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Abstract: Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated
pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine
kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α
signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated
TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor
release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluo-
rescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of
syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed
by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by
lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two
cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased
cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-
derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α
increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and
inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence,
SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage,
shedding, and specific cytokine release.

Keywords: sphingolipids; inflammatory; sphingosine 1-phosphate; syncytium

1. Introduction

Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure and
end organ damage. PE is the cause of 76,000 maternal and 500,000 annual deaths globally
and increases the rate of preterm and low birthweight neonates [1,2]. The cause of PE
remains elusive, albeit the placenta plays a major role in its initiation and progression.

The human placenta is a complex organ composed of multiple cell types performing
different functions and interacting with each other’s signaling pathways. Placental tissue
includes cells found in other organs such as endothelial cells, vascular smooth muscle
cells, fibroblasts, and immune cells. However, the unique cell type of the placenta is the
pluripotent cytotrophoblast (CT) that can differentiate into an extravillous trophoblast
lineage, responsible for anchoring the placenta into the maternal decidua, or into the villous
trophoblast lineage [3].

The villous CT proliferates, differentiates, and then fuses into the basal side of the over-
lying syncytiotrophoblast (ST), a multinucleated epithelial layer that regulates feto-maternal
exchanges. The ST also acts as an immune and pathogen barrier between mother and fetus.
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This placental layer is in direct contact with maternal blood and releases hormones, such as
human chorionic gonadotropin (hCG), essential for maintaining the pregnancy [3].

Similar to other epithelial cells, the ST is in constant turnover throughout pregnancy,
due to a balance between formation of the ST through differentiation and fusion of CTs and
loss of the ST through shedding. The mature ST aggregates into syncytial knots and sheds
into the maternal bloodstream. These syncytial aggregates are characterized by high levels
of placental alkaline phosphatase (PLAP) enzyme activity [3].

The placenta in PE is characterized by poor development of the syncytium, high levels
of shedding and cell damage, and high levels of inflammatory cytokines [3]. In PE, low
CT proliferation leads to impaired differentiation and reduced fusion to ST, disrupting
syncytial formation and thus, function. Abnormally high levels of placental cell death and
ST shedding in PE [4] lead to a variety of pro-inflammatory responses [5] which further
exacerbate the PE phenotype [6].

Pro-inflammatory cytokines are notorious for disrupting placental function, notably
tumor necrosis factor-α (TNF-α) [7]. Elevated TNF-α levels are linked to pregnancy com-
plications including recurrent spontaneous abortions [8], preterm labor [9], and PE [10].
Injecting TNF-α alone into pregnant non-human primates leads to the development of
PE symptoms [11]. Moreover, elevated TNF-α causes a PE-like placental phenotype that
includes poor ST function, high ST shedding, and high inflammation [12,13].

Physiological levels of TNF-α, however, have pregnancy enhancing roles such as
inducing mucin 1 shedding from uterine epithelial cells, a major feature of embryo implan-
tation [14]. Normal levels of TNF-α also regulate the fate [15,16], proliferation [17–19], and
differentiation [20,21] of various cells, including CTs [7,12]. TNF-α maintains normal levels
of apoptosis that are necessary for fetal development [22]. This makes market-available
TNF-α inhibitors controversial for use during pregnancy [23]. Our aim was to explore
alternative factors downstream of TNF-α signaling that can be targeted.

One of the mediators of TNF-α signaling in non-placental endothelial and epithelial
cells is sphingosine 1-phosphate (S1P) [24–27]. S1P is a bioactive sphingolipid that regulates
cellular processes such as angiogenesis, proliferation, differentiation, and apoptosis [28].
S1P acts intracellularly, or it can exert its effects extracellularly through its specific receptors,
S1P receptors 1–5 (S1PR1-5), which are variably expressed in all placental cell types and
have multiple functions as summarized in Fakhr et al. [28]. Briefly, S1PR1 and S1PR3
activation in trophoblasts leads to the secretion of IL-8. In the placental vasculature,
S1PR1 activation in endothelial cells leads to filament reorganization that is necessary
for conserving the endothelial barrier and this receptor is also involved in vasodilation.
Moreover, S1PR1 activation in the placental vasculature decreases reactive oxygen species
and pro-inflammatory cytokine release. S1PR2 activation decreases trophoblast migration
that is important for attaching the placenta to the maternal decidua. S1PR4 and S1PR5 are
mainly expressed in placental cells of immune origin [28].

S1P is synthesized by sphingosine kinases 1/2 (SphK1, SphK2) and is degraded by
S1P lyase (SPL) or dephosphorylated by S1P phosphatases (SPP) and lipid phosphate
phosphatases (LPPs) [28]. SphK1 activation and S1P are implicated downstream of TNF-α
signaling [29]. In endothelial cells, the TNF-α signaling pathway involves S1P and SphK1
as cofactors for TNF-α receptor 1 (TNFR1) activation [24,30,31]. The addition of TNF-α to
HUVECs [25,26], hepatocytes [32], or a lung fibroblast cell line [33] also activates SphK1.

S1P is also associated with inflammatory pathologies like atherosclerosis [34], can-
cer [35], and multiple sclerosis [36]. Circulating levels of S1P are higher in women with
PE [37,38], where inflammation plays a role. High levels of S1P inhibit syncytialization [39]
and inhibiting SphK1 increases trophoblast fusion [40]. Although the individual roles that
TNF-α and S1P play in the pathogenesis of PE have been studied, we do not know whether
TNF-α mediates its effects in the placenta through S1P by affecting SphK1 expression or
activity. Given the importance of both TNF-α and S1P on placental function and pregnancy
outcomes, it is essential to understand the interaction between TNF-α and SphK1, the main
producer of extracellular S1P, in the placenta. We hypothesized that high levels of TNF-α
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would decrease syncytialization, increase shedding, and increase placental cytokine release
through activation of SphK1. We show that TNF-α activated SphK1 to induce placental
damage, ST shedding, and cytokine release. However, at lower concentrations, TNF-α
decreased CT fusion independently of SphK1 activation.

2. Results
2.1. SphK1 Expression in Placentas from Normal and PE Pregnancies

Seventeen women with healthy pregnancies and 12 women with PE were enrolled
in the study and their clinical characteristics are summarized in Table 1. Women with
PE had higher systolic (155.3 ± 7.6 versus 113.8 ± 3.7 mmHg; p < 0.0001) and diastolic
(107.9 ± 15.6 versus 71.4 ± 3.6; p = 0.008) blood pressures compared to those in the healthy
control group. All participants in the PE group were positive for proteinuria. Infants born
to mothers in the PE group had lower gestational ages (37.2 ± 0.3) compared to those from
healthy control mothers (38.9 ± 0.3; p = 0.003). There were no significant differences in
infant birth weights between groups.

Table 1. Clinical Characteristics of Pregnancies. Samples were analyzed with a Student’s t-test or
Mann–Whitney test when non-parametric (Mean ± SEM).

Pregnancy Gestational
Age (Weeks)

Infant
Weight (g)

Systolic Blood
Pressure
(mmHg)

Diastolic Blood
Pressure
(mmHg)

Percent Positive
for Proteinuria

(%)

Normal
(n = 17) 38.9 ± 0.3 3074 ± 86.8 113.8 ± 3.7 71.4 ± 3.6 0

Preeclampsia
(n = 12) 37.2 ± 0.3 2967 ± 274 155.3 ± 7.6 107.9 ± 15.6 100

p-value 0.003 ns p < 0.0001 0.008 N/A

Previous studies show that dysregulated SphK1-S1P levels are observed in placentas
from women with PE, and high levels of S1P or SphK1 activity are inhibitory to ST develop-
ment [40]. We investigated whether cell-specific expression of SphK1 differed in placental
biopsies from women with PE compared to those with normal pregnancies. To visualize
expression differences in placental layers and cell types, we used immunohistochemistry.
SphK1 was expressed throughout the villous core and in both CTs and the multinucleated
ST, as shown in the magnified images C1, PE1, and PE3 (Figure 1A). In both the healthy
control and PE groups, SphK1 expression rarely overlapped with the nuclear stain while
SphK1 exhibited a strong overlap with the E-cadherin staining, as identified with white
arrows. This implies that in trophoblastic layers, SphK1 is mainly localized to the cytoplasm
and in close proximity to the cell membrane. Overall, no overt qualitative differences in
SphK1 expression between the PE (n = 12) and the healthy control (n = 17) groups were
observed in the trophoblastic layers (Figure 1A), but SphK1 expression appeared higher
in the villous core of biopsies from the PE group, as shown in PE2 and PE3. Quantitative
analysis of whole sample images demonstrated increased SphK1 overall in placental biop-
sies from women with PE (p = 0.02; Figure 1B). In Figure 1B, there were three samples in
the healthy group that displayed much higher levels of SphK1 staining intensity. Upon
comparing clinical characteristics of these women with the rest of the group, we did not
see any differences in blood pressure, gestational age or infant birth weight, that would
suggest a resemblance to those characteristics seen in a woman with PE. There were no
differences by fetal sex either.
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Figure 1. Sphingosine kinase 1 (SphK1) expression was higher in placental biopsies from women with 
preeclampsia (PE). (A): SphK1 was expressed throughout the villi, the cytotrophoblast (CT), and the syncytium 
(ST). Images correspond to three representative samples from healthy control pregnancies (C1, C2, C3 images) 
and PE (PE1, PE2, PE3 images). Whole tissue placental biopsies from women with normal or PE pregnancies 
were co-stained for SphK1 (AF488, green) and E-cadherin (AF594, red) expression and a nuclear stain (DAPI, 
blue) and visualized by confocal microscopy. For the negative control, both AF488 and AF594 secondary 
antibodies were used in the absence of primary antibodies. White arrows show examples of overlap between E-
cadherin and SphK1 (B): Whole sample image analysis normalized to total nuclear count showed higher SphK1 
fluorescence in placental biopsies from women with PE compared to healthy control pregnancies. Student’s t-
test (n = 17 normal, n = 12 PE, Mean ± SEM). (C): Fold change in SphK1 mRNA expression in placental biopsies 
from women with PE relative to healthy control pregnancies using the ΔΔCt method. Student’s t-test (n = 13 
normal, n= 9 PE, Mean ± SEM). 
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Figure 1. Sphingosine kinase 1 (SphK1) expression was higher in placental biopsies from women with
preeclampsia (PE). (A): SphK1 was expressed throughout the villi, the cytotrophoblast (CT), and the
syncytium (ST). Images correspond to three representative samples from healthy control pregnancies
(C1, C2, C3 images) and PE (PE1, PE2, PE3 images). Whole tissue placental biopsies from women
with normal or PE pregnancies were co-stained for SphK1 (AF488, green) and E-cadherin (AF594, red)
expression and a nuclear stain (DAPI, blue) and visualized by confocal microscopy. For the negative
control, both AF488 and AF594 secondary antibodies were used in the absence of primary antibodies.
White arrows show examples of overlap between E-cadherin and SphK1 (B): Whole sample image
analysis normalized to total nuclear count showed higher SphK1 fluorescence in placental biopsies
from women with PE compared to healthy control pregnancies. Student’s t-test (n = 17 normal,
n = 12 PE, Mean ± SEM). (C): Fold change in SphK1 mRNA expression in placental biopsies from
women with PE relative to healthy control pregnancies using the ∆∆Ct method. Student’s t-test
(n = 13 normal, n = 9 PE, Mean ± SEM).

Quantitative analysis of SphK1 mRNA expression demonstrated increased SphK1 in
placental biopsies from women with PE (p = 0.03; Figure 1C; n = 9). In Figure 1C, there were
3 samples in the PE group that displayed much higher levels of SphK1 mRNA expression.
Upon comparing clinical characteristics of these samples with the rest of the PE group, we
did not see any differences in systolic or diastolic blood pressure, gestational age, infant
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birth weight, or fetal sex. PE is a highly clinically heterogenous disorder that can be caused
by distinct factors. Benton et al. report subtypes of PE based on placental gene expression
clusters [41]. This heterogeneity and the various presentations of placental dysfunction
in PE can explain the heterogeneity that we see in SphK1 expression, specifically the
mRNA expression.

2.2. Experimental Villous Explant Model of Syncytial Self-Regeneration

PE develops after the second trimester of pregnancy [42]. Even though PE starts
developing during the first trimester, the poor development and function of the placenta
during the second trimester exacerbates the disorder to clinically detectable levels. During
the second trimester, the ST is characterized by high levels of regeneration to form an intact
placental barrier. In this study, we used a villous explant culture model to investigate the
interaction of TNF-α and SphK1 and their effects on ST regeneration and function, cell
death, and cytokine and factor release during the regenerative phase of the ST layer.

To characterize the time in culture needed for the ST to be fully shed prior to regener-
ation of this layer, explants were incubated for varying timepoints from dissection after
delivery (0 days) up to 8 days and then assessed for the presence of ST using immunohisto-
chemistry (Figure 2; n = 3). E-cadherin is expressed at epithelial adherens junctions, which
are found in both CTs and the ST in the placenta, since trophoblasts are epithelial cells.
High E-cadherin expression was saturated at the basal ST membrane where the apical side
of the CT fuses into the ST. Since ST differentiation involves downregulating E-cadherin
expression, the apical side of the ST expresses E-cadherin at low levels and is often not
visualized with the microscope parameters optimal for the signal on the basal membrane of
the ST. Any nuclei present on the apical side of the heavy E-cadherin demarcation belong
to the multinucleated ST layer. Explants incubated for 0, 1, 6, or 8 days after initiation
of culture showed multiple nuclear clusters on the apical side of the strong E-cadherin
demarcation that define areas of multinucleated ST (Figure 2A, white arrows). Explants
incubated for 2 or 3 days showed progressively less nuclei outside the E-cadherin staining
than seen at 0 and 1 days, implying a reduced syncytial area. By day 4 of incubation, the ST
was almost fully shed (Figure 2A, red arrow). Day 4 of culture was then used as the first day
of treatment for all further experiments. Multiple areas of multinucleated ST reappeared
on days 6–8 (Figure 2A, white arrows) of culture showing evidence for regeneration of the
ST layer. LDH levels peaked at day 2 of culture and dropped again at day 4 of culture,
showing evidence of ST sloughing before day 4 of culture (Figure 2B).

2.3. Effect of TNF-α on the Syncytium and its Interaction with SphK1

Since SphK1 expression and activity is increased in response to proinflammatory
stimuli [43,44] and S1P increases epithelial cell extrusion [45], we investigated the effects
of SphK1 inhibition, using PF-543, on ST formation, function, and shedding in normal
and proinflammatory conditions. We first identified the concentration of TNF-α that
demonstrated maximum effects on resyncytialization in the explant model. After the initial
4-day culture to allow syncytial shedding, the explants were treated with TNF-α for 24 or
48 h (n = 3). As shown in Figure 3A, resyncytialization of term placental chorionic explants
from normal pregnancies increased from 24 to 48 h in the no-treatment control. After 48 h
of incubation without TNF-α, the syncytium was relatively thick and consistent around
the villi (white arrow). There were no overt differences seen with TNF-α treatment after
24 h among the different TNF-α concentrations and the no-treatment control. However,
48 h of treatment with 0.1, 1, or 10 ng/mL of TNF-α resulted in reduced syncytium (red
arrows). Treatment with 1 or 10 ng/mL of TNF-α for 48 h led to the most consistent and
reproducible hinderance of resyncytialization compared to the no-treatment control, and
hence those were the chosen concentrations for further experiments.
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Figure 2. Syncytial shedding in chorionic villous explants was maximal after 4 days of incubation. (A): Confocal 
fluorescence microscopy was used to analyze the shedding of ST and resyncytialization of term chorionic 
explants after incubation for 0–8 days. DAPI stained nuclei blue and E-cadherin (AF488) stained epithelial 
cadherin junctions in CT and ST cell membranes green (n = 5). High E-cadherin expression demarcates the basal 
membrane of the syncytium. Nuclei present on the apical side of the heavy E-cadherin demarcation are part of 
the multinucleated ST. High areas of multinucleated syncytium are demarcated with white arrows and low areas 
of multinucleated syncytium are demarcated with red arrows. For the negative control, AF488 secondary 
antibodies were used in the absence of primary antibody. (B): Lactate Dehydrogenase (LDH) released into 
supernatants from chorionic explants was measured across various timepoints. Linked data points correspond 
to individual experiments (n = 6) and each data point represents the average of duplicate wells. Measurements 
correspond to LDH release in the last 24 h prior to every displayed time point. Values were plotted as a change 
from day 0. All values are relative to total protein mass in each culture well. 
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Figure 2. Syncytial shedding in chorionic villous explants was maximal after 4 days of incubation.
(A): Confocal fluorescence microscopy was used to analyze the shedding of ST and resyncytialization
of term chorionic explants after incubation for 0–8 days. DAPI stained nuclei blue and E-cadherin
(AF488) stained epithelial cadherin junctions in CT and ST cell membranes green (n = 5). High
E-cadherin expression demarcates the basal membrane of the syncytium. Nuclei present on the
apical side of the heavy E-cadherin demarcation are part of the multinucleated ST. High areas
of multinucleated syncytium are demarcated with white arrows and low areas of multinucleated
syncytium are demarcated with red arrows. For the negative control, AF488 secondary antibodies
were used in the absence of primary antibody. (B): Lactate Dehydrogenase (LDH) released into
supernatants from chorionic explants was measured across various timepoints. Linked data points
correspond to individual experiments (n = 6) and each data point represents the average of duplicate
wells. Measurements correspond to LDH release in the last 24 h prior to every displayed time point.
Values were plotted as a change from day 0. All values are relative to total protein mass in each
culture well.

TNF-α treatment (1 ng/mL) decreased the formation of multinucleated ST area after
48 h (p = 0.003, n = 4, Figure 3B), regardless of PF-543 treatment. SphK1 inhibition with
PF-543 (1 µM) also decreased the area of the multinucleated ST after 48 h (p = 0.02, n = 4,
Figure 3B), regardless of TNF-α treatment. The area of multinucleated ST was not different
after co-treatment of the explants with TNF-α and PF-543 when compared to individual
TNF-α or PF-543 treatments (n = 4). We analyzed samples after 24 h of treatment as well,
but there were no significant differences among the groups. Levels of β-hCG released into
the supernatant were measured in explants treated with 1 ng/mL TNF-α, 1 µM PF-543, or
a combined treatment of 1 ng/mL TNF-α and 1 µM PF-543 after 24 or 48 h of treatment.
None of these treatments affected β-hCG (n = 6) or LDH (n = 8) levels released by the
explants (Supplementary Figure S1).
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Figure 3. Resyncytialization in term placental chorionic explants from normal pregnancies decreased in response 
to tumor necrosis factor-alpha (TNF-ɑ) and SphK1 +inhibition independently. (A): Explants were pre-cultured 
for 4 days prior to treatment to induce syncytial shedding. Resyncytialization of term chorionic explants 
following treatment with 0–10 ng/mL of TNF-ɑ after 24 or 48 h of treatment was analyzed using confocal 
fluorescence microscopy. DAPI stained nuclei blue and E-cadherin (AF488) stained adherens junctions green (n 
= 3). (B): Explants were pre-cultured for 4 days prior to treatment with 1 ng/mL of TNF-ɑ, 1 μM PF-543, a co-
treatment of both or a no- treatment control for 48 h. Results were analyzed by measuring total area of the 
syncytium and normalizing it to the total surface area of the chorionic explant. Results are presented as relative 
to the no-treatment control and analyzed by two-way ANOVA with the two-stage linear step-up procedure of 
Benjamini, Krieger, and Yekutieli post-hoc test. (Mean ± SEM, n = 4). 

  

A 

B 

0 ng/mL TNF-α 
24 hours 

0.1 ng/mL TNF-α 
24 hours 

1 ng/mL TNF-α 
24 hours 

10 ng/mL TNF-α 
24 hours 

0 ng/mL TNF-α 
48 hours 

0.1 ng/mL TNF-α 
48 hours 

1 ng/mL TNF-α 
48 hours 

10 ng/mL TNF-α 
48 hours 

Control + TNF-α 

+ PF-543 + TNF-α 
+ PF-543 

100 μm 

– TNF-α + TNF-α
0.0

0.5

1.0

1.5

Ar
ea

 o
f m

ul
tin

uc
le

at
ed

 S
T –  PF-543

+  PF-543 p = 0.02

p = 0.003
Interaction: ns

Figure 3. Resyncytialization in term placental chorionic explants from normal pregnancies de-
creased in response to tumor necrosis factor-alpha (TNF-α) and SphK1 +inhibition independently.
(A): Explants were pre-cultured for 4 days prior to treatment to induce syncytial shedding. Resyn-
cytialization of term chorionic explants following treatment with 0–10 ng/mL of TNF-α after 24 or
48 h of treatment was analyzed using confocal fluorescence microscopy. DAPI stained nuclei blue
and E-cadherin (AF488) stained adherens junctions green (n = 3). (B): Explants were pre-cultured
for 4 days prior to treatment with 1 ng/mL of TNF-α, 1 µM PF-543, a co-treatment of both or a no-
treatment control for 48 h. Results were analyzed by measuring total area of the syncytium and
normalizing it to the total surface area of the chorionic explant. Results are presented as relative to the
no-treatment control and analyzed by two-way ANOVA with the two-stage linear step-up procedure
of Benjamini, Krieger, and Yekutieli post-hoc test. (Mean ± SEM, n = 4).

Since 1 ng/mL TNF-α had no significant effects on β-hCG and LDH release, we tested
whether a higher TNF-α concentration could hinder explant resyncytialization and increase
cell death through SphK1. Explants were treated with 10 ng/mL TNF-α, 1 µM PF-543, or
the combination of 10 ng/mL TNF-α and 1 µM PF-543 (n = 6). No significant changes were
observed in β-hCG levels compared to controls in any of the groups at 24 h post-treatment
(Supplementary Figure S2A). At 48 h post-treatment, however, 10 ng/mL TNF-α decreased
β-hCG release (p = 0.008). However, inhibiting SphK1 (1 µM PF-543) did not counteract
this decrease (Figure 4B). Furthermore, administration of 10 ng/mL TNF-α in explants
with 1 µM PF-543 significantly decreased β-hCG levels to control levels compared to 1 µM
PF-543 treatment alone (p = 0.05). This is likely due to the inhibitory effects of TNF-α as
the treatment interaction was not significant. As well, β-hCG levels after co-treatment
with PF-543 and TNF-α compared to TNF-α alone were not significant. This indicates that
SphK1 activity does not mediate TNF-α effects on this ST endocrine function.
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post-hoc test. (n = 6 or n = 5, Mean ± SEM). 
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Figure 4. Inhibiting SphK1 with PF-543 diminished TNF-α effects on LDH release and placental
alkaline phosphatase (PLAP)-positive shed particles but not on beta-human chorionic gonadotropin
(β-hCG) secretion at 48 hrs. Explants were pre-cultured for 4 days prior to treatment with 10 ng/mL
of TNF-α, 1 µM PF-543, a co-treatment of both or a no-treatment control for 48 h. Supernatants were
centrifuged at 15,000 RPM for 15 min prior to analysis. (A) β-hCG released after 48 h was measured
by ELISA. (B) LDH released into the supernatant after 48 h was measured with a colorimetric assay.
(C): Non-centrifuged supernatants were analyzed for PLAP activity using an alkaline phosphatase
activity assay. Results were normalized against total protein mass, and normalized values were
graphed as a ratio of change from the untreated control explant cultures. Results were analyzed by
two-way ANOVA with the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli
post-hoc test. (n = 6 or n = 5, Mean ± SEM).

No significant changes were observed in LDH levels compared to controls in any of
the groups at 24 h post-treatment (Supplementary Figure S2B). However, TNF-α increased
cell membrane damage as detected by increased LDH release at 48 h (10 ng/mL, p = 0.01,
Figure 4B) that was inhibited by co-treatment with PF-543 (1 µM) with an interaction of
p = 0.006. Post-hoc tests further confirmed this interaction as TNF-α increased LDH levels
(p = 0.0005) and inhibiting SphK1 in the presence of TNF-α decreased LDH levels from
TNF-α-induced levels (p = 0.02). Since the 24-h treatment showed no differences in LDH
release, we measured ST shedding only at 48 h. ST shedding, demarcated by positive PLAP
activity in the culture supernatant, was elevated in response to TNF-α treatment alone
(10 ng/mL, p = 0.03, Figure 4C, n = 5). This effect was diminished upon Sphk1 inhibition
(1 µM) with a treatment interaction of p = 0.02.

2.4. Effect of TNF-α on Placental Cytokine and Factor Release and Its Dependence on
SphK1 Activity

Treating explants with 10 ng/mL of TNF-α increased the release of the inflammatory
cytokines eotaxin (p = 0.03) and MIP-1β (p = 0.001) after 48 h (Figure 5, n = 5). The treatment
also increased the release of sCD40L (p = 0.01), RANTES (p < 0.0001), GM-CSF (p = 0.06),
IL-18 (p = 0.002), MCP-3 (p = 0.0006), MIP-1α (p = 0.009), IL-6 (p = 0.055), IL-12p40 (p = 0.02),
IL-12p70 (p = 0.002), IL-2 (p = 0.007), IL-15 (p = 0.004), and IL-1RA (p = 0.006), cytokines
whose circulating levels are elevated in PE (Figure 5). The increased release of these factors
in response to TNF-α was independent of SphK1 activation. TNF-α also increased the
release of IFNα2 (p = 0.0006) and IFN-gamma-associated protein 10 or IP-10 (p = 0.02). The
increase in these cytokines was reversed by SphK1 inhibition with a treatment interaction
of p = 0.06 and p = 0.03, respectively (Figure 5).
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Figure 5. Inhibiting SphK1 with PF-543 diminished TNF-α effects on release of IFNα2 and IFN-γ
associated protein 10 (IP-10). Explants were pre-cultured for 4 days prior to treatment with 10 ng/mL
of TNF-α, 1 µM PF-543, a co-treatment of both, or a no-treatment control for 48 h. Supernatants
were centrifuged at 15,000 RPM for 15 min prior to quantification of pro-inflammatory cytokines
and chemokines using a multiplex array. Results were normalized against total protein mass, and
normalized values were graphed as a ratio of change from the untreated control explant cultures.
Results were analyzed by two-way ANOVA with the two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli post-hoc test. (n = 5, Mean ± SEM).

TNF-α also increased the release of the following growth factors (Figure 6, n = 5):
fractalkine (p = 0.009), IL-7 (p = 0.01), EGF (p < 0.0001), and Flt3L (p < 0.0001). Two inter-
leukins that are decreased in PE, IL-4 (p = 0.002) and IL-9 (p = 0.02), were also increased by
this treatment. The increased release of these factors was independent of SphK1 activation.
TNF-α increased the release of FGF2 (p = 0.02) and PDGF-AA (p = 0.01) (Figure 6) which
was dependent on SphK1 since co-treatment of TNF-α with PF-543 decreased this release
(p = 0.02 and p = 0.01, respectively) with treatment interactions of p = 0.06 and p = 0.05,
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respectively. Post-hoc tests further confirmed this interaction as TNF-α increased FGF2
(p = 0.004) and PDGF-AA (p = 0.003) and inhibiting SphK1 in the presence of TNF-α de-
creased FGF2 (p = 0.02) and PDGF-AA (p = 0.01) levels from TNF-α-induced levels. PF-543
treatment showed an overall change in FGF2 levels (p = 0.05). This change, however, was
most likely due to its interaction with TNF-α, since post-hoc tests showed no difference
between PF-543 treated groups and the no-treatment control. The only cytokine tested that
was decreased by TNF-α treatment alone was IL-10 (p = 0.05). PF-543 treatment in combi-
nation with TNF-α not only reversed this decrease but further increased IL-10 release to
44.7 ± 20.6% higher than the no-treatment control with a treatment interaction of p = 0.003.
This highlights the PF-543 treatment effect (p = 0.02). Inhibiting SphK1 with PF-543 in-
creased GRO-α release (p = 0.01, Figure 6) but TNF-α had no effect on this cytokine. GRO-α
was not detected in some samples and their levels were designated as 0 on the graph, and
they were excluded from statistical analysis. Neither TNF-α or PF-543 treatments had any
effect on IFNγ, IL-1-α, IL-1β, IL-5, IL-8, MCP-1, G-CSF, and PDGF-BB (Supplementary
Figure S3). Inhibiting SphK1 in the absence of TNF-α treatment decreased TNF-α release
(p = 0.008, Figure 7). TNF-α and GRO-α were the only factors that were altered in response
to PF-543 treatment alone.
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Figure 6. Inhibiting SphK1 with PF-543 diminished TNF-α effects on release of FGF2, PDGF-AA,
and IL-10. Explants were pre-cultured for 4 days prior to treatment with 10 ng/mL of TNF-α, 1 µM
PF-543, a co-treatment of both, or a no-treatment control, for 48 h. Supernatants were centrifuged at
15,000 RPM for 15 min prior to quantification of growth factors and chemokines using a multiplex
array. Results were normalized against total protein mass, and normalized values were graphed as
a ratio of change from the untreated control explant cultures. Results were analyzed by two-way
ANOVA with the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli post-hoc
test. (n = 5, Mean ± SEM).
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Figure 7. Inhibition of SphK1 decreased release of TNF-α. Explants were pre-cultured for 4 days
prior to treatment with 1 µM PF-543 or a no-treatment control for 48 h. Supernatants were centrifuged
at 15,000 RPM for 15 min prior to quantification of TNF-α using a multiplex array. Results were
normalized against total protein mass, and normalized values were graphed as a ratio of change from
the untreated control explant cultures. (n = 5, Mean ± SEM, Mann–Whitney test).

2.5. PF-543 Dose Response in Villous Explants

The dosage of 1 µM PF-543 to inhibit SphK1 was established based on effective dosages
in other cell types that examined different outcome measures. However, the effects of PF-
543 on placental explant resyncytialization or cell death have not been investigated. We
therefore wanted to determine whether higher doses of PF-543, that are still highly specific
for inhibiting SphK1, would lead to enhanced effects. Thus, a PF-543 dose-response was
performed. Explants were treated with either 0 µM, 1 µM, 10 µM, or 20 µM of PF-543
(n = 4) on day 4 of explant culture. β-hCG and LDH levels were measured. With respect
to ST endocrine function, no significant changes were observed in β-hCG at any PF-543
concentration after 24 h of treatment (Figure 8A). However, inhibiting SphK1 activity with
10 or 20 µM of PF-543 for 48 h increased β-hCG secretion (p = 0.04, p = 0.02, respectively;
Figure 8B). No significant changes in LDH levels were observed at any concentration of
PF-543 at either time point (Figure 8C,D).
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Figure 8. SphK1 inhibition with PF-543 increased β-hCG secretion after 48 h. Explants were pre-
cultured for 4 days prior to treatment with a PF-543 dose response (0–20 µM). Supernatants were cen-
trifuged at 15,000 RPM for 15 min prior to quantification of β-hCG and LDH. (A,B) represent β-hCG
released into the supernatant after 24 and 48 h, respectively as measured by ELISA. (C,D) represent
LDH released into the supernatant after 24 and 48 h, respectively as measured with a colorimetric
assay. Results were normalized against total protein mass and normalized values were graphed as a
ratio of change from the untreated control explant cultures. (n = 4–5, Mean ± SEM, Kruskal–Wallis
test with the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli post-hoc test).
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3. Discussion

The focus of this study was to determine whether the effects of elevated TNF-α,
which induces a PE-like placental phenotype, characterized by poor ST function, high
ST shedding, and high inflammation [12,13], are mediated through changes in SphK1
activity. S1P [28,37], which is produced by SphK1, and TNF-α [7,11,46] are already each
independently associated with PE pathophysiology by inhibiting ST formation [12,39,40].
TNF-α increases SphK1 activation in HUVECs [25,26], hepatocytes [32], or a lung fibroblast
cell line [33]. In the current study, TNF-α effects on syncytial hormone production and
CT fusion were found to be independent of SphK1 activation. However, placental cell
death and syncytial shedding induced by TNF-α were dependent on SphK1 activation.
TNF-α also increased the release of 16 pro-inflammatory cytokines and 9 growth factors
from cultured placental explants. However, TNF-α-induced changes were dependent on
SphK1 activation for only five of these factors: IFNα2, IP-10, FGF2, and PDGF-AA were
decreased, while IL-10 was increased after inhibiting SphK1 in the presence of TNF-α.
Overall, we show that elevated TNF-α induced a PE-like placental phenotype that was
mediated through SphK1 activation.

S1P, the product of SphK1, is elevated in the plasma of mothers with PE [37]. However,
qRT-PCR and western blot data indicate that SphK1 mRNA and protein levels decrease in
placental explants from women with PE compared to women with normal pregnancies [47].
Using immunofluorescence, we observed that SphK1 levels were higher overall in placental
sections from PE compared to normal pregnancies. This discrepancy could be attributed to
distinct epitopes recognized by different antibodies using different methods. However, we
confirmed our staining results using qRT-PCR. Recently, however, an article by Liao et al.
found a lower level of SphK1 protein levels in placental villi from PE pregnancies, also
measured by immunofluorescence [48]. While patient characteristics were comparable to
those in our study, this published study used paraformaldehyde fixation, that can reduce
the fluorescent signal observed and result in poor preservation of the cytoplasm [49] and
most likely the villous core. Indeed, our staining showed a strong signal for SphK1 in the
villous core, whereas the images from Liao et al. show almost no expression aside from
the outermost trophoblast layers. Liao et al. also show that placental SphK1 activity is
decreased in the PE group; however, the method utilized does not discriminate between
SphK1 and SphK2 [50]. Although S1P is elevated in the plasma of women with PE [37,38], it
is unknown whether the placenta is the source of this surge. Liao et al. show that placental
S1P levels are lower in mothers with PE [48] and did not measure circulating S1P in the
mother. Since S1P is constantly transported to the extracellular space, it is unclear whether
this decrease is due to increased transport, decreased synthesis or increased S1P lyase or
lipid phosphatase activities.

The clinical characteristics of our samples indicated that women in the PE group had
newborns with a lower gestational age than those in the healthy control group. However,
it is unlikely that differences in SphK1 expression can be explained by gestational age
differences. In our latest review, we note that circulating S1P levels remain constant
throughout normal pregnancy and are therefore independent of gestational age [28]. Our
previous studies also show that SphK1 levels in the decidua are higher with increasing
gestational age [51]. For these reasons, we believe it is unlikely that higher levels of SphK1
in the placentas from mothers with PE are due to lower gestational ages.

TNF-α acts through two receptors: TNFR1 and 2 [7]. The signaling pathway through
TNFR1 leads to cytotoxic effects in trophoblasts [52,53]. Recently, both S1P and SphK1 were
deemed essential to the signaling cascade of TNF-α through TNFR1 in HEK293T and HeLa
cell lines [24]. S1P and SphK1 act as cofactors for TNF-α receptor 1 signaling by interacting
with TNF receptor-associated factor 1 [24] and ultimately leading to NF-κB activation [54].
However, there is a knowledge gap in understanding the relationship between TNF-α and
SphK1 signaling in inducing placental malfunction.

Hence, we aimed to decipher the independent role of SphK1 activation and its impact
on TNF-α signaling in the placenta. Based on the existing knowledge regarding the role
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of SphK1 as an essential factor for TNF-α signaling [27], it was expected that inhibiting
SphK1 would inhibit all effects of TNF-α. In our study, however, we found that some effects
of TNF-α on placental function were independent of SphK1 activation. Although TNF-α
decreased resyncytialization of the explants as expected, this was not changed when SphK1
activity was inhibited during treatment. This implies that TNF-α hinderance of trophoblast
fusion is independent of SphK1 activation.

On the other hand, only inhibiting SphK1 with PF-543 hindered fusion as well, sug-
gesting an important role for this kinase and its product, S1P in the fusion process. This is
contrary to what Singh et al. showed using DMS (N,N-Dimethyl-D-erythro-sphingosine)
to inhibit SphK1 [55]. One explanation for this disparity is that DMS has many off-target
effects especially on trophoblast metabolism [40]. Additionally, DMS inhibits both SphK1
and SphK2 and is a protein kinase C inhibitor, which is downstream of S1PR2-3 signal-
ing [56]. PF-543, however, is reported to be specific and efficient, inhibiting over 95% of
SphK1 activity at 1 µM with a 132-fold selectivity for the SphK1 isoform over SphK2 [57].
Moreover, our experiments were done in chorionic explant cultures where CTs are in
context with the surrounding tissue and extracellular matrix as opposed to those done by
Singh et al. which used cultured primary trophoblasts only. Singh and colleagues show that
SphK1 levels decrease as BeWo choriocarcinoma cells fuse into a multinucleated ST [40].
This could imply the importance of SphK1 in inducing CT fusion and its downregulation
once fusion is complete.

In contrast to the important role SphK1 may play in CT fusion, inhibiting SphK1
activity alone increased β-hCG release from cultured placental explants. The seemingly
contradictory effects of SphK1 inhibition on syncytial function versus CT fusion in our
findings might point to differential effects of SphK1 inhibition depending on the cell type,
CT versus ST. This, however, remains to be investigated. While CT fusion and β-hCG
release are both used as markers for syncytial differentiation, it is important to remember
that these processes occur by separate signaling pathways and in different cell types. A
differential effect on fusion versus endocrine function was also seen by Singh et al. when
using the non-specific DMS to inhibit SphK; however, the results were opposite to ours,
with increased CT fusion and decreased β-hCG release.

Interestingly, in our study, the effects on β-hCG release were only observed with
10 ng/mL of TNF-α, but not with 1 ng/mL of TNF-α. TNF-α was previously established to
have pro-apoptotic effects in the syncytium and to decrease β-hCG release at 10 ng/mL in
villous explants [12], whereas 1 ng/mL of TNF-α had no effect on β-hCG release [12]. Thus,
our results are in agreement with this previous literature. TNF-α at the lower concentration
of 1 ng/mL did, however, decrease trophoblast fusion. This decrease, as mentioned, had
no consequences on β-hCG release. This could have occurred because minimal ST could be
sufficient to produce β-hCG at healthy levels even in the presence of 1 ng/mL of TNF-α;
however, 10 ng/mL of TNF-α overcomes the compensating response triggered by ST.

The syncytium is maintained by a balance of trophoblast fusion/differentiation and
syncytial shedding. Since cell damage and syncytial shedding are increased in PE, we
assessed the levels of LDH release and PLAP-positive shed particles, respectively. Inhibiting
SphK1 alone had no effect on placental cell membrane damage or syncytial shedding.
However, these measures were increased in explants treated with TNF-α alone, reflecting
increased cell death. Inhibiting SphK1 while treating with TNF-α decreased cell death and
syncytial shedding induced by TNF-α alone, indicating that TNF-α exerts its effects on cell
death and shedding through SphK1. LDH is a cytosolic enzyme that can induce autophagy
in tumor cells [58]. TNF-α [59], as well as SphK1 activation [60], increases autophagy.
In fact, ceramide, a precursor of S1P, increases autophagy in a trophoblast cell line [61].
Autophagy is increased in the placental villi of women with PE [59], but the regulators of
this process in the placenta are still unclear. Our results show that TNF-α-induced LDH
release is dependent on SphK1 activity. Further research would investigate whether the
TNF-α-SphK1-LDH release pathway regulates autophagy in the placenta.
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Studies in epithelial and endothelial cells show TNF-α administration increases ac-
tivity and expression of SphK1 levels [24–27]. Indeed, our study showed that TNF-α is
dependent on SphK1 activity to induce cell death and syncytial shedding in the placenta.
Potentially, this could occur through TNF-α-induced activation of NF-κB-mediated cell
death pathways [24]. NF-κB is a known activator of cell fate pathways as well as pro-
inflammatory and growth factor production. Thus, SphK1-mediated TNF-α induction
of IFNα2, IP-10, FGF2, and PDGF-AA release could, in fact, be occurring due to NF-κB
activation. While the role of IFNα2 is not yet clear in the placenta, this type I interferon is
expressed by epithelial cells and is responsible for upregulating genes of proteins involved
in immune responses in the bovine endometrium [62]. IFNα2 also increases choriocarci-
noma trophoblast cell resistance to methotrexate by regulating cell viability [63]. On the
other hand, IP-10 inhibits angiogenesis by reducing endothelial cell viability and prolif-
eration in various cell types, including human vascular endothelial cells. IP-10, however,
also stimulates vascular smooth muscle cell motility and therefore differentiation [64,65].
This step is critical for spiral artery remodeling in early pregnancy. Improper spiral artery
remodeling is strongly associated with the development of PE. FGF2 and PDGF-AA are also
upregulated in response to cell damage [66,67] as a compensatory response. In particular,
PDGF-AA rescues trophoblasts from TNF-α-induced cell death [30]. Thus, this interaction
might occur downstream of the cell death pathway induced by TNF-α, which is dependent
on SphK1 activation.

In our study, the only factor that TNF-α treatment of placental explants decreased
was IL-10 and inhibiting SphK1 activation not only reversed this effect but also led to
increased levels above the control. Siwetz et al. show that IL-10 levels are unchanged in
response to TNF-α in first-trimester villous explants [13]. However, IL-10 circulating levels
are lower in PE in second- and third-trimester pregnancies [68]. This supports the idea
that high levels of TNF-α in PE could be the reason behind the drop in circulating IL-10
levels. The TNF-α-induced decrease in IL-10 release was dependent on SphK1 activation.
As summarized by Kalkunte et al., IL-10 is an anti-inflammatory cytokine that is crucial for
pregnancy maintenance [69]. Its levels are normally decreased at term to allow the rise in
inflammation necessary for the induction of labor. Hence, high levels of TNF-α lead to a
further decrease in IL-10, which would skew the balance towards a hyperinflammatory
state. IL-10 serves a protective role in pregnant women exposed to hypoxia, a characteristic
of PE. Pregnant IL-10 knockout mice exposed to a hypoxic environment developed placental
damage and PE symptoms. Treating these mice with recombinant IL-10 reversed the PE
symptoms induced by hypoxia. IL-10 is also protective in other aspects of the disorder,
such as inflammation and vascular function, which are all summarized in the following
review [69]. Interestingly, IL-10 acts as a strong protector against autophagic activity [59].
Hence, the SphK1-dependent TNF-α decrease of IL-10 could be a potential mechanism of
TNF-α-induced autophagy in the placenta.

TNF-α induced the release of a wide variety of inflammatory and growth cytokines but
the majority of these were independent of SphK1 activation. This could be because TNF-α
acts on specific cell types in the placenta that release some cytokines and not others. Hence,
TNF-α could be dependent on SphK1 activation only in specific cell types. Alternatively,
TNF-α could be inducing certain cytokines through TNFR1, and some through TNFR2
whose signaling and interaction with SphK1 have yet to be investigated. Interestingly,
inhibiting SphK1 led to a decrease in TNF-α release, implying that SphK1 activity induces
TNF-α release from the placenta. This release could be a normal physiological response
when SphK1 activation levels are within normal ranges and could lead to the release of TNF-
α to increase normal processes like angiogenesis and proliferation [7]. However, high levels
of TNF-α in pathological conditions such as PE could contribute to high levels of SphK1
activation in the placenta, which would further amplify TNF-α levels and exacerbate
the PE-like phenotype, suggesting a feed-forward loop. The role of SphK1 activity in
mediating the TNF-α-induced decrease in IL-10 as well as the decrease in TNF-α itself
has important translational implications in other inflammatory disorders, particularly
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those associated with autoimmune diseases such as inflammatory bowel disease [70].
Our findings propose investigating whether SphK1 inhibitors or agonists/antagonists
regulating S1P signaling in general could be synergistic with TNF-α-targeted antibodies
for treatment of these disorders.

Finally, only GRO-α increased in response to SphK1 inhibition. While the role of
GRO-α in placental and trophoblast function throughout pregnancy has not been exten-
sively investigated, GRO-α is commonly secreted from trophoblasts in response to cell
damage [71]. In our study, inhibiting SphK1 could have led to a specific damage-induced
signaling pathway which was not triggered by TNF-α and which led to the increase in
this cytokine.

Explants are a complex three-dimensional culture with multiple cell types, matrices,
and cell-cell interactions. Hence, potent inhibitors like PF-543 can potentially bind proteins,
be metabolized, or sequester within the tissue, thereby losing some potency. To investi-
gate if increasing concentrations of PF-543 could have distinguishable effects on explant
syncytialization, we exposed explants to increasing PF-543 concentrations that were still
within the specific range [57]. PF-543 at 10 and 20 µM increased the release of β-hCG
from villous explants without affecting cell viability. Schnute et al. shows that 10 µM of
PF-543 in a monolayer cell culture does not bind any off-target kinases from the kinase
profiling panel [57]. Moreover, it has a 132-fold selectivity for SphK1 over SphK2 [57]. As
mentioned, PF-543 has not been tested in trophoblasts or in placental explants previously.
Nonetheless, 1 µM [72,73] and even 10 µM [74] of PF-543 is a commonly used concentration
in a monolayer culture of cells isolated from other tissues.

Certain studies show a difference in function for S1P produced by SphK1 or SphK2 [75].
SphK1 is the cytoplasmic isoform which contributes mainly to extracellular S1P that signals
through its receptors. SphK2 is located in the nucleus and the rough endoplasmic reticulum
and is the main producer of S1P that signals intracellularly [76]. SphK2 is poorly studied in
the placenta and its interaction with TNF-α on placental function is unknown.

Currently, there are no definitive treatments for PE except for delivery of the fetus,
which often leads to preterm birth [77]. This study showed that TNF-α induced its effects on
several aspects of placental function by activating SphK1 and identifies the S1P signaling
pathway as a potential treatable target. However, since blocking SphK1 activity also
inhibited trophoblast fusion [55] and since S1P has many diverse protective functions,
the market-available SphK1 inhibitors [78] may pose off-target effects that will impact
placental health and potentially fetal health through placental programming. Moreover,
inhibition of SphK1 activity will reduce the synthesis of S1P which is protective and anti-
apoptotic at normal levels [28]. One way to mitigate this is to target specific S1P receptors.
For instance, S1PR1 is a key player in counteracting TNF-α induced release of MCP-1
and IL-8 in placental vascular tissues [28]. S1PR2 activation induces IL-6 secretion from
trophoblasts [28,75]. Further studies to understand the role of inflammation and its impact
on S1P signaling in syncytial development and function are crucial to better understand
the mechanisms leading to PE and the development of novel therapeutics to treat this
pregnancy disorder.

4. Materials and Methods
4.1. Placenta Samples

Women were recruited and provided written informed consent. The study was ap-
proved by the University of Alberta Health Research Ethics Board (Pro00034274, continu-
ously approved since 15 November 2012 with the most recent renewal approved 2 January
2022) and conformed to the standards set by the Declaration of Helsinki. Term placentae
were collected immediately after elective caesarean section deliveries at the Royal Alexan-
dra Hospital, Edmonton, AB, Canada, from women with no health complications and from
women with PE. Women with PE were defined as those who had blood pressures above
140/90 mmHg on two occasions measured 6 h apart and at least 30 mg/dL proteinuria
in a 24 h collection. Seventeen women with healthy pregnancies and 12 women with PE



Int. J. Mol. Sci. 2022, 23, 3750 16 of 23

were enrolled in the study. Placental biopsies from all women were collected for staining.
Biopsies from 13 placentas from the healthy control group and nine placentas from the PE
group were collected and processed for qRT-PCR. Table 1 displays clinical characteristics of
all 17 women with healthy pregnancies and nine women with PE enrolled in the study.

4.2. SphK1 Immunohistochemistry of Placental Sections

Placental biopsies were collected from placentas within 2 h of delivery from the area be-
tween the umbilical cord and the placental edge. Three evenly spaced 6 mm2 biopsies from
each patient were embedded into one mold with Tissue-Tek® O.C.T. (#4583, ThermoFisher
Scientific, Waltham, MA, USA). Three 8 µm sections from varying depths of one mold
were cut on a cryostat and these sections were placed on a Superfrost slide (ThermoFisher
Scientific, Waltham, MA, USA). The sections were fixed with 100% ice-cold methanol for
20 min in −20 ◦C and blocked for 1 h with 10% normal goat serum. The sections were then
incubated in a moist chamber simultaneously with a rabbit anti-SphK1 primary antibody
(1:80, ab46719, Abcam, Cambridge, UK) and a mouse anti-E-cadherin primary antibody
(1:200, 55413, R&D Systems, Minneapolis, MN, USA) in 1× PBS overnight. Slides were
washed 3 times with 1× PBS for two minutes per wash. AlexaFluor goat anti-rabbit 488
and goat anti-mouse 594 (1:200, A32731 and A11032, Invitrogen, Waltham, MA, USA)
secondary antibodies were added simultaneously and incubated in the dark for 1 h at
room temperature. After washing 3 times with 1× PBS, the sections were incubated for
10 min in the dark with DAPI (4′,6-diamidino-2-phenylindole, 1:100, D1306, Invitrogen,
Waltham, MA, USA). The slides were washed again and mounted with PermaFluor Aque-
ous Mounting Medium (TA-030-FM, ThermoFisher Scientific, Waltham, MA, USA). Three
randomly selected areas from each section were imaged using the 20× objective on Zeiss
LSM 700 microscope and Zen Black software (Zeiss, Toronto, ON, Canada). Images were
analyzed using ImageJ software (Version 1.52a, U.S. National Institutes of Health, Bethesda,
MD, USA). Briefly, images were set to a consistent threshold value, and mean integrated
density was calculated. Integrated density values were normalized to the number of nuclei
in the image, which were calculated through the “Analyze particles” function on ImageJ.
Normalized values for each sample were averaged and the standard error of the mean
was determined.

4.3. RNA Isolation

Three evenly spaced 6 mm2 placental biopsies were obtained from term placentas in
the area between the umbilical cord and the edge of the placenta. Samples were collected
within 2 h of delivery and biopsies from each placenta were placed together in a single
tube. Placental biopsy tissues were placed into liquid nitrogen. The frozen samples were
wrapped with aluminum foil, re-submerged in liquid nitrogen, and crushed using a mortar
and pestle until the tissues were in powder form. Next, each sample was transferred into a
2 mL PCR tube containing a single steel bead (QIAGEN, Toronto, ON, Canada). Each tube
was then filled with 1 mL of TRIzol reagent (Life Technologies, ThermoFisher Scientific,
Waltham, MA, USA). The samples were lysed using a TissueLyser II (QIAGEN, Toronto,
ON, Canada) at a setting of 25.00 frequency/s for 2 min, repeated 3 times. 200 µL of
chloroform was then added to each sample before vigorously shaking for 1 min, followed
by a 5 min incubation at room temperature. Samples were then centrifuged for 15 min at
15,000 rcf at 4 ◦C. Following this step, the RNA layer (aqueous top layer) was extracted and
transferred to a new 2 mL tube and the Invitrogen RNA isolation kit (AM1912, Toronto, ON,
Canada) was used to purify the isolated RNA. Finally, quantification of the RNA in these
samples was carried out using the Nanodrop Spectrophotometer (ThermoFisher Scientific,
Waltham, MA, USA). Samples that were below a 260/280 ratio of 1.7 were discarded, but
this was very uncommon with the isolation kit that was used.
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4.4. Quantitative RT-PCR

Purified RNA was reverse transcribed into cDNA using 500 ng of total RNA, 4 µL of
ABM 5× all-in-one RT MasterMix (AT6490, ABM Life Sciences, Vancouver, BC, Canada),
and UltraPure TMDistilled Water (110977-015, Invitrogen, Waltham, MA, USA) as needed
to reach a final volume of 20 µL. The primer sequences for SphK1 and the housekeeping
gene, hypoxanthine-guanine phosphoribosyl transferase (HPRT1), were designed using
OligoPerfect Designer (Integrated DNA Technologies, Coralville, IA, USA). SphK1 forward:
5′-CTG GCA GCT TCC TTG AAC CAT3′; SphK1 reverse: 5′-TGT GCA GAG ACA GCA
GGT TCA-3′; HPRT1 forward: 5′-GAC CAG TCA ACA GGG GAC ATA A-3′; HPRT1
reverse: 5′-AAG CTT GCG ACC TTG ACC-3′. The PCR reaction was carried out using
Applied Biosystems Power Up TM SYBR® Green MasterMix (100029284, Life Technologies,
ThermoFisher Scientific, Waltham, MA, USA), 0.6 µL of primers (10 µM), 6.3 µL of UltraPure
TM Distilled Water, and 2.5 µL of cDNA from each sample. The ∆∆CT method of relative
quantification was used to analyze the results [79].

4.5. Placental Explant Culture

Placental chorionic villi were dissected within 1–2 h following delivery and washed
3 times with gentle shaking using Hanks’ Balanced Salt Solution (Hyclone Laboratories Inc,
ThermoFisher Scientific, Waltham, MA, USA). A self-regenerating explant culture method
was adapted from Siman et al. and Trowell [80,81] by culturing explants at the gas-liquid
interface. Briefly, three 2 mm blocks of chorionic villi were placed onto inserts with 8 µm
pore polyethylene terephthalate membranes (353182, ThermoFisher Scientific, Waltham,
MA, USA). Inserts were placed into wells in a companion 12-well plate. 550 µL of Iscove’s
Modified Dulbecco’s Media (IMDM, Hyclone Laboratories Inc, ThermoFisher Scientific,
Waltham, MA, USA) with 1% Penn/Strep, 1% antibacterial/antimycotic, and 1% ITS + 1
Liquid Media Supplement (MilliporeSigma, Toronto, ON, Canada) was added to the wells
in the companion plates. The plates were incubated at 37◦C in 5% CO2 and the media was
changed every 48 h.

4.6. Treatments and Experimental Protocols

Explants were incubated for 4 days to allow the shedding of the original syncytium [82]
and all experimental treatments began on day 4 of culture at the start of the ST regeneration
phase. Explants were treated with 0–20 µM PF-543 (PZ0234, MilliporeSigma, Oakville,
ON, Canada), a specific inhibitor of SphK1 [57]. Explants were also treated with TNF-α
(1 or 10 ng/mL, a kind gift from Hoffmann-La Roche, Basal, Switzerland) alone. To test
if inhibition of SphK1 could impact TNF-α effects, explants were pretreated with PF-543
(1 µM) for 30 min before TNF-α (1 or 10 ng/mL) administration. Treatments were done in
duplicates for 24 or 48 h.

4.7. Trophoblast Fusion and E-Cadherin Staining

Cultured explants from duplicate wells (3 explants/well) were fixed in 1% paraformalde-
hyde in PBS, embedded and sectioned as described above. The 3 villi from each well were
placed in 1 mold that was sectioned at 3 varying depths and these sections were placed onto
1 slide. Similar blocking and washing procedures were followed as described above. Samples
were then incubated with the E-cadherin primary antibody (1:200) overnight. AlexaFluor-488
goat anti-mouse secondary antibody (1:200) and DAPI (1:100) were used as described above.
Slides were similarly mounted as before and 20 Z-stacks of each image were captured with
a confocal Zeiss LSM 700 microscope and Zen Black software (Zeiss, Toronto, ON, Canada).
Three randomly selected fluorescent images were captured per each section with the 20×
objective and analyzed using ImageJ software Version 1.52a. E-cadherin localizes at the apical
membrane of the CT layer, which fuses into the basal membrane of the syncytial region.
Syncytialized portions were defined as nuclei external to the E-cadherin demarcation. The
total area of the syncytialized portions of the explants were measured and normalized against
the total surface area of the villi.
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4.8. BCA Protein Assay

Explant tissues were placed in lysis buffer (20 mM Tris, 5 mM EDTA, 10 mM Na4P2O7,
100 mM NaF, 1% NP-40) with protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA) mixed in a 100:1 ratio in a tube with a metal bead. Samples were lysed using the
Qiagen Tissue Lyser III (Qiagen, Hilden, Germany) through three cycles of 25 shakes/s,
with 2 min per cycle. Total protein mass was quantified using the Pierce BCA Protein Assay
Kit (ThermoFisher Scientific, Waltham, MA, USA) with an albumin standard following
manufacturer recommendations. Samples were run in duplicates at a 1:10 dilution. Ab-
sorbance was measured with a Synergy HTX spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) at a 562 nm wavelength.

4.9. Lactate Dehydrogenase (LDH) Quantification

Lactate dehydrogenase (LDH) is released from all cell types as a result of cell mem-
brane damage and is a marker for cell death. Experimental supernatants were centrifuged
at 15,000 rpm for 15 min, and supernatant LDH levels were measured with the CytoTox
96® Non-Radioactive Cytotoxicity Assay following the manufacturer’s protocol (Promega,
Madison, WI, USA). If LDH were present, it would result in a color change to red due to
the formation of Formazan, and the absorbance was read at 562 nm using a Synergy HTX
spectrophotometer. Samples were run at a 1:2 dilution in duplicates. Culture media alone
was used as a negative control and subtracted from the experimental sample absorbance
values. Values were normalized to total protein mass and calculated as a ratio of the
no-treatment control. Duplicate wells for each treatment were averaged.

4.10. Quantification of the Beta-Subunit of Human Chorionic Gonadotropin (β-hCG)

β-hCG is secreted by the ST and is a marker of a functional ST. β-hCG from experimen-
tal supernatants was measured using an enzyme-linked immunosorbent assay (ELISA) with
the ELISA 1911 kit (DRG Diagnostics, Marburg, Germany) following the manufacturer’s
instructions. After centrifuging the samples at 15,000 rpm for 15 min, the supernatant was
collected and run at a 1:5 dilution with the manufacturer’s supplied buffer. Absorbance
was measured with the Synergy HTX spectrophotometer at a wavelength of 450 nm. The
values from each assay obtained from culture medium alone were subtracted from experi-
mental sample values. β-hCG concentrations were extrapolated using spectrophotometer
measurements compared to those from a standard curve. Measured concentrations were
normalized to total protein mass per well and calculated as a ratio of the no-treatment
control. Duplicate wells for each treatment were averaged.

4.11. Quantification of Human Placental Alkaline Phosphatase Activity (PLAP)

PLAP activity was measured from villous particles shed into the bottom wells of the
insert cultures to estimate the amount of ST shedding in response to various treatments. All
particles reaching the bottom well were smaller than the 8 µM pore size. Experimental su-
pernatants were diluted 10 times in manufacturer supplied buffer and analyzed following
the manufacturer’s protocol (ab83369, Abcam, Cambridge, UK). Briefly, phosphorylated
p-Nitrophenol was added to the samples as a substrate. The alkaline phosphatase in the
samples converts the substrate into the non-phosphorylated p-Nitrophenol, ultimately lead-
ing to a change in color. Absorbance was measured with a Synergy HTX spectrophotometer
at a 405 nm wavelength. The values from each assay obtained from culture medium alone
were subtracted from experimental sample values. PLAP activity of samples was extrapo-
lated using spectrophotometer measurements compared to those from a standard curve.
Measured concentrations were normalized to total protein mass per well and calculated as
a ratio of the no-treatment control. Duplicate wells for each treatment were averaged.

4.12. Quantification of Cytokines

Supernatants from cultured explants were tested for 42 cytokines/chemokines in
duplicate: EGF, Eotaxin-1, FGF-2, Flt-3L, CX3CL1, G-CSF, GM-CSF, GRO-α, IFN-α2, IFN-γ,
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IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p40), IL-12(p70),
IL-13, IL-15, IL-17A, IL-18, IP-10, MCP-1, MCP-3, MDC, MIP-1α, MIP-1β, PDGF-AA,
PDGF-AB/BB, RANTES, sCD40L, TGF-α, TNF-β, VEGF-A. Tests were performed by Eve
Technologies (Calgary, AB, Canada) using a Luminex array with a Bio-Plex™ 200 system
(Bio-Rad Laboratories Inc., Hercules, CA, USA) and a (HD42) kit (Millipore, St. Charles,
MO, USA).

4.13. Statistics and Analysis

Results were analyzed with GraphPad Prism (GraphPad Software, San Diego, CA,
USA). Results from imaging were analyzed through Students’ t-test. Normalized fusion,
β-hCG, LDH, PLAP, and cytokine/chemokine results from cultured explant experiments
were analyzed by two-way ANOVA and two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli post-hoc test to control for the false discovery rate. Dose-response
experiments were analyzed by non-parametric Kruskal–Wallis test and the two-stage linear
step-up procedure of Benjamini, Krieger, and Yekutieli post-hoc. A p value less than 0.05
was considered significant. All groups were subjected to post-hoc analyses. Only significant
post-hoc p-values are shown in the figures.
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