more than 40% of trait variations
in a set of 20 traits could be explained by additive gen-
etic effects, whereas pair-wise genetic interactions con-
tributed to almost 10% of the phenotypic variance [19].
Multiple QTL mapping can not only detect linked
QTLs but also provides more statistical power to find
unlinked QTLs [21].
In this study, we addressed the complexity of the

genetic basis underlying volatile metabolite production
using a population of 130 F2-segregants obtained from a
cross of two wine strains with different requirements for
nitrogen [22]. In addition to performing a genome
search for single QTLs, the large segregant population
enabled us to increase the analytical strength by per-
forming a search for multiple QTLs. As far as we know,
this study is the first analysis of the interaction between
loci influencing fermentative aroma formation. We iden-
tified a total of 65 QTLs in the genome that influence
fermentation parameters and the production of metabo-
lites, including 55 QTLs influencing the formation of 30
volatile secondary metabolites. For the production of
ethyl lactate, ethyl octanoate and propanol, we could de-
tect interacting QTLs. Finally, we experimentally vali-
dated the role of 13 genes in 9 of the identified genomic
regions. These findings provide new information about
the production of metabolites of interest due to their
sensorial properties or other biotechnological value, such
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as medium chain fatty acids, fusel acids, higher alco-
hols and their esters. This opens new perspectives for
engineering S. cerevisiae strains for broad biotechno-
logical applications.

Results and discussion
Phenotyping of strains
Using small scale fermenters, the F2-segregant popu-
lation and both parental strains were phenotyped
(Additional files 1 and 2) for the production of 43
extracellular metabolites that originate from nitrogen
and central carbon metabolism (Fig. 1). Most traits
are normally distributed among the population, indicating
that they are under polygenic control (Additional file 2).
One exception is the ratio of glucose to fructose after 80%
of the fermentation (G/F ratio), which shows a biphasic
distribution, revealing the major influence of one locus for
this trait. The phenotypes of the parental strains are lo-
cated within the population of segregants, indicating
transgression for most traits, which can be explained by
the presence of alleles with opposite impacts on these
traits in the parental genomes. Although the differences
between the parental strains in their need for nitrogen
during fermentation were initially seen as indication of
different fermentative aroma formation, a clear depend-
ency of the production of higher alcohols, fusel acids and
their esters on the parental nitrogen requirements could
not be seen (Additional file 1).
Heritability of the traits was calculated according to

Brem et al. (2002) [23] (Additional file 1). With a median
of 70.09 and a maximum of 94.35, the determined

heritability is high, indicating reproducible phenotyping
and a strong genomic influence on trait variations. For
the formation of 3-methylbutanol, decanoic acid, diethyl
succinate, dodecanoic acid and ethyl dodecanoate, the
heritability estimate is almost zero or negative, which
might be associated with insufficient analytical reprodu-
cibility. We performed a principal component analysis
(PCA) to reduce the complexity of the data set for the
determined secondary metabolites and to estimate the
potential common regulations (Fig. 2). The first two di-
mensions of the PCA together explain 40.8% of global
trait variance. It can be seen that several evaluated com-
pounds are grouped according to their chemical family.
The production of all higher alcohols (except propanol
and 2-methylbutanol) is correlated, together with the
formation of their corresponding acetate esters. The syn-
thesis of these molecules shares a common reaction step,
i.e., the decarboxylation and reduction of α-keto acids. An-
other linked group of volatiles is medium chain fatty acids
with their ethyl esters. These compounds share a common
pathway, namely, fatty acid synthesis. Interestingly, the
formation of fusel acids is not correlated to the production
of higher alcohols, although both compounds are metabo-
lized from α-keto acids. This suggests that the reduction
or oxidation reactions, which lead to the formation of
these compounds from fusel aldehydes, have a strong im-
pact. The pyruvate yield is strongly negatively correlated
to the production of ethyl lactate and loosely negatively
correlated to the succinate yield and the formation of di-
ethyl succinate. Pyruvate is a metabolic intermediate of
both ethyl lactate and succinate formation (Fig. 1).

Fig. 1 Simplified synthesis pathways of determined metabolites. Main and secondary metabolites determined in this study by HPLC (green) and
GC/MS (red)
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Genome-wide identification of QTLs influencing
fermentation parameters, main and secondary metabolite
production
Simple QTL scan
The data obtained from phenotyping and the con-
structed marker map were used to perform a linkage
analysis on 43 quantitative traits, including fermentation
parameters, the production of main metabolites and the
formation of volatile secondary metabolites. We were
able to find a total of 32 QTLs influencing 32 traits
(Table 1). The determined logarithm of odds (LOD)
scores ranged from 3.41 to 10.49 with a median of 4.35.
The highest LOD score of 10.49 was found for the influ-
ence of chr4@386.5 on the G/F ratio, which means that
32% of trait variation are explained by the QTL. The
strong influence of this locus therefore accounts for the
biphasic distribution of the trait. The second highest
LOD score of 8.44 was found for a QTL influencing the
production of a volatile compound, namely, chr11@127.6
affecting the formation of 2-methylpropanol. Six major
QTL regions were detected with LOD scores greater than
six for at least one trait, which corresponds to an ex-
plained trait variation of more than 20% by these loci.
Globally, these QTLs were distributed over the whole

genome, with exception of chromosomes I, V, VI and
VIII. The size of the identified regions ranged from
5.2 kb to 65.7 kb with a median of 33.2 kb. The de-
tected regions contained between 4 and 28 genes. Four

QTLs were detected for both evaluated traits of the fer-
mentation kinetics, the fermentation time (t80%) and
CO2 production rate at t80%. Eight QTLs were found
for the concentration of extracellular main metabolites
at t80%. These QTLs influenced three traits, which were
glycerol yield, pyruvate yield and the G/F ratio. The most
QTLs were detected for the formation of volatile second-
ary metabolites, namely, 28 QTLs influencing the forma-
tion of 27 volatiles. This included the production of
characteristic sensorial compounds, such as 2-methylbutyl
acetate, 3-methylbutanol and 3-methylbutyl acetate, and
industrially relevant chemicals, such as higher alcohols
and organic acids.
The detected QTLs were compared with loci found in

QTL mapping studies of similar traits [10, 13–15, 24].
Only QTL chr7@161.6, which influences ethyl lactate
formation, co-localizes with PMA1, a plasma membrane
P2-type H + -ATPase that was shown by Abt et al.
(2016) to be the responsible gene in a QTL affecting
ethyl acetate production. More QTLs were in common
with the findings of Rossouw et al. (2008), who used a
comparative approach of combining transcriptomics and
exo-metabolome analysis to predict candidate genes with
a role in aroma profile modification [25]. Several of the
genes proposed by Rossouw et al. (2008), e.g., ALP1,
ILV6, LEU1, LEU2 and LEU9, were included in QTLs
that we detected for the same or closely related traits.
As the parent strains were selected because of their

Fig. 2 Principle component analysis. PCA of the formation of extracellular metabolites by S. cerevisiae. Traits that are less than 2% explained by
the first two dimensions of the PCA were excluded (2-methylbutanol, acetate yield, alpha-ketoglutarate yield, ethanol yield, ethyl acetate, glycerol
yield, propyl acetate, and valeric acid)
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Table 1 QTLs detected with single QTL mapping. List of QTLs with an influence on fermentation parameters, the production of
extracellular metabolites and volatile secondary metabolites that were detected with single QTL mapping

Trait QTL name Chromosome Start position [bp] End position [bp] LOD Score

Fermentation parameters
8 CO2 production rate at t80% chr4@385.5 IV 1,134,839 1,173,812 4.77
9 CO2 production rate at t80% chr4@410.0 IV 1,198,692 1,246,959 3.69

CO2 production rate at t80% chr10@241.5 X 717,987 726,938 4.67
20 Fermentation time t80% chr13@7.9 XIII 20,503 25,723 4.86
20 CO2 production rate at t80% chr13@7.9 XIII 20,503 25,723 3.81

Extracellular metabolites after 80% of the fermentation
2 Pyruvate yield chr2@172.5 II 507,274 527,387 3.54
8 G/F ratio chr4@386.5 IV 1,153,678 1,173,812 10.49
9 G/F ratio chr4@412.2 IV 1,205,742 1,243,242 5.49
10 Pyruvate yield chr7@20.4 VII 56,448 74,414 6.15
11 Pyruvate yield chr7@156.9 VII 463,981 503,880 3.75
14 Pyruvate yield chr9@58.7 IX 173,782 179,168 4.00
20 Pyruvate yield chr13@7.9 XIII 20,503 25,723 4.80

Glycerol yield chr13@19.3 XIII 52,743 75,040 4.82

Volatile secondary metabolites after 80% of the fermentation
2 Ethyl butanoate chr2@166.4 II 488,757 506,771 3.96

2-methylpropanoic acid chr3@26.1 III 62,518 111,639 3.96

Ethyl 2-methylbutanoate chr4@71.3 IV 211,091 234,153 4.32
3 Ethyl 2-methylpropanoate chr4@82.9 IV 216,058 273,735 3.96
4 Methionol chr4@124.6 IV 365,865 380,035 4.37
4 3-methylbutyl acetate chr4@133.6 IV 376,106 407,166 4.37
4 2-methylbutyl acetate chr4@133.6 IV 397,927 407,166 5.86
5 2-phenylethyl acetate chr4@161.9 IV 455,335 505,548 6.17
5 3-methylbutyl acetate chr4@161.9 IV 455,335 505,548 4.57
5 2-methylbutyl acetate chr4@161.9 IV 478,242 505,548 6.75
6 Ethyl lactate chr4@175.0 IV 521,776 527,398 3.41
6 Propanoic acid chr4@177.5 IV 524,924 545,742 4.00
6 Propanol chr4@177.5 IV 527,398 539,089 5.19
6 Propyl acetate chr4@179.4 IV 527,398 560,742 3.61
10 Diethyl succinate chr7@15.0 VII 40,689 56,448 5.44
10 Ethyl 3-methylthiopropanoate chr7@25.5 VII 50,239 87,729 4.47
11 Ethyl lactate chr7@161.6 VII 458,995 518,880 3.97

Dodecanoic acid chr7@175.5 VII 494,396 548,880 4.76
12 Dodecanoic acid chr7@195.5 VII 578,880 601,380 3.68

2-phenylethyl acetate chr7@294.6 VII 853,536 885,989 4.14
17 Octanoic acid chr11@29.5 XI 77,969 117,578 3.99
17 Hexanoic acid chr11@29.5 XI 82,548 115,238 6.94
17 Ethyl hexanoate chr11@35.5 XI 97,410 115,238 5.43
17 Ethyl dodecanoate chr11@41.8 XI 115,238 145,211 4.29
17 2-phenylethyl acetate chr11@42.5 XI 125,453 132,044 4.29
18 2-methylpropyl acetate chr11@123.8 XI 366,406 391,690 6.63
18 2-methylpropanol chr11@127.6 XI 371,345 400,712 8.44
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different need for nitrogen during fermentation, we
compared the detected QTLs with genomic regions
found by Brice et al. (2014) to influence nitrogen re-
quirement using the same parental strains [16]. No
match could be seen for QTLs influencing fermentative
aroma formation and nitrogen requirement, which could
possibly be explained by the differences in fermentation
conditions.

Double and multiple QTL scan
To search for additional minor QTLs and to assess
genetic interactions between our detected regions, we
performed a two-dimensional, two-QTL scan and a mul-
tiple QTL search for all traits. The analyses confirmed
24 QTLs that were already found with the single QTL
mapping and proposed 36 additional loci (Table 2). With
the double QTL mapping, we found significant evidence
for an interacting QTL pair at positions chr10@88.5 and
chr11@51.7, influencing the formation of ethyl octanoate
and accounting for 10.29% of trait variation. Another
interacting QTL pair, chr2@181.0 and chr16@304.0, was
found to influence the production of ethyl lactate,
explaining 10.17% of trait variation. Multiple QTL

mapping proposed interacting regions for a wide range
of traits. However, their contributions to the respective
phenotypes were low, with LOD scores of generally less
than two. Due to penalization of the LOD score for
more complex models of interaction, solely additive
models were found to be more significant for all traits.
This indicates that our number of segregants was still in-
sufficient to achieve the statistical power required for
the determination of QTL interactions. However, for the
production of propanol the three involved QTLs,
chr4@176.9, chr12@233.1 and chr14@45.8, could be de-
tected with all three mapping strategies, giving strong
evidence for their validity. Although models consisting
of viewer QTLs were seen to be more probable by the
multiple QTL mapping, the most likely model con-
taining all three loci was an additive model with an
interaction between chr4@176.9 and chr12@233.1.
This indicates a remaining probability for the pro-
posed interaction, which was calculated to potentially
account for 5.58% of trait variation.
Combining the results from the single and multiple

QTL mapping, each trait is influenced by a median of 3
QTLs, ranging from 1 to 7. The best explained trait is

Table 1 QTLs detected with single QTL mapping. List of QTLs with an influence on fermentation parameters, the production of
extracellular metabolites and volatile secondary metabolites that were detected with single QTL mapping (Continued)

Trait QTL name Chromosome Start position [bp] End position [bp] LOD Score
18 3-methylbutanol chr11@132.7 XI 380,437 403,181 3.56
18 2-methylpropanoic acid chr11@134.4 XI 400,712 405,331 4.64

2-methylpropanol chr11@158.4 XI 470,852 477,578 3.80
19 Propyl acetate chr12@222.6 XII 662,035 699,182 4.83
19 Propanol chr12@226.9 XII 662,035 691,268 4.08

Valeric acid chr13@102.0 XIII 296,288 312,983 5.87
21 Propanoic acid chr14@41.9 XIV 119,900 146,614 4.67
21 Propanol chr14@43.9 XIV 119,900 146,614 7.03
21 Propyl acetate chr14@46.9 XIV 124,114 150,370 6.19
21 Valeric acid chr14@48.9 XIV 125,823 150,370 7.72

Propanoic acid chr14@58.9 XIV 160,420 185,626 3.83

Valeric acid chr14@81.8 XIV 233,520 259,114 3.88

Ethyl 3-methylbutanoate chr15@77.3 XV 212,898 239,482 3.76
22 Ethyl decanoate chr15@139.0 XV 409,364 431,700 3.97
22 Ethyl octanoate chr15@142.3 XV 414,810 438,628 5.02
23 3-methylbutanoic acid chr15@162.7 XV 485,607 511,993 4.29
23 2-phenylethyl acetate chr15@176.5 XV 511,993 545,871 3.56

Diethyl succinate chr15@297.3 XV 879,033 901,450 4.46

3-methylbutanoic acid chr16@191.9 XVI 552,371 593,439 3.83
25 Diethyl succinate chr16@303.9 XVI 899,570 920,003 4.08
25 Ethyl 3-methylbutanoate chr16@303.9 XVI 904,961 917,224 3.81
25 Ethyl 2-methylbutanoate chr16@304.1 XVI 904,961 917,224 3.79

Single traits that are influenced by the same QTL (under the condition that the distance between detected peaks is less than 10 cM; in combination with Table 2)
are indicated with superscript numbers in the left column of the table
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Table 2 QTLs detected with double and multiple QTL mapping. QTLs with an influence on fermentation parameters and the
production of extracellular metabolites and volatile secondary metabolites that were additionally detected with double and multiple
QTL searches

Trait QTL name Chromosome Peak [bp] LOD Score

Diethyl succinate chr1@64.7 I 194,100 4.23
1 Ethyl 2-methylbutanoate chr2@116.2 II 348,600 4.13
1 Hexanoic acid chr2@122.1 II 366,300 2.54
2 Ethyl lactate chr2@181.0 II 543,000 4.78

Ethyl 2-methylpropanoate chr3@78.8 III 236,400 2.84
3 Pyruvate yield chr4@91.9 IV 275,730 2.39
3 Ethyl butanoate chr4@92.0 IV 275,985 3.63
4 Ethyl hexanoate chr4@132.0 IV 396,000 2.59
5 2-methylpropyl acetate chr4@165.8 IV 497,400 2.42
6 Diethyl succinate chr4@175.0 IV 525,000 2.99
6 Ethyl octanoate chr4@175.0 IV 525,000 2.14

Dodecanoic acid chr4@298.0 IV 894,000 4.60

Valeric acid chr4@324.9 IV 974,700 2.50
7 2-methylpropanol chr4@348.9 IV 1,046,700 3.36
7 3-methylbutanol chr4@348.9 IV 1,046,730 3.66
9 Pyruvate yield chr4@411.9 IV 1,235,730 2.54

G/F ratio chr6@62.0 VI 186,000 3.90

Ethyl 3-methylbutanoate chr6@85.2 VI 255,600 4.14
12 Decanoic acid chr7@198.0 VII 594,000 3.65
13 2-methylpropyl acetate chr9@16.9 IX 50,700 2.09
13 Dodecanoic acid chr9@17.6 IX 52,800 3.20

2-methylbutyl acetate chr9@32.6 IX 97,800 1.75
14 Dry weight chr9@60.0 IX 180,066 3.67
14 Ethyl propanoate chr9@67.5 IX 202,500 2.88
14 Propanol chr9@67.5 IX 202,500 1.85

2-phenylethyl acetate chr9@101.1 IX 303,300 2.25

Propyl acetate chr10@27.2 X 81,600 1.53
15 Ethyl hexanoate chr10@61.3 X 183,900 2.97
15 Hexanoic acid chr10@61.3 X 183,900 2.78

Ethyl octanoate chr10@88.5 X 265,500 5.24

Propanol chr10@104.7 X 314,100 2.08
16 2-methylpropanol chr10@213.1 X 639,300 2.29
16 2-methylpropyl acetate chr10@221.7 X 665,100 4.04
16 2-methylbutyl acetate chr10@228.1 X 684,300 2.34
16 3-methylbutyl acetate chr10@228.8 X 686,400 2.97
17 Decanoic acid chr11@29.2 XI 87,600 3.95
17 Ethyl decanoate chr11@34.2 XI 102,438 2.65
17 t80% chr11@43.2 XI 129,600 3.10
17 Ethyl octanoate chr11@51.7 XI 155,100 4.95

Glycerol yield chr11@70.0 XI 210,000 2.72

G/F ratio chr11@85.6 XI 256,800 2.65

Ethyl propanoate chr11@107.7 XI 323,100 3.78
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the G/F ratio with 6 detected loci accounting for 61.0%
of determined trait variation. Regarding volatile forma-
tion, the difference in 2-methylpropanol production can
be best elucidated, with 6 identified QTLs explaining
54.5% of trait variation. Several QTLs display pleiotropic
effects, as they influence many traits and can therefore
be considered “hotspots”. The region affecting the most
traits is chrXI:77,969..155,100, which influences the
fermentation time (t80%) and the formation of eight
volatile compounds, namely, hexanoic acid, octanoic
acid, decanoic acid, and their corresponding ethyl es-
ters as well as ethyl dodecanoate and 2-phenylethyl
acetate. Twenty-four other QTLs were found to influ-
ence more than one trait. This is often the case for
the production of related compounds and indicates
common regulation, which was already concluded by
PCA. Examples for jointly influenced traits are sugar
consumption and the CO2 production rate, pyruvate
yield and the formation of ethyl esters, the production
of 2-methylpropanol and 3-methylbutanol, and the
formation of several acetate esters.

Validation of genomic regions involved in metabolic traits
For the validation of single QTLs and the identification
of impacting allelic variants within the corresponding re-
gions, 19 genes in 10 QTLs were further evaluated using
RHA (Table 3). These target genes were chosen since
they contained non-synonymous SNPs between the par-
ent cells and were suspected to play a role in the de-
tected traits, as their biologic functions were mostly
connected to central carbon metabolism or nitrogen up-
take and metabolism. In 9 QTLs, we could identify 13
genes that influence hexose transport, CO2 production
rate and the formation of medium chain fatty acids, fusel
acids, higher alcohols, and their corresponding esters
(Table 3).

Hexose transporter Hxt3 influences sugar utilization
Hexose transport is a limiting step for alcoholic fermen-
tation speed [26]. QTL chr4@386.5, which influences
the CO2 production rate and G/F ratio, contains three
hexose transporter genes, HXT3, HXT6 and HXT7. We
evaluated these genes individually by RHA. As the

Table 2 QTLs detected with double and multiple QTL mapping. QTLs with an influence on fermentation parameters and the
production of extracellular metabolites and volatile secondary metabolites that were additionally detected with double and multiple
QTL searches (Continued)

Trait QTL name Chromosome Peak [bp] LOD Score
18 3-methylbutanoic acid chr11@134.4 XI 403,170 3.68

2-methylpropyl acetate chr12@98.3 XII 294,900 3.15

Ethyl 2-methylbutanoate chr12@123.8 XII 371,400 3.34

Ethyl propanoate chr12@139.6 XII 418,800 3.67

CO2 production rate at t80% chr12@257.3 XII 771,900 2.47

2-methylpropanol chr12@317.1 XII 951,300 3.08

G/F ratio chr13@164.5 XIII 493,500 4.99

Propyl acetate chr13@248.3 XIII 744,900 2.11

2-phenylethyl acetate chr13@304.0 XIII 912,000 2.55
21 Dodecanoic acid chr14@36.3 XIV 108,900 4.69

Ethyl 3-methylthiopropanoate chr14@227.0 XIV 681,000 3.42
22 2-phenylethanol chr15@132.0 XV 396,000 1.62
23 2-methylbutyl acetate chr15@172.0 XV 516,000 2.55

Ethyl hexanoate chr15@265.4 XV 796,200 4.47

Ethyl 3-methylbutanoate chr15@304.4 XV 913,200 2.77

2-methylpropanoic acid chr15@314.4 XV 943,200 2.95

2-phenylethyl acetate chr15@352.0 XV 1,056,000 2.85
24 2-methylpropanol chr16@13.8 XVI 41,400 4.06
24 2-methylbutyl acetate chr16@16.4 XVI 49,200 2.78
24 G/F ratio chr16@18.3 XVI 54,900 2.75

Valeric acid chr16@116.5 XVI 349,500 2.04
25 Ethyl lactate chr16@304.0 XVI 912,000 7.00

Single traits that are influenced by the same QTL (under the condition that the distance between detected peaks is less than 10 cM; in combination with Table 1)
are indicated with superscript numbers in the left column of the table
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sequences of HXT6 and HXT7 are nearly identical, we
assessed the effect of both genes together. Variation in
HXT3 was found as the sole effect influencing the CO2

production rate and the G/F ratio (Additional file 3).
The MTF2621 allele of the gene increased the CO2 pro-
duction rate by a factor of 1.07 and increased the G/F

Table 3 Validated allelic variants in detected QTLs. Selected target genes for the validation of QTLs influencing fermentation
kinetics, substrate consumption and the production of fermentative aromas; differences caused by the allelic gene variants regarding
the influenced traits were detected by RHA and are given as the ratio of phenotype MTF2621 to phenotype MTF2622

QTL name Trait Evaluated genes Different impact of allele on trait as
MTF2621/MTF2622 [factor]

chr2@166.4 Ethyl butanoate
Ethyl lactate
Pyruvate yield

AGP2 0.79*** ethyl lactate

chr3@26.1 2-methylpropanoic acid AGP1 1.26* 2-methylpropanoic acid

ILV6 no effect

chr4@71.3 Ethyl 2-methylbutanoate
Ethyl butanoate
Ethyl 2-methylpropanoate
Pyruvate yield

YDL124W no effect

chr4@133.6 2-methylbutyl acetate
3-methylbutyl acetate
Ethyl hexanoate
Methionol

SIR2 0.77* 3-methylbutyl acetate
0.78** ethyl hexanoate

chr4@177.5 Ethyl lactate
Ethyl octanoate
Diethyl succinate
Propanoic acid
Propanol
Propyl acetate

NRG1 1.10* propanol

chr4@386.5 CO2 production rate at t80% HXT3 1.07* CO2 production rate

G/F ratio 1.86** G/F ratio

HXT6 no effect

HXT7 no effect

chr11@29.5 2-phenylethyl acetate
Ethyl decanoate
Ethyl dodecanoate
Ethyl hexanoate
Ethyl octanoate
Decanoic acid
Hexanoic acid
Octanoic acid
t80%

ACP1 no effect

FAS1 0.81** ethyl hexanoate
0.82** decanoic acid
0.84**hexanoic acid
0.89** octanoic acid

FAT3 no effect

PXA2 no effect

chr11@127.6 2-methylpropanoic acid
2-methylpropanol
2-methylpropyl acetate
3-methylbutanoic acid
3-methylbutanol

IXR1 1.14** 2-methylpropanol
1.16* 2-methylpropanoic acid

MAE1 1.43** 2-methylpropanoic acid
1.67*** 2-methylpropanol
1.27*** 3-methylbutanoic acid
1.40* 3-methylbutanol

RGT1 1.15*** 2-methylpropanol

chr12@226.9 Propanol
Propyl acetate

whole region no effect

chr14@48.9 Dodecanoic acid
Propanoic acid
Propanol
Propyl acetate
Valeric acid

ALP1 0.90* dodecanoic acid
1.07** propanol
1.26*** valeric acid

chr15@176.5 2-methylbutyl acetate
2-phenylethyl acetate
3-methylbutanoic acid

LEU9 1.08* 2-phenylethyl acetate

RGS2 1.21* 2-methylbutyl acetate
0.83* 2-phenylethyl acetate

(p-value: ns (not significant) > 0.05, * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001)
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ratio by a factor of 1.86. An effect of this allelic variation
on the production of determined volatiles could not be
detected. A variant of HXT3 has already been described
in the literature by Guillaume et al. (2007) to have a
higher affinity for fructose [27] and was detected among
flor strains [28]. This variant originated through recom-
bination between the orthologs HXT1 and HXT3. Except
for SNP T1411A, which results in amino acid change
L471I, the MTF2621 allele of HXT3 is identical to the
variant described by Guillaume et al. (2007). We can
therefore suggest that the allelic variants of HXT3 are
the driving factor behind the biphasic distribution of the
G/F ratio among the segregants.

The formation of medium chain fatty acids and their ethyl
esters is influenced by Agp2, Fas1 and Sir2
Ethyl esters of medium chain fatty acids provide floral
and fruity notes to fermented beverages. In QTL
chr4@133.6 and QTL hotspot chr11@29.5, which influ-
ence the formation of medium chain fatty acids and
their ethyl esters, we identified SIR2 and FAS1 as causa-
tive genes (Table 3). In chr2@166.4, a QTL impacting
ethyl butanoate production with a lower significance
(LOD 3.96), AGP2 was found to modulate the formation
of butanoic acid, the substrate for ethyl butanoate.
Fatty acids are synthesized from the repeated conden-

sation of malonyl-CoA and acetyl-CoA, which is carried
out by fatty acid synthetase (FAS). The FAS complex
consists of the beta subunit Fas1 and the alpha subunit
Fas2 [29]. Fas1, which was found to regulate the expres-
sion of FAS2 [30], possesses four independent enzym-
atic functions, i.e., acetyl transferase, enol reductase,
dehydratase and malonyl/palmitoyl transferase [31].
The parental allelic variants of FAS1 differ in three
non-synonymous SNPs (Table 4), of which one, SNP
I1970V, lies in the malonyl-CoA-acyl carrier protein
transacylase domain of the protein. The MTF2621 al-
lele of Fas1 causes a significant decrease in the forma-
tion of hexanoic acid, ethyl hexanoate, valeric acid,
octanoic acid, decanoic acid and dodecanoic acid by a
factor of 0.78–0.89 (Fig. 3). Therefore, we can suggest
that the MTF2621 allele of FAS1 is less active than the
MTF2622 allele, and thus leads to a decreased synthesis
rate of fatty acids.
The gene SIR2 encodes an NAD + −dependent deace-

tylase involved in chromatin silencing [32]. The allelic
variants of SIR2 differ in two non-synonymous SNPs
(Table 4). The MTF2621 allele of the gene causes a de-
crease in the formation of hexanol, octanoic acid, decanoic
acid, dodecanoic acid, ethyl butanoate and ethyl hexanoate
up to a factor of 0.57 (Fig. 3). In addition, the extracellular
concentration of acetate was decreased by a factor of 0.8
(Additional file 3). Sir2 was found to influence the
expression of the acetyl-CoA synthase ACS2 [33], and a

regulating function by Sir2 on the activity of acetyl-CoA
synthase enzymes by deacetylation was proposed by
Starai et al. (2003) [34]. Furthermore, Casatta et al. (2013)
demonstrated that a null mutant of SIR2 showed increased
acetate metabolism and a lower excretion of acetate to the
medium [35]. Based on our observations, we can therefore
suggest that the MTF2621 variant of Sir2 has lower

Table 4 Non synonymous SNPs between allelic variants.
Differences in the amino acid (AA) sequence of the expressed
protein resulting from non-synonymous SNPs between the
allelic variants of the evaluated target genes. Comparison of the
strains MTF2621 and MTF2622 with the S. cerevisiae reference
strain S288C

Gene AA position S288C MTF2621 MTF2622

AGP1 7 P P L

24 G E G

142 N S N

316 V V A

370 F L F

466 I L I

540 L I L

597 D N D

AGP2 256 H Y H

ALP1 126 V V A

FAS1 1504 V A V

1715 V A V

1970 V I V

ILV6 4 S L S

56 A P A

IXR1 45 T T A

65 Q Q –

93 Y Y F

104 – ATTTTT –

291 M M L

570 QQ QQ –

LEU9 76 D D H

176 S S Y

MAE1 605 I I V

NRG1 129 P H P

156 T S T

RGS2 99 Y N Y

RGT1 326 L L P

717 I I V

722 P P A

729 S S N

SIR2 178 Q Q H

201 S G S
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deacetylase activity compared to the other variant, which
results in decreased expression of ACS2 and reduced acti-
vation of acetyl-CoA synthases. Consequently, this reduced
activity leads to a lower availability of acetate and acetyl-
CoA for fatty acid synthesis and elongation.
Other small but significant influences of SIR2 can be seen

in the formation of 2-methylpropanol, 3-methylbutanol and
other degradation products of α-keto acids, with the
MTF2621 allele leading to a decrease of these compounds
(Fig. 4). Sir2 was found to modulate the expression of the
amino acid permease AGP1 [36]. Altered expression of
AGP1 could impact the nitrogen assimilation and thus the
formation of amino acid related fermentative aromas. Fur-
thermore, as Sir2 is dependent on the cofactor NAD+, its
altered activity could influence redox homeostasis of the
cell. Redox imbalances were reported to significantly affect
the production of fermentative aromas by S. cerevisiae [37].

AGP2 encodes a plasma membrane protein that is
involved in the uptake of carnitine and polyamines
[38, 39]. Carnitine is important for intracellular acetyl
transport between cellular compartments [40], and the
level of carnitine can therefore affect the availability of
acetyl-CoA for fatty acid synthesis. However, carnitine
is not present in the synthetic medium used in this
study. Agp2 positively regulates the expression of vari-
ous proteins involved in substrate transport and other
biological processes, and might also act as a sensor of en-
vironmental signals [41]. One non-synonymous SNP was
found to distinguish the two parental variants (Table
4), and it is located in the extracellular region of the
protein. The MTF2621 allele of AGP2 causes an in-
crease in the formation of butanoic acid, decanoic
acid, dodecanoic acid and ethyl dodecanoate up to a
factor of 1.63 (Fig. 3). We suggest that the reported

a b

c

Fig. 3 Effect of validated variants on medium chain fatty acid formation. Simplified pathway of fatty acid synthesis by the enzymes Fas1 and Fas2,
which is dependent on intracellular acetyl transport (a). Allelic effect of the enzymes Agp2, Fas1 and Sir2 on the formation of fatty acids (b) and
fatty acid ethyl esters (c) as determined by RHA. Concentrations are given in relation to the heterozygote of the parental strains MTF2621 and
MTF2622. (p-value: ns (not significant) > 0.05, *≤ 0.05, **≤ 0.01, ***≤ 0.001, ****≤ 0.0001)
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c

d

ba

Fig. 4 Effect of validated variants on of higher alcohol and fusel acid formation. Amino acids are transported into the cell by Agp1 and Alp1. The
expression of AGP1 is influenced by Sir2 (a). Simplified synthesis pathway of fermentative aromas connected to valine and leucine metabolism (b).
Allelic effect of the involved enzymes Agp1, Alp1, Ilv6, Mae1 and Sir2 on the formation of volatiles deriving from α-ketoisovalerate (c)
and α-ketoisocaproate (d) as determined by RHA. Concentrations are given in relation to the heterozygote of the parental strains
MTF2621 and MTF2622. (p-value: ns (not significant) > 0.05, * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001)

Eder et al. BMC Genomics  (2018) 19:166 Page 12 of 19



SNP in AGP2 causes a higher formation rate of fatty
acids for MTF2621, although the causative function
remains unclear.

The formation of higher alcohols, fusel acids and their
esters is influenced by Agp1, Ilv6, Mae1
Higher alcohols, fusel acids and especially their esters
are essential fermentative aroma components that pro-
vide notes ranging from fruity to flowery. We identified
MAE1 in chr11@127.6, the QTL with the highest LOD
score for volatile compounds, which influences the for-
mation of five higher alcohols, fusel acids and acetate es-
ters (Table 3). The enzyme Mae1 catalyzes the oxidative
decarboxylation of malate to pyruvate [42]. Pyruvate is a
precursor for the synthesis of the amino acids alanine,
isoleucine, leucine and valine [43]. An intermediate of
valine and leucine biosynthesis, α–ketoisovalerate, can also
be degraded to 2-methylpropanol and 2-methylpropanoic
acid or to 3-methylbutanol and 3-methylbutanoic acid via
α–ketoisocaproate (Fig. 4). The allelic variants ofMAE1 dif-
fer in one non-synonymous SNP (Table 4), which is lo-
cated in the NAD-binding domain of the protein.
Furthermore, 5 SNPs in the 1000-bp upstream region
of the gene affect predicted binding motifs for the
proteins Azf1, Mot3, Rtg1, Rtg3, Stp1 and Stp2
(Additional file 4). The hemizygote carrying only the
MTF2621 allele of MAE1 shows increased formation of
2-methylpropanol, 3-methylbutanol, 2-methylpropanoic
acid and 3-methylbutanoic acid by up to a factor of
1.67 (Fig. 4). We can suggest that the MTF2621 allele
of MAE1 is superior to the MTF2622 allele and induces
an increased flux of malate to pyruvate, leading to
higher formation of α–keto acids and their degradation
products. This proposal is further supported by an ob-
served increased formation of ethyl lactate (Additional
file 3), which is also derived from pyruvate (Fig. 1).
RHA detected several other minor influences of

MAE1 on traits that were not found by QTL mapping.
The MTF2621 allele of the gene leads to a slightly
higher production of 2-phenylethanol by a factor of
1.18 (Additional file 3). Mae1 was found to interact
with Aro1 [44], an enzyme catalyzing several steps of
the chorismate pathway leading to the synthesis of aro-
matic amino acids, such as phenylalanine [45]. In
addition, the MTF2621 allele of Mae1 leads to a de-
crease of several acetate esters and medium chain fatty
acids up to a factor of 0.8 (Fig. 4 and Additional file 3)
and to an increase in the extracellular concentration of
acetate by a factor of 1.28 (Additional file 3). These effects
are consistent with the fact that Mae1 physically interacts
with Acc1 [44], an acetyl-CoA carboxylase that is involved
in the regulation of acetyl-CoA and in the biosynthesis of
medium and long chain fatty acids [46, 47].

The gene AGP1, which encodes a low affinity amino
acid permease for asparagine and glutamine [48], was
validated in QTL chr3@26.1 with an influence on the
formation of 2-methylpropanoic acid. The two allelic
variants of AGP1 differ in 8 non-synonymous SNPs
(Table 4), of which three lie in cytoplasmic domains of
the protein and 5 in transmembrane domains. Another
SNP is located in the 1000-bp upstream region of the
gene, affecting the predicted binding motif for Ume6
(Additional file 4). The hemizygote carrying the MTF2621
allele of the gene shows a formation of 2-methylpropanol,
2-methylpropyl acetate, 2-methylpropanoic acid and ethyl
2-methylpropanoate increased by a factor of 1.26–1.32
(Fig. 4). Agp1 was found to transport valine to a lower ex-
tent [48]. Valine can be degraded to α-ketoisovalerate and
then to 2-methylpropanol and 2-methylpropanoic acid by
the Ehrlich pathway (Fig. 4). We hypothesize that the re-
ported SNPs lead to higher affinity of the MTF2621 allele
of Agp1 for valine, leading to a higher level of this amino
acid in the cell. Another possible explanation is a different
influence of the alleles on the transport of glutamine,
which is important for the transamination of α-keto acids
in the cell. In this scenario, a reduced intracellular level of
glutamine could lead to a decreased transamination of α-
ketoisovalerate, which can therefore be degraded to 2-
methylpropanol and 2-methylpropanoic acid. While this
would also affect the transamination of other α-keto acids
and therefore the production of several higher alcohols or
fusel acids, a significant, but small, influence of AGP1
could only be additionally detected on the production of
2-phenylethanol.
In the same QTL (chr3@26.1), the variants of ILV6 did

not show significant differences in the formation of 2-
methylpropanoic acid, but they did in the formation of
the related higher alcohol 2-methylpropanol. Ilv6 is a
regulatory subunit of the acetolactate synthase Ilv2,
which catalyzes the first step of valine and leucine bio-
synthesis [49]. The allelic variants of ILV6 differ in two
non-synonymous SNPs (Table 4). SNP L4S lies in the N-
terminal signal peptide domain of the protein, whereas
SNP P56A is within a non-cytoplasmic domain. Another
SNP is located in the 1000-bp upstream region and causes
a loss of the predicted binding motifs for Msn2, Msn4,
Nrg1 and Rph1 in strain MTF2621 (Additional file 4). The
MTF2621 allele of ILV6 leads to an increase in the forma-
tion of 2-methylpropanol and 3-methylbutanol by a factor
of 1.24 (Fig. 4). Therefore, we can hypothesize that the
MTF2621 allele of ILV6 stimulates a higher synthesis rate
of acetolactate, which could result in higher synthesis of
α–ketoisovalerate, including its degradation products.

The formation of propanol is influenced by Alp1 and Nrg1
We assessed the three partly interacting genomic regions
that were detected with the single, double and multiple
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QTL mapping to affect the production of propanol and
related compounds (Table 3). NRG1 and ALP1 were vali-
dated in QTL chr4@177.5 and QTL chr14@43.9, re-
spectively. As no clear candidate gene was identified in
QTL chr12@226.9, we assessed the whole region by
RHA; however, no significant impact could be detected
for the production of propanol or propyl acetate. The
QTL is likely to interact with chr4@177.5, and the nega-
tive validation of chr12@226.9 might indicate a possible
epistatic interaction. Furthermore, chr12@226.9 is the
weakest QTL of the three assessed loci, with an LOD
score of 4.08 (Table 1), which could have hindered
the validation.
Propanol and propanoic acid derive from the de-

carboxylation of α-ketobutyrate and the oxidation or
reduction of the resulting propionaldehyde [50]. α-
Ketobutyrate is produced from the transamination of
threonine, which is taken up from the medium as a ni-
trogen source or can be metabolized from pyruvate via
aspartate through the amino acid pathway (Fig. 5). It
was shown, however, that the formation of propanol is

mainly limited to the beginning of wine fermentation
when nitrogen is present in the must and is dependent
on the initial amount of available nitrogen [51].
The protein Nrg1 is a transcriptional regulator of glu-

cose repressed genes [52, 53] and mediates a set of stress
responsive genes [54]. The parental allelic variants of
NRG1 differ in two non-synonymous SNPs (Table 4),
which are both located in the transcriptional repressor
protein “yy” domain. The MTF2621 variant of the gene
leads to an increase in propanol production by a factor
of 1.10, whereas no significant effect could be detected
in the formation of related compounds (Fig. 5). The re-
pressive function of Nrg1 is inhibited by Snf1; therefore,
it is suspected to have a role in the response to nitrogen
limitation [55]. Furthermore, Nrg1 was found to influ-
ence the expression of BAT1, a mitochondrial amino-
transferase involved in branched amino acid synthesis
and Ehrlich pathway catabolism [56]. With regard to this
finding, we propose that the allelic variants of Nrg1
show a different response to nitrogen limitation, which
affects the expression of BAT1, leading to a lower trans-
amination rate of valine, leucine and isoleucine taken up
from the medium. In this scenario, the overall availability
of nitrogen for metabolism would be influenced, which
therefore influences the synthesis of propanol.
The gene ALP1 encodes a permease for cationic amino

acids [57, 58]. The parental variants differ in one non-
synonymous SNP (Table 4), which is located in a trans-
membrane domain. The MTF2621 variant increases the
production of propanol by a factor of 1.07 (Fig. 5). We
can suggest that this variant of Alp1 leads to an in-
creased uptake of amino acids from the medium at the
beginning of the fermentation, which explains higher
propanol formation. This hypothesis is supported by a
significant decrease in fermentative aromas derived
from α-ketoisovalerate and α-ketoisocaproate for the
MTF2621 allele of the gene (Fig. 4). The opposite cor-
relation is reported in the literature, in which a lower
overall intracellular concentration of nitrogen leads to a
higher level of fermentative aroma production due to a
lower transamination rate of α-keto acids derived from
central carbon metabolism [59, 60].

Conclusion
In this study, we confirm the potential of QTL analysis
for deciphering the impact of genetic variation on the
production of volatile metabolites by Saccharomyces
cerevisiae during alcoholic fermentation. We were able
to enlarge the analytical power of the approach com-
pared to previous studies by using a comparatively large
number of 130 segregants originating from a cross of
two wine strains and by increasing the recombination
rate of the segregants. This approach enabled us to
perform single and multiple QTL mapping strategies,

b

a

Fig. 5 Effect of validated variants on propanol formation. Simplified
synthesis pathway of fermentative aromas connected to threonine
metabolism (a). Allelic effect of the involved enzymes Alp1 and Nrg1
on the formation of volatiles derived from α-ketobutyrate as determined
by RHA (b). Concentrations are given in relation to the heterozygote of
the parental strains MTF2621 and MTF2622. (p-value: ns (not significant)
> 0.05, *≤ 0.05, **≤ 0.01)
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leading to the detection of 65 QTLs with an influence
on the formation of volatile metabolites, the production
of extracellular main metabolites and general fermenta-
tion parameters. Our results confirm that multiple QTL
mapping offers the possibility to detect additional, par-
ticularly minor loci. We were furthermore able to detect
interacting QTLs for three evaluated traits, i.e., the for-
mation of ethyl lactate, ethyl octanoate and propanol.
However, it could be seen that an even larger number of
segregants is required for a thorough and significant de-
termination of QTL interactions.
We validated 13 genes in 9 QTLs, and of these genes,

five (AGP1, ALP1, FAS1, ILV6 and LEU9) have well de-
scribed roles in metabolic pathways leading to yeast fer-
mentative aroma formation. We could confirm their
contribution to volatile production and characterized al-
lelic variants that explain variations in these traits be-
tween the parent strains. Furthermore, the previously
described fructophilic character of the MTF2621 allele
of HXT3 was confirmed in this study. For the other 7
validated genes (AGP2, IXR1, MAE1, NRG1, RGS2,
RGT1 and SIR2), we revealed contributions to the for-
mation of fermentative aromas that were not previously
reported. The fact that 5 of the 12 validated genes in-
volved in volatile formation have broad regulatory func-
tions on gene expression reveals the significant role of
gene regulation in fermentative aroma production. These
results demonstrate that QTL mapping is an effective
and advisable approach for detecting the impact of glo-
bally acting genes on individual traits.
In summary, our findings of QTLs, their interactions

and underlying gene variants emphasize the complexity
of yeast fermentative aroma formation and provide the
most extensive analysis of the links between genetic vari-
ation and the fermentative production of sensorial im-
portant volatiles to date. The results of this study will lead
to the improvement of commercial S. cerevisiae starter
cultures for the production of fermented food and bever-
ages by non-GMO methods, such as marker-assisted
breeding. As many of the described secondary metabolites
are additionally used as biofuel additives or building
blocks for chemical syntheses, improved knowledge about
allelic variation may also open paths for improving strains
in a wide range of biotechnological applications.

Methods
Media
Yeast was cultured at 28 °C in yeast extract peptone dex-
trose (YPD) media containing 10 g/L yeast extract, 20 g/L
peptone and 20 g/L glucose. Solid YPD media contained
1.5% agar. Selective YPD media containing 200 μg/mL ge-
neticin (G418), 200 μg/mL nourseothricin (clonNAT) or
200 μg/mL hygromycin B were used.

Wine fermentations were carried out in synthetic must
(SM) described by Bely et al. (1990) [61]. The medium
contains glucose and fructose (each 100 g/L) and assim-
ilable nitrogen (200 mg/L) in the form of ammonium
and free amino acids, which mimics the nitrogen con-
tent of standard grape juice.

Yeast strains
The S. cerevisiae strains 4CAR1 and T73 exhibit differ-
ent needs for nitrogen during wine fermentation, which
may indicate different formations of aromas associated
with nitrogen metabolism. The requirement was previ-
ously estimated using an approach based on the addition
of nitrogen to keep the CO2 production rate constant
during limitation of this substrate. In comparison to
strain 4CAR1, strain T73 showed a higher need for ni-
trogen [22; strain T73 is coded as MTF1782 in this
study]. The strain T73 belongs to the phylogenetic clade
of wine strains, whereas strain 4CAR1 belongs to the
group of champagne strains (Additional file 5), which
originated through crossings between strains of the wine
clade and the flor clade [28]. For the presented study,
haploid spores of these strains were used, coded here as
MTF2621 (haploid spore of strain 4CAR1 [ΔHO::Neor])
and MTF2622 (haploid spore of strain T73 [ΔHO::Natr]).
The same spores have been previously used by Brice et
al. (2014) to map QTLs influencing nitrogen require-
ment during fermentation [16, coded as MTF1782-B1
and MTF2029-C5 in this study].

Generation of F2-segregants
The strains MTF2621 and MTF2622 were mated to
form a zygote, which was selected on YPD-agar contain-
ing G418 and clonNAT. The zygote was then sporulated
in liquid sporulation media using the protocol of Codon
et al. (1995) [62]. The resulting tetrads were dissected
into single spores to obtain the F1-generation using a
Singer MSM 400 workstation (Singer Instruments). In
most cases, only one spore per tetrad was taken for fur-
ther experiments to increase genomic independence
among the spores. The antibiotic resistance of the ob-
tained spores was determined by growth assay on
YPD-agar plates containing G418 or clonNAT. Two
spores with different antibiotic properties were mated,
and the formed zygotes were subsequently selected on
YPD-agar containing G418 and clonNAT. These zy-
gotes were sporulated and dissected again. In total,
130 single spores from the F2-generation were used
for this study.

Genotyping of strains
The genomic DNA of all 130 F2-segregants and both
parent strains was isolated using the MasterPure™ Yeast
DNA Purification Kit (epicentre) according to the
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protocol. The purity of the DNA was measured using a
NanoDrop™ device (Thermo Fisher Scientific), and the
concentration was determined by Qubit™ fluorometric
quantification (Thermo Fisher Scientific). The DNA
samples were then used for sequencing using Illumina
technology (HiSeq 2500, paired end, 2 × 100 bp, se-
quencing platform Genotoul in Toulouse, France) at a
sequencing depth of 20- to 80-fold. For each library,
low-quality reads were processed and filtered with the
FASTX Toolkit v0.0.13.2 and TRIMMOMATIC v0.30
[63] using a quality threshold of 20. First, reads were
aligned to the S288C reference genome (release R64–1-1)
using BWA v0.6.2 [64]. Once the reads were mapped, con-
sensus genotype calling was performed using the tools
available in the SAMtools package [65]. The global set of
variants obtained in VCF format contained 18,155 biallelic
variant positions with a genotyping quality greater than
100. The effect of SNPs on putative transcription factor
binding sites was analyzed using YEASTRACT (release
2017; [66]). For the location of SNPs in annotated protein
domains, information available in the Saccharomyces
Genome Database (http://www.yeastgenome.org) was
used. The initial variant set was filtered to ensure a mini-
mum spacing of 2.0 kb between SNPs. This resulted in a
genotyping variant dataset of 3727 SNP markers (Add-
itional file 6). To increase the meaningfulness of the ana-
lysis, four strains with the most ambiguous markers were
excluded. One strain was excluded because it was too
close in genomic proximity to another segregant. This left
a population of 125 F2-segregants for statistical analyses.

Phenotyping of strains
Segregants were fermented in duplicate with the par-
ent strains as controls. The strains were grown over-
night in 50 mL of YPD media. The cell density was
determined using a Multisizer™ 3 Coulter Counter
(Beckman Coulter). Sterilized 300-mL glassware mini
fermenters were filled with 280 mL of SM200 and
closed with an air lock. The fermenters were inocu-
lated to a cell density of 1 × 106 cells/mL, weighed and
left at 24 °C under stirring (300 rpm).
To determine the concentration of aroma compounds, a

sample was taken when approx. 80% of the sugars were
depleted. This corresponded to 67.9–75 g/L produced
CO2 and was determined by weighting the fermenters
regularly to draw the weight decrease caused by the re-
lease of CO2. Volatiles were extracted with dichlorometh-
ane according to the method described by Rollero et al.
(2015) [67]. The concentrations of fermentative aromas
were measured via GC/MS on full scan mode using a
DB-WAX 60m GC column. Thirty-four compounds
were quantified using internal deuterated standards. In
addition, the concentrations of extracellular metabolites

after 80% of the fermentation were measured using HPLC
(REZEX™ ROA-Organic Acid H+ (8%), 0.005 M H2SO4).

QTL mapping
The data obtained from phenotyping and genotyping were
used to identify QTLs in the genome of yeast strains that
influence the formation of volatile secondary metabolites
during wine fermentation. Furthermore, QTLs influencing
fermentation parameters, substrate consumption and the
production of extracellular main metabolites were ex-
amined. The statistical analyses were performed using
the programming language R v3.2.3 (www.r-project.org)
with the R/qtl v1.40–8 and R/eqtl v1.1–7 libraries [68].
QTL mapping was performed with two different pheno-
type models, the normal model using Haley-Knott re-
gression and a non-parametric analysis, resulting in
logarithm of odds (LOD) scores for each marker and
pseudo-marker every 2.5 cM (interval mapping method).
An interval estimate of the location of each QTL was ob-
tained as the 1-LOD support interval, the region in which
the LOD score is within 1 unit of the peak LOD score. If
the same locus was detected with both models, the re-
sults with the higher LOD score were selected. A two-
dimensional, two-QTL scan was performed using the
function scantwo. Multiple QTL mapping was per-
formed twice with the function stepwiseqtl, once with
strictly additive models and once with models that
allowed for interactions. The limit of detected QTLs
was set to 5. Newly detected QTL positions were
counted when the LOD scores of models including
these loci were higher than the added LOD score penal-
ties of combining all loci of the respective model. For
each method used, individual LOD score thresholds for
a false discovery rate of 0.05 were determined with
1000 permutations. QTL mapping results for single
traits were grouped as common QTL regions if their
peaks were less than 10 cM apart. Proposed models of
interaction were further assessed with the function
fitqtl. The support of individual terms was evaluated by
dropping each QTL from the proposed model, one at a
time, and comparing the resulting models to the full model.

Reciprocal hemizygosity analysis
Validation of found QTLs was performed using reciprocal
hemizygosity analysis (RHA) [12]. QTLs were either eval-
uated as a whole region or single genes with a potential in-
fluence on the trait were tested. For the deletion of
selected regions, the parent strains were mated to form
the heterozygote. Subsequently, one allele of the region
was deleted randomly by homologous recombination with
a disruption cassette containing the hygromycin B resist-
ance gene (hphr) that was obtained by PCR of the plasmid
pAG32 (addgene) with the primers del_(QTL)_fw and
del_(QTL)_rv (Additional file 7). Positive integration was
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selected by plating the transformed cells on YPD-agar
plates containing hygromycin B. Correct deletion of the
region was verified by PCR using primer test_(QTL)_fw
that binds upstream of the deleted region and primer
Hygro_rv that binds within the deletion cassette. The
remaining allele of the QTL was identified by allelic PCR
using primer test_(QTL)_fw that binds upstream of a se-
lected gene in the hemizygous region and primers
tal_(QTL)_1 or tal_(QTL)_2 that bind at a SNP position
within the same gene.
For the deletion of single genes, the sequences were

deleted in both parent strains by homologous recombin-
ation with a disruption cassette containing the hygromy-
cin B resistance gene (hphr) that was obtained by PCR of
the plasmid pAG32 with the primers del_(GENE)_fw
and del_(GENE)_rv. Positive integration was selected by
plating the transformed cells on YPD-agar plates con-
taining hygromycin B. Correct deletion of the gene was
verified by PCR using primer test_(GENE)_fw that binds
upstream of the deleted gene and primer Hygro_rv that
binds within the deletion cassette. Deleted parent strains
were subsequently mated with the opposite undeleted
parent to form a heterozygote that is hemizygous for the
target gene.
Hemizygous constructions were phenotyped in triplicate.

The significance of the influence of an allelic target region
or gene variant on the trait was evaluated by student’s t-
test. If the impact of a variant on several traits was tested,
p-values were not adjusted for multiple comparisons.
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Additional file 1: Additional phenotypic information. Concentrations of
determined secondary metabolites produced by the parental strains used
in this study with trait variety among the segregant population given as
interquartile range (IQR) and heritability of evaluated traits. (XLSX 21 kb)

Additional file 2: Phenotype distributions among population. Distribution
of evaluated traits for QTL mapping among all 130 F2-segregants of the
study. The position of parental cells within the population is marked in red
for MTF2621 and in green for MTF2622. (PDF 12 kb)

Additional file 3: Additionally detected allelic effects of the described
enzymes as determined by RHA. Allelic effect of the sugar transporters
Hxt3, Hxt6 and Hxt7 on the G/F ratio (A). Allelic effect of the enzymes
Mae1 and Sir2 on the acetate yield (B). Allelic effect of the enzymes Agp1
and Mae1 on the production of 2-phenylethanol (C). Allelic effect of
Mae1 on the formation of ethyl lactate (D) and fatty acids and fatty acid
ethyl esters (E). Concentrations are given in relation to the heterozygote
of the parental strains MTF2621 and MTF2622. (p-value: ns (not significant)
> 0.05, *≤ 0.05, **≤ 0.01, ***≤ 0.001). (PDF 9 kb)

Additional file 4: SNPs in predicted regulatory binding sites of validated
genes. Detected SNPs in the 1000-bp upstream region of evaluated tar-
get genes that affect binding motifs for regulatory proteins as predicted
with YEASTRACT [66]. Comparison of the strains MTF2621 and MTF2622
with the S. cerevisiae reference strain S288C. (XLSX 242 kb)

Additional file 5: Genomic background of parent strains. Location of
the S. cerevisiae strains used in this study, MTF2621 (4CAR1) and MTF2622
(T73), within the genotypic subgroups of champagne strains (light green
lines) and wine strains (dark green lines). Phylogenetic tree constructed
with data from and as described by Legras et al. (2007) [69]. (PDF 2648 kb)

Additional file 6: Marker map. Graphic representation of marker
positions that were used for linkage analysis. (TIF 8 kb)

Additional file 7: Table of primers used in this study. (XLSX 295 kb)
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