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Abstract: Approximately 71 million people worldwide are infected with the hepatitis C virus (HCV).
Injectable drug use represents the most common route of transmission in Europe and other developed
countries. We studied the molecular characteristics of the HCV infection among mono-infected people
who used drugs (PWUD) in Italy. Among 208 PWUD with anti-HCV antibodies, 101 (48.6%) were
HCV RNA-positive, the majority (47%) were infected with the HCV genotype (Gt)1a, followed by
Gt3a (34.9%), Gt4 (9.1%), Gt1b (4.5%), and Gt2 (4.5%). Bayesian phylogenetic analyses of clustered
HCV NS5B sequences from 66 HCV-positive PWUDs with available plasma samples indicated age
and neighborhood proximity as the most common characteristics between closely related HCV strains.
Population dynamics, as measured by a coalescent Bayesian skyline analysis, revealed an increase in
HCV Gt1a infections from the mid-1980s to mid-1990s. While HCV Gt3a infections were first detected
in the 1980s, patient numbers with this genotype subtype remained relatively constant. For both Gt1a
and Gt3a, Birth–Death Bayesian Skyline analyses produced higher reproduction numbers post 2014.
For earlier time intervals, slow growths were observed for both Gt1a and Gt3a with reproduction
numbers (Re) of approximately 1. The evolutionary rates for Gt1a and Gt3a were estimated as
2.23 × 10−4 and 3.85 × 10−4, respectively.

Keywords: hepatitis C virus (HCV); HCV genotypes; molecular epidemiology; phylogeny; people
who use drugs (PWUD); viral evolution

1. Introduction

The WHO estimated that approximately 71 million people worldwide are infected
with the hepatitis C virus (HCV), with 1.75 million new infections being reported every
year [1]. This virus is a blood-borne pathogen. Before the screening for anti-HCV antibodies
was introduced in 1990, blood transfusion was the main risk factor for HCV infection [2].
In 1993, Western countries started using a nucleic acid amplification (NAT) test to detect
the presence of HCV RNA. The availability of more sensitive tests led to a reduction
in HCV prevalence. In Italy in 2013, the HCV RNA incidence rate in first-time blood
donors was 2.5 per 100,000 [3]. Illicit drug users (IDUs) have been the predominant HCV-
infected population since the early 2000s [4]. The WHO estimated that nearly 13 million
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individuals worldwide are IUDs, of which 67% are living with HCV [5]. Despite the route
of transmission being similar for HCV and HIV, the transmission rates appear to vary. The
HCV is estimated to be approximately ten times more transmissible than HIV, as only
30% of infected IDUs have HIV. Seroprevalence of HCV antibodies is very high among
people who inject drugs (PWID); up to 90% of PWID have HCV antibodies compared
with approximately 10% with HIV seroprevalence [6,7]. Preventive strategies, such as the
reduction of syringe exchange with better aseptic technique compliance, have facilitated
the reduction of HCV transmission by drug injection. However, numerous studies have
shown that the sharing of drug paraphernalia is responsible for the spread of HCV among
both IDUs and non-IDUs [8,9]. Specifically, the sharing of a sniffer device is a relevant
factor in the spread of HCV among non-IDUs [10,11]. Changes in drug consumption
and the awareness of safer drug injection practices have reduced the incidence of HCV
transmission. In France, for instance, the cumulative incidence of HCV infection in IDUs
was 40–50% over the last five years with the implementation of safer drug practices; this
is compared with 90% in the early 1990s [12,13]. In Italy, in 2016, a national surveillance
analysis at the Italian Centers for substance dependence indicated that approximately half
a million of the population were people who use drugs (PWUD) and 30% tested positive
for HCV [14]. The HCV status of these patients remains poorly understood, especially the
variability in HCV transmission dynamics among this special population. As reported
for other Western countries [15], genotypes 1a (Gt1a) and 3 (Gt3) are the most prevalent
among PWID. HCV Gt4 prevalence is also increasing and drug use seems to be a key factor
for the spread of this genotype [16], combined with people emigrating from African and
Asian countries. To date, no phylogenetic or phylodynamic studies have been performed
that focus on the correlation of drug use with the HCV genotype and the age of the patient.

The aims of this study were to: (1) establish the genotypic profile of HCV infection
in Centers for Drug Addiction (SerD) located in the metropolitan area of Rome, Italy, (2)
characterize the HCV strains in PWUD since genetic data on these strains are limited, and
(3) analyze the potential variation in the viral population over the last two to three decades.

2. Materials and Methods
2.1. Population Study

To evaluate the distribution of the HCV genotype in PWUD, a cross-study analysis was
conducted using data collected from two SerD outpatients’ services from the metropolitan
area of Rome, Lazio. Between March 2018 and January 2020, 720 sera from individuals
attending two SerDs, located in a suburban area of Rome, were tested for the presence
of anti-HCV antibodies. The study design and procedures were previously described
(Taibi et al., Manuscript submitted). All participants enrolled in the study provided
written informed consent. Participants were interviewed face-to-face by trained healthcare
professionals using a standardized questionnaire, which contained the following queries:
sex, age, residency, type of drug use, behavioral information, HIV serostatus, and anti-HCV
medication, if relevant. Datasets describing the demographics and the behavioral and
clinical history for each participant were merged and shared with the Hepatology Unit
Collaborative group in order to explore any associations with HCV sequence clustering.
Variables used for the analysis included: age, gender, and the type of drug first injected and
subsequent use over time. Age was used as a categorical variable, with age group (≤34;
35–44; ≥45) in the descriptive analysis. Data regarding the presumed date of primary HCV
infection were collected retrospectively.

The study was approved by the Institutional Ethics Board (approval number code n
49/2017).

2.2. HCV Viral Load Determination and HCV Genotyping

All participants were initially tested for anti-HCV antibodies (Architect, Abbott).
HCV-positive participants were recalled to the INMI L Spallanzani Hospital where plasma
samples were collected for the HCV RNA viral load and the HCV genotyping evalua-
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tions. The HCV RNA viral load was measured using a commercial real-time RT-PCR
assay (RealTime™ HCV, Abbott Molecular Inc., Des Plaines, IL, USA), as specified by the
manufacturer. The lower limit of detection (LLOD) was 12 IU/mL. The HCV genotypes
were assigned using the Abbott RealTime HCV Genotype II Assay (Abbott Molecular Inc.,
Des Plaines, IL, USA). All samples identified as Gt2, Gt3, Gt4, and Gt6 were subtyped by
phylogenetic analysis.

2.3. HCV Molecular Characterization

The NS5B region was amplified from the HCV RNA-positive samples. Briefly, total
nucleic acid extraction from the HCV RNA-positive plasma samples was achieved using
a QIASYMPHONY automated instrument (QIAGEN, Hilden, Germany), and eluted in
a buffer (60 µL) according to the manufacturer’s instructions. The NS5B region was
amplified from the extracted viral RNA (5 µL) by nested RT-PCR employing the One-
Step RT-PCR kit (Cat#210212, Qiagen, Hilden, Germany) and PCR TaqGold (TermoFisher
Scientific, Waltham, MA, USA), using primers previously published by Pilon et al. [17].
Amplicons were then sequenced in both directions using a Big Dye Cycle Sequencing
Standard Kit and the dideoxynucleotide chain terminator method in an ABI Prism 3500
system (Applied Biosystems, Foster City, CA, USA). All resultant nucleotide sequences
were edited and aligned using the BioEdit program [18]. Sequences were aligned with
CLUSTALW [19]. Furthermore, patient-derived HCV NS5B sequences from patients,
either attending our outpatient service (marked with “Q”), or previously hospitalized at
the INMI L Spallanzani Hospital (marked with “Pt”), were considered for phylogenetic
analysis. Moreover, additional NS5B sequences from other countries were downloaded
from the Los Alamos National Laboratory (LANL) HCV sequences database if the following
criteria were met: (1) known country of origin, (2) known genotype and, (3) sequences
already published in peer-reviewed journals. Phylogenetic trees were built using the
maximum likelihood analysis and employing a general time-reversible (GRT) substitution
model implemented using the Molecular Evolution Genetic Analysis (MEGA) software
v. 10 [20]. Trees were visualized with FigTree (Rambaut A, v. 1.4.3-October 2016; http:
//tree.bio.ed.ac.uk/software/figtree/, accessed on 24 March 2021).

Sequences were associated with a particular cluster if the nucleotides differed by less
than 3% and the bootstrap support value was greater than 70% [21]. Monophyletic clusters
and phylogenetic trees were derived from sequences that clustered using the maximum
likelihood method. Pairwise time comparisons were calculated by contrasting estimated
dates of infection between case sequences that clustered versus those that did not. All
nucleotide sequences derived in this study were uploaded to GenBank (accession numbers
MW927596-MW927703).

The study cohort patient-derived HCV NS5B PCR fragments were analyzed for
resistance-associated substitutions (RASs).

2.4. Phylodynamic Analysis

MAFFT [22] was employed to build multiple sequence alignments based on nucleotide
data. BEAST v2.6.3 [23,24] was used to implement a Bayesian analysis with time constraints
based on sampling dates. All analyses were performed using a general time-reversible
(GTR) gamma site model with four categories and a strict molecular clock. A strict molecu-
lar clock was selected since our sequences were: (1) homochronous and contemporary, (2)
representative of recent outbreaks, (3) limited in size, and (4) of interest in relation to the
direct measurements of population effect size. Using Beast v2.6.3, the Markov chain Monte
Carlo algorithm was run for 100 million states and sampled at every 10,000. Tree manage-
ment and visualization were performed using Figtree v1.4.4 (Rambaut A, v. 1.4.4-November
2018; http://tree.bio.ed.ac.uk/software/figtree/, accessed on 25 March 2021).

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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2.4.1. All Subtypes

For the global tree, a prior “Birth and Death model” was employed, allowing for the
inclusion of date information. We selected our prior based on a coalescent Bayesian skyline
(BSKY) model [25], which suggested a logistic growth with a sharp population increase
during the first half of the 20th century, otherwise with constant effective population
sizes. The final tree enabled the determination of HCV subtypes and the identification
of groups of patients with a high HCV sequence similarity (see below). The algorithm
convergence was confirmed using Tracer v1.7.1 (Rambaut A and Drummond AJ, v. 1.6-May
2014; http://tree.bio.ed.ac.uk/software/tracer/, accessed on 15 March 2021) through the
evaluation of parameter traces and an effective sample size (ESS > 200).

2.4.2. Gt1a and Gt3a Outbreaks Using Global Heterochronous Sequences

The most prevalent genotype groups, represented by Gt1a and Gt3a, were exam-
ined separately using reference sequences with date information. For these groups, the
population growth was estimated using a coalescent BSKY model that utilized sequence
dates. BSKY implementation supported the use of a “Birth and Death model” as a prior in
Gt1a and Gt3a outbreaks. Known and identified clusters from (I) enabled us to calibrate
the individual subtype trees of heterochronous sequences and estimate their divergence
times in order to calculate the earliest common ancestor for Italian SerDs and non-SerDs
cohort sequences for each genotype (see III). The algorithm’s convergence was confirmed
using Tracer v1.7.1 through evaluation of parameter traces and an effective sample size
(ESS > 200). Effective temporal reproduction numbers (Re) and uninfectious rates δ were
estimated using a “Birth and Death Skyline serial model”. To distinguish between global
and temporal Re, the dimension parameter was set to 1 and 10, respectively, as our prior to
calculate the reproductive number. Additionally, ‘Beta’ was replaced by rho prior to 999, to
signal that our sequences were a subset of total HCV infections.

2.4.3. Gt1a and Gt3a Outbreak in Italy Using Homochronous Sequences

By removing any reference sequences and focusing on homochronous sequences
from Italy, both “Birth and Death Skyline Contemporary” [26] and “Phylodynamics”
were used. “Birth Death SIR (contemp)” models [27] were used to estimate temporal Re
and uninfectious rates δ, accessed on 26 March 2021. To distinguish between global
and temporal Re, the dimension parameter was set to 1 and 10, respectively, as our
prior to calculating a reproductive number. Additionally, ‘Beta’ was replaced by rho
prior to 999, to signal that our sequences were a subset of total HCV infections. The re-
sults were further analyzed and visualized using Tracer v1.7.1 and the library bdskytools
(https://github.com/laduplessis/bdskytools) in R (http://www.r-project.org/, accessed
on 29 March 2021). Date information regarding the age of the common ancestral sequence
was used in R plots derived from (II) to calibrate the 10 dimensions. The algorithm’s
convergence was assessed using Tracer v1.7.1 through the evaluation of parameter traces
and an effective sample size (ESS). While global Re values converged for both models,
the last two out of ten (most recent) temporal Re values only converged in one of the two
models for Gt1a, indicative of a recent and rapid increase in the HCV reproduction number,
which deviated from a “Birth and Death logistic growth”.

2.4.4. Calibrated Tree Using Epidemiological Data and Identified Clusters

The study dataset contained sequences from previously identified interpersonal re-
lationships. Additional clusters were also detected where sequences differed by 3% at
the most, and the node support indicated at least a 95% posterior probability. Pairwise
genetic similarity for all of the sequences in our dataset was calculated using MEGAX [20],
software for the statistical analysis of molecular evolution.

http://tree.bio.ed.ac.uk/software/tracer/
https://github.com/laduplessis/bdskytools
http://www.r-project.org/
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2.5. Statistical Analysis

The HCV genotype distribution and the demographic variable were compared using
the chi-squared test. A p-value < 0.05 was considered significant. All statistical analyses
were performed using the Statistical Analysis System (SAS) (SAS Institute Inc., Cary,
NC, USA).

3. Results
3.1. Demographics

A total of 215 patients were identified as being anti-HCV antibody-positive; 7 were
coinfected with HIV and excluded from the study. Among 208 HCV mono-infected patients,
101 (48.6%) were HCV RNA-positive. The average age of all 101 patients was 51 ± 8.43
(mean ± SD) years old. The HCV genotype distribution did not differ by age or HCV RNA
viral load (Table 1). A mixed infection (Gt3a + Gt4) was identified in 1 patient using the
Abbott real-time method (noted as Gt3a in Table 1).

Table 1. Hepatitis C virus (HCV) genotype distribution in HCV RNA-positive people who use drugs (PWUD) and were
recruited between 2018 and 2020.

Characteristics Total (n)
HCV Genotype

1a 1b 2 3a 4

Age (years), (n)
mean ± SD

(n = 101)
51 ± 8.4

(n = 45)
49 ± 9.0

(n = 4)
53 ± 7.1

(n = 4)
62 ± 5.5

(n = 36)
50 ± 8.5

(n = 12)
51 ± 3.2

HCV RNA (n) (n = 101) (n = 45) (n = 4) (n = 4) (n = 36) (n = 12)
viral load (IU/mL)

mean 2,263,418 1,932,141 1,543,083 4,566,009 2,079,427 3,530,260

range 216–16,780,074 405–12,270,418 382,582–3,776,646 297,144–8,166,062 216–9,606,805 680–16,780,074

Plasma samples were available for 66 of the 101 HCV RNA positive patients. These
66 patients were treatment-naive to DAA therapy. Genotype analysis using the sequenced
HCV NS5B region of these samples agreed with real-time Abbott results. For the one
patient identified as harboring a mixed infection (Gt3a + Gt4) by using the Abbott real-time
method, only a Gt3a sequence was detected by using Sanger sequencing. Sanger sequences
representing Gt1, Gt2, Gt3, and Gt4 by using the Abbott platform were subtyped. Overall,
no HCV mixed infections were detected. The distribution of the HCV genotypes in this
subgroup reflected the prevalence observed for the main cohort (Table 1: Gt1a, 45.6%; Gt1b,
4.0%; Gt2, 4.0%; Gt3a, 35.6%; Gt4, 11.9%). The majority of the PWUD were infected with
Gt1a (n = 31, 47%) and Gt3a (n = 23, 34.9%), followed by Gt4 (n = 6, 9.1%; n = 5 with Gt4d
and n = 1 with undefined Gt4 subtype), Gt1b (n = 3, 4.5%), and Gt2 (n = 3, 4.5%) (Table 2).
None of the known NS5B RASs were detected in any of these patients.

The majority of participants were male (54/66; 81.8%) and >45 years old (81.8%). The
nucleotide diversity of Gt1a, Gt3a, Gt1b, Gt2b, and Gt4d strains ranged from 2.0–6.9%
(mean 4.5%), 1.8–6.1% (mean 5.3%), 5.1–6.7% (mean 5.6%), 2.9–4.5% (mean 3.9%), and
3.2% to 8.2% (mean 4.5%), respectively. None of the participants who were first tested for
HCV during the 2018–2019 period harbored Gt1b, underlining how its transmission is not
strictly associated with drug use. Both Gt1a and Gt3a were predominant irrespective of
the participant’s age or date tested result, while the Gt1b and Gt4 cases were registered
before 2018. The respective prevalence of Gt1a and Gt3a over the following time intervals
were: 45.2% and 33.3% from <1990 to 2001, 47.1% and 41.2% from 2002 to 2013, and 50%
and 33.3% from 2014 to 2019.
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Table 2. Characteristics of SerD study participants with available HCV NS5B sequence and recruited between 2018 and
2019 (N.S. = not stated).

Characteristics Total (n)
HCV Genotype

1a 1b 2 3a 4

Age (years), mean
± SD 50 ± 8.9 (n = 66) 49 ± 9.4 (n = 31) 57 ± 3.5 (n = 3) 61 ± 5.3 (n = 3) 48 ± 9.1 (n = 23) 52 ± 2.3 (n = 6)

≤34 5 3 - - 2 -
35–44 7 4 - - 3 -
≥45 54 24 3 3 18 6

Gender (n = 66) (n = 31) (n = 3) (n = 3) (n = 23) (n = 6)
Male 54 26 3 3 18 4

Female 12 5 - - 5 2

Estimated year of
HCV infection (n = 66) (n = 31) (n = 3) (n = 3) (n = 23) (n = 6)

<1990 7 5 - - 1 1
1990–1995 22 8 1 1 9 3
1996–2001 13 6 1 1 4 1
2002–2007 7 1 1 - 4 1
2008–2013 10 7 - - 3 -
2014–2019 6 3 - 1 2 -

NS 1 1 - - - -

Assumption for
infection (n = 66) (n = 31) (n = 3) (n = 3) (n = 23) (n = 6)

Inhalation 4 2 - - 1 1
Intravenous 5 4 - - 1 -

Inhal and Intrav 55 23 3 3 21 5
NS 2 2 - - -

Most commonly
injected drug at

recruitment
(n = 66) (n = 31) (n = 3) (n = 3) (n = 23) (n = 6)

Heroin 20 9 - 2 8 1
Cocaine 1 1 - - - -

Heroin and Cocaine 45 21 3 1 15 5

Abbreviations: Inhal, inhalation; Intra, intravenous; n, number; NS, not stated.

3.2. Phylogenetic Analysis

A global HCV phylogenetic analysis was performed using a total of 329 sequences,
including selected reference sequences (Tables S1–S4). This analysis was performed to
identify specific subtype clusters with 66 sequences from SerD patients and 42 sequences
(Gt1a, n = 9; Gt1b, n = 7; Gt2c, n = 9; Gt3a, n = 9; Gt3b, n = 1; Gt4d, n = 5; Gt6, n = 2) from
non SerD Italian patients living in Italy.

The phylogenetic tree, generated from HCV NS5B sequences (Figure 1), showed SerD
(sequences indicated as INMI) that the patient-derived sequences were interdispersed.
Four clusters were observed containing two or three INMI strains (INMI_140_SIALRM,
INMI_74_ASTALE and INMI_83_COMENR in Gt1a; INMI_154_CAPALF and INMI_255_
CUGROB in Gt4d; INMI_120_GILANZ, INMI_114_FUBSAN, and INMI_238_SGRENZ in
Gt2c; INMI_47_AMUASI and INMI_48_ FELENI in Gt3a).
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Figure 1. Maximum likelihood phylogenetic tree. Phylogenetic analysis showing (A) sequence clusters for SerD (in blue) 
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Figure 1. Maximum likelihood phylogenetic tree. Phylogenetic analysis showing (A) sequence clusters for SerD (in blue)
and non-SerD (in purple) patients with HCV, (B) sequence cluster for SerD (in blue) and non-SerD (in purple) patients
infected with HCV Gt1a, (C) sequence cluster for SerD (in blue) and non-SerD (in purple) patients infected with HCV Gt3a.
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The most common characteristics of patients with clustered sequences were age
(INMI_83_COMENR, INMI_140_SILARM, and INMI_174_ASTALE) and the district where
they lived. Comparing the HCV Gt3a sequences within one cluster, two strains were iden-
tified that included patients involved in a relationship (INMI_47_AMUASI and INMI_48_
FELENI) and patients living in the same neighborhood/district (INMI_223_DISGIO and
INMI_152_ BARMAS). Of the three patients infected with HCV Gt2, subtyping of their
NS5B sequences indicated alignment with Gt2b in the same cluster (Figure 2). These
patients were friends and usually took drugs intravenously together sharing syringes.
Only four study participants snorted their drugs; two were infected with HCV Gt1a
(INMI_159_PAGLUC_gt1a; INMI_52_CARIDO_gt1a), one with Gt3a (INMI_133_CAREM
A_gt3), and one with Gt4 (INMI_212_CIPRIT_gt4). Their sequences did not cluster with
other SerD patients (Figure 1).
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Figure 2. Genotyping and identification of sequence clusters for SerD (in blue) and non-SerD (in purple) HCV-infected
patients. A Bayesian phylogenetic tree was generated assuming a prior Birth and Death population growth, using a GTR
gamma site model with four inferred categories, to allow for gamma rate heterogeneity in our model.

The earliest divergent patient, based on our data, was INMI_174_ASTALE, who re-
ported becoming addicted to drugs in 1995 and was diagnosed with HCV in 2017. Therefore,
the time of infection (earliest divergent node for this group) was estimated as being between
1995 and 2000. By 2000, both INMI_83_COMENR and INMI_140_SILARM had tested posi-
tive with HCV. For the Gt2b cluster, patients INMI_114_FUBSAN, INMI_238_SGRENZ, and
INMI_120_GILENZ were acquaintances. For the Gt3a cluster, patients INMI_47_AMUASI
and INMI_48_FELENI were involved in a personal relationship. While INMI_48_FELENI
admitted to becoming addicted in 1993 and was confirmed as being HCV-positive in 1995,
and the respective dates for INMI_47_AMUASI were 2012 and 2017. We, therefore, esti-
mated the date of their common ancestral HCV sequence as being, approximately, 2012.
Our criteria-based analysis highlighted three additional clusters (Table 3). Based on the
respective time constraints, a tree calibration was implemented using Figtree by setting an
offset of 2020 and a scale factor of 0.1 on inferred trees using a Birth and Death prior, as
suggested by a coalescent Bayesian skyline analysis.



Microorganisms 2021, 9, 1432 9 of 17

Table 3. Resulting clusters based on sequence similarity and posterior probability (>95%).

Id1 Id2 Genetic Similarity

INMI_109_LUCATT_gt1a_2019 INMI_173_STOGIA_gt1a_2019 0.026

INMI_11_MALLAU_gt1a_2019 INMI_23_MURMAU_gt1a_2019 0.030

INMI_114_FUBSAN_gt2_2019 INMI_120_GILENZ_gt2_2019 0.030

INMI_114_FUBSAN_gt2_2019 INMI_238_SGRENZ_gt2_2019 0.020

INMI_120_GILENZ_gt2_2019 INMI_238_SGRENZ_gt2_2019 0.030

INMI_136_DIGGAB_gt1_2019 Pt_201_MORMAR_1a_2017 0.020

INMI_140_SILARM_gt1a_2019 INMI_83_COMENR_gt1a_2019 0.026

INMI_140_SILARM_gt1a_2019 INMI_74_ASTALE_gt1a_2019 0.027

INMI_47_AMUASI_gt3_2019 INMI_48_FELEMI_gt3_2019 0.018

Using both sequence similarity and internode posterior probability, we were able to
identify nine sequence clusters with a high affinity and sequence similarity (Figure 3 and
Table 3).
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Figure 3. Bayesian phylogenetic tree with a “Birth and Death” population growth prior, using a GTR gamma site model
with four categories and a strict molecular clock. Node values represent the year of divergence, while branch values depict
the posterior probability. Tree calibration was implemented based on epidemiological data and known clusters. Using
Figtree, an offset of 2020 and a scale factor of 0.1 were applied. (A) Time of divergence is dated for SerD (in blue) and
non-SerD (in purple) patients with HCV Gt1a. (B) Time of divergence is dated for SerD (in blue) and non-SerD (in purple)
patients with HCV Gt3a.

INMI_11_MALLAU_gt1a and INMI_23_MURMAU_gt1a were two 60-year-old pa-
tients, who started using heroin in 1978 and were confirmed as being HCV-positive in
1990. Although they both attended the same SerD, neither admitted that they knew of
each other while being interviewed. INMI_109_LUCATT_gt1a_2019 (62 years old) and
INMI_173_STOGIA_gt1a_2019 (54 years old) lived in the same district, attended the same
SerD, and were acquainted; the former tested positive for HCV in 1986 while the latter
tested positive in 1990.

For study participants infected with the most prevalent HCV genotypes, Gt1a and
Gt3a, the focus was to estimate when these genotype sequences were first detected in Italy
and to subsequently evaluate their population dynamics. Epidemiological and sequence
information from known data were used to calibrate the tree (see methods). For Gt1a,
results suggested this genotype was first detected in Italy around the early 1960s (1963). At
the same time, a coalescent Bayesian skyline analysis indicated an increase in the HCV Gt1a
population from the mid-1980s to mid-1990s. The analysis of the Gt3a sequences indicated
that this genotype was first detected in the 1980s, however, the overall Gt3a population has
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remained relatively constant from the 1980′s onwards. The evolutionary rates for Gt1a and
Gt3a were estimated as 2.23 × 10−4 and 3.85 × 10−4, respectively.

To examine the population dynamics of the most predominant genotypes (Gt1a and
Gt3a) in PWUD in Italy, a Birth and Death Bayesian Skyline contemporary analysis was
performed using homochronous sequences from SerD and non-SerD cohorts, applying two
modifications (see methods). Convergence of our models was observed for most dimen-
sions except for the last two. These two dimensions represented the most recent time inter-
vals and demonstrated a very sharp increase in reproduction numbers (Figure 4, Table S5),
which may have impacted data convergence when using the Birth and Death model.

Microorganisms 2021, 9, x FOR PEER REVIEW 11 of 17 
 

 

intervals and demonstrated a very sharp increase in reproduction numbers (Figure 4, Ta-
ble S5), which may have impacted data convergence when using the Birth and Death 
model. 

 
Figure 4. Population growth and temporal reproduction numbers for Gt1a and Gt3a using homochronous (SerD and non-
SerD) reference sequences. (A,B) The Coalescent Bayesian skyline model combined with a GTR gamma site model (4 
categories) and a strict molecular clock with sequence date constraints were used to estimate effective population size. 
The solid middle line represents the median, while the upper and lower lines represent the 95% high posterior density 
interval estimate of Ne over time. (C,D) The Birth-Death Skyline (contemporary) model was used to estimate temporal 
reproduction numbers from homochronous sequences. Figure A/C and B/D are aligned on the same time scale (x-axis). 

For Gt1a, resultant reproduction numbers were 2.8 and 25, for the two most recent 
time intervals, respectively, which were calculated from a fully converged analysis. For 
Gt3a, although convergence of all ten dimensions was not possible, resultant reproduction 
numbers were similarly high for the last two dimensions, which were the 9th (7.3 and 8.7) 
and 10th (18.7 and 19.2) dimensions. For the earlier time intervals evaluated, there ap-
peared to be a slow growth in both Gt1a and Gt3a since their initial entry into Italy (Re ~1) 
(Figure 5, Table S6). 

Figure 4. Population growth and temporal reproduction numbers for Gt1a and Gt3a using homochronous (SerD and
non-SerD) reference sequences. (A,B) The Coalescent Bayesian skyline model combined with a GTR gamma site model
(4 categories) and a strict molecular clock with sequence date constraints were used to estimate effective population size.
The solid middle line represents the median, while the upper and lower lines represent the 95% high posterior density
interval estimate of Ne over time. (C,D) The Birth-Death Skyline (contemporary) model was used to estimate temporal
reproduction numbers from homochronous sequences. Figure A/C and B/D are aligned on the same time scale (x-axis).

For Gt1a, resultant reproduction numbers were 2.8 and 25, for the two most recent
time intervals, respectively, which were calculated from a fully converged analysis. For
Gt3a, although convergence of all ten dimensions was not possible, resultant reproduction
numbers were similarly high for the last two dimensions, which were the 9th (7.3 and
8.7) and 10th (18.7 and 19.2) dimensions. For the earlier time intervals evaluated, there
appeared to be a slow growth in both Gt1a and Gt3a since their initial entry into Italy
(Re ~1) (Figure 5, Table S6).
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Figure 5. Population growth and temporal reproduction numbers for Gt1a and Gt3a using only (SerD and non-SerD)
heterochronous reference sequences. (A,B) The Coalescent Bayesian skyline model combined with a GTR gamma site model
(4 categories) and a strict molecular clock with sequence date constraints were used to estimate effective population size.
The solid middle line represents the median, while the upper and lower lines represent the 95% high posterior density
interval estimate of Ne over time. (C,D) The Birth-Death Skyline (serial) model was used to estimate temporal reproduction
numbers from heterochronous sequences.

Given the extremely high Re calculated for the Italian sequences analysed after 2015, a
Birth and Death Bayesian Skyline serial analysis was performed that included our hete-
rochronous reference sequences. Even though this analysis expanded the viral population
beyond the SerD and non-SerD Italian sequences, an increased effective Re was established
for Gt1a and Gt3a during the study period, confirming a very recent spike.

4. Discussion

In this study, HCV infection among PWUD was evaluated around the metropolitan
area of Rome. HCV RNA was detected in 48.6% of participants who tested positive for anti-
HCV antibodies. This prevalence was considerably higher when compared with reports
for the general population, although slightly less than reported in 2009 by Stroffolini
et al. where 68.3% of HCV-positive IDUs were also viremic [16]. We could not associate
HCV RNA prevalence with specific age groups since 82% of the study participants were
>45 years old. Gt1b was infrequently observed (prevalence, 4.5%) in comparison to the
general population [28], suggesting a different route of transmission. The prevalence of
Gt4 (9.1%) was in line with previously described results over the past few decades in Italy
and other Mediterranean basin countries [29–31]. In fact, the prevalence of this genotype
in Europe ranges from 8.2% to 20% [32,33]. In France, the prevalence of Gt4 has increased
from 4% in 1990 to greater than 11% over the last decade [34,35]. In Greece, Gt4 accounts
for approximately 15% of all HCV infections [36,37]. Furthermore, our results showed a
reduced prevalence of Gt4 when compared with other certain populations, such as men
who have sex with men [38].
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Gt1a was the most prevalent genotype (47%) in all evaluated age categories, followed
by Gt3a (34.9%). In line with our results, Stroffolini et al. reported that the most common
HCV genotypes among intravenous IDUs with Gt1a and Gt3a prevalence of 47.9% and
39.7%, respectively [16]. The marked differences between Gt1a and Gt1b strengthen the
hypothesis that these two subtypes have different transmission routes. Gt1a was first intro-
duced into Italy in the early 1970s, and coalescent Bayesian skyline analysis highlighted
an exponential increase in Gt1a incidence between the 1980s and 1990s (Figure 4). This
finding is in accordance with the younger age of infected HCV Gt1a patients, especially
when compared with Gt1b, the main genotype detected in older chronically infected HCV
patients [15]. Thus, there appears to be a dispersal origin. In the majority of cases, PWUD
strains are intermixed with non-PWUD strains suggesting that Gt1a became a widely
distributed subtype, affecting different patient demographics. The Gt1a sequences formed
distinct clusters, distributed throughout the Bayesian phylogenetic tree without any dis-
tinct pattern. This is likely the result of a widespread and long-term distribution of Gt1a
within the global population, and it is consistent with observations such as those in Greece
regarding Gt1a dispersal among IDUs [39].

A higher prevalence of Gt1a was observed across all of the evaluated time intervals
when compared to Gt3a (Table 2). Gt1a prevalence was 45.2% from <1990 to 2001 and
its prevalence has gradually increased through subsequent years (47.1% from 2002 to
2013 and 50% from 2014 to 2019). Gt3a accounted for 33.3% of HCV infections from
<1990 to 2001, increased to 41.2% from 2002 to 2013 and decreased to 33.3% from 2014
to 2019. Gt1a prevalence was always greater than 40% for each evaluated time period,
which may be related to patient age. Approximately 80% of these patients were over
45 years old and 87.9% began using drugs before 1995. Of these patients, 23 were anti-HCV
antibody-positive and 12 (39.7%) were infected with Gt1a, as shown in the phylodynamic
analysis, demonstrating an increase of Gt1a infection between the mid-1980s and mid-
1990s. Nevertheless, since the date of the first HCV positivity is estimated, it is possible
that the primary infection occurred during a time period significantly prior to the first
serological test in the early years of drug use, as reported in the literature [40]. Conversely,
Gt3a prevalence ranged from 33–41% across all evaluated time intervals, in accordance
with results from the coalescent Bayesian analysis illustrated in the skyline plot, which
underlined a constant increase of Gt3a from 1986 onwards. The epidemiology of increased
Gt3a transmission among the PWUD population is unknown. It is possible that this
genotype, which is endemic in India, was introduced into Italy through PWUD who visited
India in the 1970s when opium was easily accessible [41,42]. Moreover, the increased
spread of Gt3a may have been related to the migration of people, including PWUD, from
Eastern Europe after the Berlin wall came down in 1989 [43]. The lower prevalence of
Gt3a at all of the analysed time intervals may be due to the reduced transmission of this
genotype in comparison with Gt1a or, conversely, a higher capacity to clear the primary
infection [44,45].

By applying ‘Birth and Death Skyline contemporary (BDSKYcontemp)’ and ‘Birth
and Death Skyline serial (BDSKYserial)’ analyses for homochronous (SerD and non-SerD
cohorts) and heterochronous (includes non-Italian references) sequences, respectively,
the effective temporal Re could be estimated. When using homochronous sequences
and applying a BDSKYcontemp model, there was no algorithm calibration based on
sample dates, however, the analysis focused solely on query sequences. By including
heterochronous sequences and applying a BDSKYserial model, there was greater confidence
in the generated numbers, with the caveat that the results may have partially reflected
population dynamics from the reference sequences. Both analyses indicated an overall
constant population (Re ≈ 1), culminating in a very recent sharp increase. While this
might be qualitatively true, Re numbers obtained using the BDSKYcontemp model were
probably inflated, while Re calculated using the BDSKYserial model were conservative.
Qualitatively, both analyses showed an increase in HCV infections over the past five years.
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The phylodynamic analysis was valuable in the identification of different clusters and
transmission routes among PWUD, as with the participants infected with Gt2b [46,47].
These findings could not be extracted from traditional epidemiological analyses. The
anti-HCV antibody-positivity for these Gt2b participants was established during different
time intervals (between 1995 and 2019). Nevertheless, as stated in the questionnaire, the
participants were friends who exchanged syringes while injecting heroin or cocaine. A
limitation of the phylogenetic and phylodynamic analyses was the inability to identify
whether a particular strain had a higher risk of transmission. Moreover, it is unknown
whether other HCV-positive individuals registered at each SerD, but were not a part of our
study, were infected with similar HCV strains and either recovered or progressed to chronic
infection. Access to this type of information can only be obtained in a prospective study.
Interestingly, none of our study sequences (beginning with either INMI, Pt, or Q) clustered
with sequences from other countries. A possible explanation is the limited sample size.
For example, no database HCV Gt3 sequences from Pakistan or Afghanistan, countries
historically frequented by Italian PWUD, clustered with HCV NS5B sequences detected in
our study participants.

5. Conclusions

In this retrospective study, we demonstrated that despite national preventative mea-
sures against the spread of HCV infection, such as dissemination of information, needle
exchange programs, and distribution of drug paraphernalia, HCV prevalence among
PWUD is similar to that reported ten years ago [16]. Four of our HCV RNA-positive study
participants declared only using drug paraphernalia, reinforcing how sniffing equipment
represents an important factor in HCV transmission [8,48].

The National Surveillance System reported a gradual decrease in the incidence rate
of HCV in Italy over the past twenty years [49]. In the last year, PWUD accounted for
approximately 23.5% of these cases [49]. Antiviral treatments are still the best preventative
intervention against disease progression and the spread of endemic HCV infection between
PWUD since no HCV vaccines exist. DAAs as treatment options against all of the HCV
genotypes have been crucial in curtailing the spread of the virus. Their use has led to
a greater than 90% cure rate even among PWUD [50,51]. Therefore, a focus on treating
PWUD communities with DAAs could be highly effective in controlling the transmission
of HCV among this vulnerable population.
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