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Abstract

Soybean [Glycine max (L.) Merr.] is a crop of great interest worldwide. Exploring molecular

approaches to increase yield genetic gain has been one of the main challenges for soybean

breeders and geneticists. Agronomic traits such as maturity, plant height, and seed weight

have been found to contribute to yield. In this study, a total of 250 soybean accessions were

genotyped with 10,259 high-quality SNPs postulated from genotyping by sequencing (GBS)

and evaluated for grain yield, maturity, plant height, and seed weight over three years. A

genome-wide association study (GWAS) was performed using a Bayesian Information and

Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model. Genomic selection (GS)

was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The

results revealed that 20, 31, 37, and 23 SNPs were significantly associated with maturity,

plant height, seed weight, and yield, respectively; Many SNPs were mapped to previously

described maturity and plant height loci (E2, E4, and Dt1) and a new plant height locus was

mapped to chromosome 20. Candidate genes were found in the vicinity of the two SNPs

with the highest significant levels associated with yield, maturity, plant height, seed weight,

respectively. A 11.5-Mb region of chromosome 10 was associated with both yield and

seed weight. Overall, the accuracy of GS was dependent on the trait, year, and population

structure, and high accuracy indicates that these agronomic traits can be selected in molec-

ular breeding through GS. The SNP markers identified in this study can be used to improve

yield and agronomic traits through the marker-assisted selection and GS in breeding

programs.
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Introduction

The success of a newly developed soybean [Glycine max (L.) Merr.] variety relies on a large

number of characteristics including maturity, plant height, seed weight, and yield performance

[1]. Soybean breeders have been focusing on improving these traits in their cultivar develop-

ment. Highly heritable traits such as maturity and plant height can be selected at earlier stages,

whereas complex traits such as yield are tested over many years and environments throughout

the breeding pipeline. With the rapid development of genomic-related tools and DNA

sequencing technology, the improvement of the agronomic and yield-related traits of interest

could be performed faster.

Genome-wide association study (GWAS) and genomic selection (GS) are powerful tools to

understand the genetic architecture controlling complex traits of importance in soybean.

GWAS has been conducted to identify molecular markers associated with many agronomic

traits in soybean [2, 3]. To date, more than 60 markers identified through GWAS have been

reported to be associated with maturity in soybean [4–9]. These markers are distributed across

the soybean genome but more found on chromosome 16 (https://www.soybase.org/). Candi-

date genes such as Glyma11g14150, Glyma16g02840, and Glyma16g03580 were studied in

detail and found to control maturity in soybean [9]. The most described loci affecting maturity

in soybean are E1-E10 and J [10]. Efforts towards identifying significant loci controlling plant

height in soybean via GWAS have also been undertaken. Recently, 68 markers affecting plant

height have been identified using GWAS [6, 7, 9, 11, 12]. Out of these, 19 were mapped on

chromosome 19 (https://www.soybase.org/). A total of 11 candidate genes affecting plant

height have been reported [11, 12]. A total of 95 molecular markers associated with seed weight

have been previously identified in soybean, of which 12 are located on chromosome four [1, 5,

6, 8, 11–16]. Eighteen potential candidate genes have been reported for seed weight in soybean

[1, 9, 11, 14]. GWAS has been proven to be efficient in identifying molecular markers associ-

ated with yield in soybean as well. Four SNPs were found to be associated with yield across

multiple environments via GWAS of 219 soybean accessions [12] and the candidate genes Gly-
ma.13g073900, Glyma.06g050300, Glyma.03g169700, and Glyma.03g171900 were found in the

vicinity of these SNPs. In addition, a total of 139 soybean accessions were genotyped using the

BARCSoySNP6K in order to conduct GWAS for yield, reporting a total of six significant SNPs

associated with yield, of which, four were located on chromosome 12 [11]. An additional study

also suggested six significant loci associated with yield in soybean [5]. Copley et al. [8] reported

three significant SNPs associated with yield through GWAS.

GS has allowed the estimation of the effects of all markers across the genome. The combina-

tion of the markers effect denominated genomic estimated breeding values (GEBVs) can be

used to predict the performance of a line [17]. GS has been shown to outperform the tradi-

tional marker-assisted selection (MAS) in complex traits such as yield and seed weight [18].

The establishment of GS for complex traits may allow faster genetics gain per unit of time [18].

Matei et al. [19] showed that the selection cycle for yield and seed weight can be significantly

reduced using GS. Previous reports showed a discrepancy regarding the accuracy of GS for

complex traits in soybean. Duhnen et al. [20] reported an accuracy of 0.39 for yield in soybean,

whereas Jarquı́n et al. [21] reported accuracy of up to 0.80 for soybean yield in an elite popula-

tion consisting of 301 genotypes.

Association panels for GWASs should include a high degree of genetic diversity, and the

phenotypes should be accurately characterized in various environments [22] In this research, a

total of 250 soybean germplasm accessions including 60 mini core collections and 108 typical

cultivars from China and 82 foreign germplasms separately from the United States, South

Korea and Japan were used in GWAS and GS for yield, maturity, plant height and seed weight
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over 3 years. This panel can contribute towards discovering new loci of interest and confirm-

ing the previously reported ones, which will significantly enhance breeding for agronomic

traits in soybean. In addition, GS-related studies in soybean still remain limited. Therefore, the

objectives of this study were to investigate the population structure within a soybean panel, to

perform GWAS and identify SNP markers regulating maturity, plant height, seed weight, and

yield, and to assess the accuracy of GS for these traits.

Materials and methods

Plant materials and phenotyping

A total of 250 soybean accessions from Dr. Lijuan Qiu’s lab (Chinese Academy Of Agricultural

Sciences) were used in the study (S1 Table). Soybean accessions were planted in Shijiazhuang

(114˚830E, 38˚030N) in Hebei province, China with a randomized complete block design

(RCBD) of three replications during the growing seasons of 2008, 2009, and 2010. A total of 90

soybean seeds were sown in three rows of 3 meters of length spaced at 0.5 meters. Phenotyping

data were collected for maturity, plant height, seed weight, and yield.

ANOVA for each trait was conducted using PROC MIXED of SAS1 v. 9.4. The statistical

model for the analysis was the following

Yij ¼ mþ Giþ Tj þ εij with i ¼ 1; 2; . . . ; 250 and j ¼ 1; 2; 3

Yij was the response from the ith genotype in the jth year, μ was the overall mean, Gi repre-

sented the effect of the ith genotype (fixed effect), Tj was the effect of the jth year (fixed effect),

and εij was the experimental error associated with the ijth observation.

Genotyping

DNA was extracted from young soybean trifoliate using the CTAB (hexadecyltrimethyl ammo-

nium bromide) method [23]. DNA library was prepared using the restriction enzyme ApeKI

following the GBS protocol described by Elshire et al. [24] and DNA sequencing was per-

formed using GBS method [24, 25]. The 90-bp, pair-end sequencing was performed on each

soybean genotype using the GBS protocol by an Illumina HiSeq at the Institute of Genetics

and Developmental Biology, Chinese Academy of Sciences, Beijing, China. The GBS dataset

contained 3.26 M short-reads or 283.74 Mbp of sequence for each accession. The short reads

were aligned to the soybean whole genome sequence (Wm82.a1.v1) (https://www.soybase.org/

GlycineBlastPages/archives/Gma1.01.20140304.fasta.zip; https://www.soybase.org/

GlycineBlastPages/index.php?db_select=Gma1.01) using SOAPaligner/soap2 (http://soap.

genomics.org.cn/) and SOAPsnp v. 1.05 was used for SNP calling [26, 27]. Approximately half

a million SNPs were identified by SNP calling. The minor allele frequency (MAF) threshold

less than 5%, and SNPs with heterozygosity more than 10% and or over 15% missing data were

eliminated. A total of 10,259 high-quality SNPs were retained and used for further analysis.

Population structure analysis

Population structure was inferred using STRUCTURE 2.3.4 through a Bayesian resampling

technique [28]. Out of the 10,259 filtered SNPs, a total of 5,129 SNPs were randomly chosen

for inferring population structure (K). This approach is suitable when the complete set of

SNPs is computationally heavy as described by Huang et al. [29]. The analysis was run using

an admixture model along with a correlated allele frequency model, which was independent of

each run [30].
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A total of ten runs were performed for each estimated K. The Markov chain Monte Carlo

(MCMC) length of the burn-in period was 30,000 and the number of MCMC iterations was

50,000. The identification of optimal K was performed using STRUCTURE Harvester (http://

taylor0.biology.ucla.edu/structureHarvester/) and based on the equation established by

Evanno et al. [31]. The inferred population structure K was used to generate the structure Q-

matrix consisting of K vectors. Each soybean accession was assigned to a Q cluster using a cut-

off probability of 0.55. Any soybean accessions that could not be grouped in any of the clusters

would be considered as admixture. Population structure was visualized using STRUCTURE

PLOT with the option “sort by Q” [32].

Genome-wide association study (GWAS)

GWAS was conducted using a Bayesian Information and Linkage Disequilibrium Iteratively

Nested Keyway (BLINK) and run in R using the package ‘BLINK’ [29]. Significant SNPs were

those with an LOD value greater than 3 [33].

BLINK was an improved model version of Fixed and Random Model Circulating Probabil-

ity Unification (FarmCPU) and is statistically powerful and efficient in identifying significant

SNPs associated with a trait of importance [29]. FarmCPU involved a fixed-effect model

(FEM) and a random-effect model (REM), which were run iteratively. FarmCPU assumed an

even distribution of markers within the genome. However, this assumption was relaxed in

BLINK where a Linkage Disequilibrium information was used instead [29]. The REM part was

replaced by a second FEM in BLINK. The two FEM models used in BLINK were the following.

FEM ð1Þ : yi ¼ Mi1b1 þMi2b2 þ . . .þMikbk þMijdj þ ei

FEM ð2Þ : yi ¼ Mi1b1 þMi2b2 þ . . .þMijbj þ ei

where yi was the phenotypic data from the ith sample; Mi1, Mi2b2, . . ., Mik were the genotypes

of k pseudo QTNs, which were initially empty and with effects b1, b2, . . ., bk, respectively; Mij

represented the jth genetic marker of the ith sample; and ei was the residual having a distribu-

tion with mean zero and a variance σ2
e.

Candidate gene discovery

A 10 kb-genomic region spanning a significant SNP was used for candidate gene search using

the G. max Williams 82.a2 reference in Soybase (https://www.soybase.org/) [34]. The SNPs

associated with the combined data over three years for maturity date, plant height, seed weight,

and yield were used for candidate gene discovery. Functional annotations (base on which

model) of each postulated candidate gene were also investigated using Soybase (https://www.

soybase.org/).

Genomic-selection and cross-validation

GS was conducted using a ridge regression best linear unbiased predictor (rrBLUP) model,

which is effective in estimating the effects of loci controlling complex traits [35]. The rrBLUP

model was y = WGβ + ε [17]. In this equation, y represented the vector phenotypic data; β
denoted the marker effect with β~N(0,Iσ2

β); W represented the incidence matrix relating the

genotype to the vector phenotype; G was the matrix displaying the genetic marker; and ε
referred to the random error. The solution for rrBLUP was β_hat = (ZTZ + Iλ)-1ZTy with

Z = WG. The ridge parameter was defined as λ = σ2
e/σ2

β, where σ2
e was the residual variance
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and σ2
β the marker effect variance. rrBLUP was carried out in R using the ‘rrBLUP’ package

[36].

Cross-validation was conducted using 4 different approaches. The first approach consisted

of sampling accessions from and cross-validating within the 250 soybean genotypes (whole

panel), the genotypes belonging to subpopulation 1 (Q1) from structure analysis (Q1 panel),

and the genotypes from subpopulation 2 (Q2) from structure analysis (Q2 panel), respectively.

For each defined subgroup, the training and validation datasets were from the same year. In

the second approach the training dataset from a year was used to predict the genotype’s perfor-

mance in the succeeding year(s). In the third strategy, samples from the Q1 panel was used to

predict the Q2 samples’ performance within the same year and vice versa. In the fourth strat-

egy, training the GS model with a dataset from the Q1 panel from a particular year to predict

the traits of the Q2 panel from another year and vice versa. Due to the relatively small sample

size of each panel, 5-fold cross-validation was carried out for GS involving the whole panel and

the Q1 panel, and 3-fold cross-validation was performed for GS using the Q2 panel. Doing so

allowed for an accurate estimation of the Person’s correlation coefficient (GS accuracy) that

was established based on a sample size (>30) that could be statistically valid under such

constraint.

ANOVA was conducted to assess the interaction effect of year and population type (whole

panel, Q1 panel, and Q2 panel) on GS accuracy using PROC MIXED of SAS1 v. 9.4. The sta-

tistical model for this analysis was:

Yijk ¼ mþ Ti þ Pj þþYPij þ εijk with i ¼ 1; 2; 3; j ¼ 1; 2; 3; and k ¼ 1; 2; 3; . . . ; 100

Yijk was the GS accuracy from the ith year using the jth population type at the kth replication,

Ti represented the effect of the ith year (fixed effect), Pj was the effect of the jth population type

(fixed effect), and εijk was the experimental error associated with the ijkth observation.

Results

Phenotypic variation and correlation within traits

Data on yield and related trait were collected over 3 years on a total of 250 soybean genotypes.

The broad-sense heritability (H2) of maturity, plant height, seed weight and yield was 0.74,

0.89, 0.94 and 0.66, respectively. Maturity ranged from 77.3 to 139.0 days, and plant height

ranged from 18.5 cm to 162.9 cm over 3 years (S2 Table) (S1 Fig). Seed weight ranged from

3.13 (g/100 seeds) to 33.82 (g/100 seeds), and values for yield ranged from 649.4 to 4286.6 kg/

hm2 over 3 years (S2 Table) (S2 Fig). Significant differences were identified between years and

genotypes for all traits (S3 Table).

To assess consistency across years, Pearson’s correlation coefficients were also calculated

for each trait across years. The correlation between years was high for maturity, seed weight,

and plant height, and relatively moderate for yield. Among them, the high correlation was

found for maturity (r = 0.763) between 2008 and 2010, seed weight (r = 0.876) between 2008

and 2010; Yield (r = 0.604) between 2008 and 2009, plant height (r = 0.848) between 2009 and

2010 (S4 Table).

Pearson’s correlation coefficients (r) between maturity, plant height, seed weight, and yield

were computed. A significant positive correlation was found between plant height and matu-

rity (r = 0.439), and a negative correlation between plant height and Seed_weight (r = -0.257).

There were almost no correlation between maturity and seed weight, maturity and yield, seed

weight and yield, plant height and yield (S4 Table).
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Population structure and genetic diversity analysis

SNP filtering resulted in 10,259 high-quality SNPs that were used for GWAS and GS. SNP

number per chromosome varied from 292 (chromosome 12) to 785 (chromosome 18), with an

average SNP number of 513 per chromosome (S5 Table). The average minor allele frequency

(%) per chromosome ranged between 16.24% and 24.73%, with an average of 21.02% (S4

Table). The average percentage of heterozygous SNPs per chromosome varied from 0.42% to

0.74%, with an average of 0.59%. There was no significant discrepancy in the average percent-

age of missing SNPs per chromosome (S5 Table).

STRUCTURE Harvester indicated a delta K peak at K equal to 2 (S3A Fig), indicating that

the panel involving the 250 soybean genotypes consisted of two subpopulations. The bar plot

from STRUCTURE 2.3.4 showed the two-well differentiated subpopulations with an extremely

low level of admixture (S3B Fig). The mean inbreeding coefficients of the subpopulation rela-

tive to the total population were 0.565 and 0.043 for the subpopulation 1 and subpopulation 2,

respectively (S6 Table). The average distances between individuals in the same cluster were

0.332 (subpopulation 1) and 0.154 (subpopulation 2) (S6 Table). The overall proportions of

membership of a genotype within each cluster were 0.567 and 0.433 for subpopulation 1 and

subpopulation 2, respectively (S6 Table). The average allele frequency divergence among popu-

lations was 0.095 (S6 Table).

Genetic diversity analysis was also carried out along with population structure as shown in

S3C Fig. A good correlation was found between the genetic diversity analysis and the structure

analysis. The admixture genotypes were randomly scattered in the phylogenetic tree.

Genome-wide association study (GWAS)

A total of 20 SNPs associated with maturity were identified (Table 2). These SNPs were distrib-

uted across the soybean genome (Fig 1) with chromosome 20 having the most significant

SNPs. The top five SNPs with the highest LOD values were located on chromosomes 10, 13, 9,

8, and 1 (Table 2). The t-test of the difference between genotypic class from the aforemen-

tioned SNPs was significant except for Chr13_33362588 (S4A–S4E Fig) (Table 2). A total of 31

SNPs associated with plant height were identified (Table 1). The top five SNPs were found on

chromosomes 5, 19, and 20 (S6 Fig) (Table 1). The t-test of the data from the two genotypic

classes defined by the aforementioned SNPs was significant (S4F–S4J Fig).

A total of 37 SNPs were found to be associated with seed weight (Table 2). The top five sig-

nificant SNPs were located on chromosomes 4, 9, 1, 17, and 8, respectively (S7 Fig) (Table 2).

T-test analysis was significant between genotypic class for these SNPs (S4K–S4O Fig). Of the

37 SNPs associated with the average seed weight over three years, 10 were located on chromo-

some 10 (Table 2). A total of 23 significant SNPs were identified for yield (Table 1) (S5D Fig).

The five most significant SNPs were located on chromosomes 9, 19, 8, 10, and 7, respectively

(Table 2). The variation between each genotypic class defined by the aforementioned SNPs

was visualized in S5P–S5T Fig. Of the 23 significant SNPs, 6 were located on chromosome 10

(Table 2). Of the 6 significant SNPs found on chromosome 10, 3 were mapped within a 3-Mb

genomic region (Table 2), indicating a strong likelihood of QTL(s) affecting soybean yield in

this region.

Candidate genes selection

Candidate genes found within a 10-kb genomic region harboring a significant SNP associated

for maturity, plant height, seed weight, and yield were investigated. For maturity, 20 significant

SNPs were identified (Table 1). A total of 14 were mapped to genomic regions harboring anno-

tated genes in Soybase (www.soybase.org). The annotated genes had a wide variety of
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functions. Leucine-rich repeat (LRR) domain was prevalent as shown in Table 1. Of the 31 sig-

nificant SNPs associated with plant height, 25 were found in the vicinity of annotated genes

(Table 1). The candidate genes found near the most significant SNPs were Glyma.19g200800,

Glyma.05g048800, Glyma.19g195500, Glyma.19g187900, and Glyma.06g134200, encoding

transcription factor NF-Y alpha-related, cleavage and polyadenylation specificity factor, ubi-

quitin, PHD-finger, and serine/threonine-protein kinase, respectively (Table 1).

A total of 24 candidate genes were found for seed weight. Of which, 19 had functional anno-

tations and one has an uncharacterized function (Table 2). GWAS for seed weight revealed six

QTL(s) on chromosome 10; however, most of the SNPs found on the chromosome 10 were

not mapped in the vicinity of an annotated gene (Table 2). Functional annotations related to

the candidate genes had diverse functions. A total of 15 annotated genes were found near the

significant SNPs associated with yield, of which, 14 had functional annotations. Similar to

Fig 1. Manhattan plots and QQ-plots for maturity in 2008 (A), 2009 (B), 2010 (C), and the average data over 3 years (D).

https://doi.org/10.1371/journal.pone.0255761.g001
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what was found for seed weight, only one candidate gene was identified on chromosome 10

which harbored 10 SNPs associated with yield (Table 2). Most of the candidate genes encoded

transpiration factors and transferases.

Genomic selection (GS) in yield and related traits

Prediction accuracy for yield and yield-related traits were calculated by using a 5-fold cross-

validation within the 250-soybean accession panel (Fig 2) (S7 Table). The between-year varia-

tion was relevant for yield where the highest prediction accuracy was 0.72 in 2008 and the low-

est one was 0.50 in 2010 (Fig 2) (S7 Table). The prediction accuracy was also calculated using

the two subpopulations derived from structure analysis. Cross-validation using all 250 soybean

accessions and samples from the Q1 group provided a similar trend as shown in Fig 2, Com-

pared to the whole panel, prediction accuracy for maturity was reduced in Q1 panel but

increased in Q2 panel (Fig 2). On average, the prediction accuracy was the highest for seed

weight (0.84) and was the lowest for maturity (0.47) (S7 Table). Interestingly, prediction accu-

racy averaged 0.64 with a less variation between traits and across years when samples from Q2

were used to estimate prediction accuracy of seed weight (Fig 2). In addition, accuracy for pre-

dicting maturity was the best using Q2 samples (Fig 2) (S7 Table). The ANOVA results indi-

cated a statistically significant interaction effect between the year and population type on the

prediction accuracy of GS for maturity, plant height, seed weight, and yield (S8 Table). The

results indicated that year and population structure were important factors to take into

account when evaluating the prediction accuracy in the GS approach.

Table 1. Significant SNPs associated with the average maturity and plant height over 3 years, chromosome and physical position of the significant SNPs, LOD

(-log10(p-value)) values, minor allele frequency at the SNP locus, and gene ID and functional annotation.

Traits SNP Chromosome Position LOD

(-log10(p-

value))

MAF GeneID Functional_annotation

Maturity Chr01_10725106 1 10725106 6.22 14.04 NA NA

Chr03_10846056 3 10846056 3.06 7.48 NA NA

Chr04_46043483 4 46043483 3.31 6.75 NA NA

Chr04_46043518 4 46043518 3.31 6.75 NA NA

Chr06_45233584 6 45233584 3.50 13.03 Glyma.06g265000 LEUCINE-RICH REPEAT-CONTAINING PROTEIN

Chr08_3672982 8 3672982 6.32 22.53 Glyma.08g046800 TWO-COMPONENT SENSOR HISTIDINE KINASE

Chr08_14052904 8 14052904 5.12 16.54 Glyma.08g176000 REPLICATION PROTEIN A-RELATED

Chr09_30962080 9 30962080 6.53 16.60 NA NA

Chr10_45903960 10 45903960 10.47 38.31 Glyma.10g228900 LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN

KINASE

Chr13_33362588 13 33362588 6.83 6.61 Glyma.13g220200 F-BOX/LEUCINE RICH REPEAT PROTEIN

Chr15_5091735 15 5091735 3.50 6.02 Glyma.15g066800 MYB-LIKE DNA-BINDING PROTEIN MYB

Chr15_51032135 15 51032135 3.15 22.89 Glyma.15g272900 POLY-A BINDING PROTEIN 2

Chr16_5911007 16 5911007 3.02 7.69 Glyma.16g060400 26S PROTEASOME REGULATORY COMPLEX, SUBUNIT

PSMD10

Chr16_31347650 16 31347650 3.21 40.40 Glyma.16g152800 PPR REPEAT

Chr17_7918542 17 7918542 6.07 13.01 Glyma.17g100600 MALATE AND LACTATE DEHYDROGENASE

Chr18_14705 18 14705 3.84 5.10 Glyma.18g000100 RNA POLYMERASE II TRANSCRIPTION MEDIATORS

Chr19_48601588 19 48601588 3.17 20.24 Glyma.19g236900 MYOGENIC FACTOR

Chr20_41339091 20 41339091 3.20 25.00 Glyma.20g176100 O-METHYLTRANSFERASE

Chr20_41339093 20 41339093 3.20 25.00 Glyma.20g176100 O-METHYLTRANSFERASE

Chr20_43647960 20 43647960 5.83 8.27 NA NA

(Continued)
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Prediction accuracy using datasets from different years had similar trends to within-year

cross validation (Figs 2 and 3). Overall, there is a lack of consistency between prediction accu-

racy and the training year across traits and population types. This could be explained by the

significant interaction effect of population structure and years on prediction accuracy of plant

height, seed weight, and yield (S9 Table). Yield in 2010 was better predicted using dataset from

2009 than using yield data obtained in 2008 when all samples within the panel and individuals

from Q2 were used for cross-validation, respectively (Fig 3) (S10 Table). However, plant height

in 2010 was better predicted by the dataset recorded in 2008 for all sample- and Q1 sample-

cross validation. Different results were found for plant height when cross-validation was

Table 1. (Continued)

Traits SNP Chromosome Position LOD

(-log10(p-

value))

MAF GeneID Functional_annotation

Plant_height Chr02_35754374 2 35754374 3.13 21.69 NA NA

Chr02_44442246 2 44442246 3.41 43.48 Glyma.02g257800 SYNTAXIN BINDING PROTEIN 5

Chr05_4341777 5 4341777 7.97 18.11 Glyma.05g048800 CLEAVAGE AND POLYADENYLATION SPECIFICITY

FACTOR

Chr05_27107594 5 27107594 4.99 6.53 Glyma.05g102100 ARABINOGALACTAN PROTEIN 18

Chr05_33965825 5 33965825 4.24 15.26 Glyma.05g145900 PROTEIN OF UNKNOWN FUNCTION

Chr06_11029800 6 11029800 5.42 46.43 Glyma.06g134200 SERINE/THREONINE-PROTEIN KINASE

Chr07_7159615 7 7159615 3.05 6.80 Glyma.07g078600 AP2 DOMAIN

Chr08_8813970 8 8813970 3.78 6.67 Glyma.08g115100 ALPHA TUBULIN

Chr08_9862761 8 9862761 3.12 21.19 Glyma.08g127900 KELCH REPEAT DOMAIN

Chr08_17577833 8 17577833 3.58 10.92 NA NA

Chr10_5011226 10 5011226 3.06 27.50 Glyma.10g055000 ABC TRANSPORTER

Chr10_6919622 10 6919622 4.96 9.27 NA NA

Chr11_5824301 11 5824301 3.02 32.16 Glyma.11g077500 BETA CATENIN-RELATED ARMADILLO

REPEAT-CONTAINING

Chr11_7484586 11 7484586 3.58 23.62 Glyma.11g098500 POLLEN PROTEINS OLE E I LIKE

Chr11_33650868 11 33650868 3.31 12.55 Glyma.11g242300 ATP-DEPENDENT RNA HELICASE

Chr11_34656506 11 34656506 3.30 10.12 Glyma.11g256800 RNA POLYMERASE II TRANSCRIPTION MEDIATORS

Chr13_23110902 13 23110902 3.84 8.05 Glyma.13g118200 SWI/SNF-RELATED MATRIX-ASSOCIATED

ACTIN-DEPENDENT REGULATOR OF CHROMATIN

SUBFAMILY-RELATED

Chr13_42643620 13 42643620 3.01 47.23 Glyma.13g331800 EXOCYST COMPLEX COMPONENT 7

Chr16_2501308 16 2501308 3.15 5.98 Glyma.16g025800 TOPOISOMERASE-RELATED PROTEIN

Chr18_280602 18 280602 3.33 28.74 Glyma.18g003300 PENTATRICOPEPTIDE REPEAT (PPR) SUPERFAMILY

PROTEIN

Chr19_44603046 19 44603046 6.21 10.36 Glyma.19g187900 PHD-FINGER

Chr19_45270675 19 45270675 6.60 14.06 Glyma.19g195500 UBIQUITIN

Chr19_45322411 19 45322411 3.77 25.61 Glyma.19g196000 TETRATRICOPEPTIDE REPEAT PROTEIN, TPR

Chr19_45326559 19 45326559 4.06 25.59 Glyma.19g196000 TETRATRICOPEPTIDE REPEAT PROTEIN, TPR

Chr19_45326600 19 45326600 4.38 25.50 Glyma.19g196000 TETRATRICOPEPTIDE REPEAT PROTEIN, TPR

Chr19_45359939 19 45359939 4.04 20.24 NA NA

Chr19_45769759 19 45769759 11.78 23.53 Glyma.19g200800 TRANSCRIPTION FACTOR NF-Y ALPHA-RELATED

Chr20_423349 20 423349 3.61 13.79 NA NA

Chr20_442209 20 442209 3.25 12.35 Glyma.20g004400 ZINC FINGER DHHC DOMAIN CONTAINING PROTEIN

Chr20_34864638 20 34864638 3.76 21.37 Glyma.20g106200 AMINO ACID TRANSPORTER

Chr20_43000412 20 43000412 6.76 43.83 NA NA

https://doi.org/10.1371/journal.pone.0255761.t001
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Table 2. Significant SNPs associated with the average seed-weight and yield over 3 years, chromosome and physical position of the significant SNPs, LOD (-log10

(p-value)) values, minor allele frequency at the SNP locus, and gene ID and functional annotation.

Traits SNP Chromosome Position LOD(-log10(p-

value))

MAF GeneID Functional_annotation

Seed

weight

Chr01_7408096 1 7408096 4.77 13.36 NA NA

Chr01_42908212 1 42908212 10.47 5.14 LOC100801248 PROTEIN TIC 56, CHLOROPLASTIC-LIKE

Chr02_695027 2 695027 3.63 7.53 Glyma.02g006500 CHAPERONE-ACTIVITY OF BC1 COMPLEX (CABC1)-

RELATED

Chr02_19239630 2 19239630 6.60 5.98 Glyma.02g161100 CAMP-RESPONSE ELEMENT BINDING

PROTEIN-RELATED

Chr04_36949349 4 36949349 22.58 16.47 NA NA

Chr05_34421673 5 34421673 3.65 20.00 Glyma.05g150300 TIC22-LIKE FAMILY

Chr07_33588669 7 33588669 7.32 9.58 NA NA

Chr08_5242876 8 5242876 4.08 35.63 Glyma.08g068300 DNAJ DOMAIN

Chr08_11477277 8 11477277 3.47 43.90 Glyma.08g149600 FALZ-RELATED BROMODOMAIN-CONTAINING

PROTEINS

Chr08_11495775 8 11495775 3.81 42.92 Glyma.08g149700 UNCHARACTERIZED CONSERVED PROTEIN

Chr08_47483065 8 47483065 7.85 25.83 Glyma.08g363300 NA

Chr09_42124679 9 42124679 12.97 35.90 Glyma.09g196700 RING FINGER DOMAIN-CONTAINING

Chr09_42432921 9 42432921 6.71 42.29 Glyma.09g199800 UNCHARACTERIZED

Chr10_7815951 10 7815951 3.14 10.59 Glyma.10g075300 TETRATRICOPEPTIDE REPEAT PROTEIN, TPR

Chr10_12259917 10 12259917 3.52 7.69 Glyma.10g091000 ALPHA-N-ACETYLGLUCOSAMINIDASE

Chr10_16854456 10 16854456 3.01 11.51 NA NA

Chr10_18370776 10 18370776 3.40 13.65 LOC102668189 SERINE/THREONINE-PROTEIN PHOSPHATASE 7 LONG

FORM

Chr10_19170955 10 19170955 3.03 12.55 NA NA

Chr10_19620114 10 19620114 3.32 11.93 NA NA

Chr10_20805615 10 20805615 3.32 12.50 NA NA

Chr10_24454215 10 24454215 3.10 15.09 NA NA

Chr10_24773660 10 24773660 3.57 14.29 NA NA

Chr10_29894008 10 29894008 7.84 24.05 NA NA

Chr11_17752345 11 17752345 6.60 11.81 LOC100787408 NA

Chr12_611590 12 611590 3.04 9.47 Glyma.12g008200 PUTATIVE TRANSMEMBRANE PROTEIN CMP44E

Chr13_21793355 13 21793355 4.40 10.20 Glyma.13g102900 GDSL/SGNH-LIKE ACYL-ESTERASE

Chr13_26873585 13 26873585 3.03 31.10 NA NA

Chr14_48362592 14 48362592 6.31 9.84 NA NA

Chr15_27399758 15 27399758 4.58 14.47 LOC106796140 NA

Chr15_33423211 15 33423211 3.32 25.82 Glyma.15g212800 DEDICATOR OF CYTOKINESIS (DOCK)

Chr17_7302504 17 7302504 5.38 7.05 LOC100795267 NA

Chr17_15088391 17 15088391 9.68 23.08 NA NA

Chr18_51853903 18 51853903 3.31 8.10 Glyma.18g229500 PPR REPEAT

Chr18_51854710 18 51854710 3.78 7.72 Glyma.18g229500 PPR REPEAT

Chr18_53835731 18 53835731 4.73 14.96 Glyma.18g251800 PUTATIVE SERINE/THREONINE PROTEIN KINASE

Chr20_41923741 20 41923741 6.68 12.35 Glyma.20g181100 LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN

KINASE

Chr20_46703305 20 46703305 3.42 6.40 Glyma.20g234500 MYB-LIKE DNA-BINDING DOMAIN

(Continued)
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carried out using individuals from the Q2 group (Fig 3). Genomic prediction appeared to be

year-independent but subpopulation-dependent for maturity (Fig 3) (S10 Table). ANOVA

results showed that there was no significant interaction between population structure and year

in predicting maturity (S9 Table). In addition, year effect on prediction accuracy of maturity

was not significant (S9 Table). However, the prediction accuracy for maturity was heavily

influenced by population structure (S9 Table). Maturity could be better predicted than the

other traits when samples from the group Q2 were used for cross-validation (Fig 3)

(S10 Table).

Prediction accuracy was also calculated using samples from Q1 as the training set and sam-

ples from Q2 as the testing set and vice versa. For cross-validation using data from the same

year (S11 Table), a discrepancy in prediction accuracy was found when samples from one sub-

population were used to predict the ones from the other group (S8 Fig). Overall, prediction

accuracy was slightly higher for most traits when the GS model was trained using samples

from subpopulation 1 (S8 Fig). This difference was substantial for maturity. The average pre-

diction accuracy for maturity was 0.49 and 0.20 for Q1-based training set and Q2-based popu-

lation, respectively (S11 Table). Unlike the two previous approaches which cross-validation

was carried out using within-subgroup samples, the variation of prediction accuracy between

years was more pronounced when the prediction was done across subpopulations (S8 Fig).

Also, the interaction effect of population structure and year on prediction accuracy was

Table 2. (Continued)

Traits SNP Chromosome Position LOD(-log10(p-

value))

MAF GeneID Functional_annotation

Yield Chr01_28292204 1 28292204 5.32 7.26 Glyma.01g093300 RNA RECOGNITION MOTIF

Chr02_12086588 2 12086588 3.96 40.00 Glyma.02g121600 MADS BOX PROTEIN

Chr03_42920496 3 42920496 3.12 44.44 Glyma.03g227300 PHYTOCHROME REGION

Chr07_7610107 7 7610107 6.69 49.17 Glyma.07g082800 HOMO-OLIGOMERIC FLAVIN CONTAINING CYS

DECARBOXYLASE FAMILY

Chr07_38409249 7 38409249 3.58 7.76 Glyma.07g212500 LONGEVITY ASSURANCE FACTOR 1 (LAG1)

Chr07_38409765 7 38409765 3.52 9.96 Glyma.07g212500 LONGEVITY ASSURANCE FACTOR 1 (LAG1)

Chr08_47747059 8 47747059 8.43 41.43 Glyma.08g366900 ZINC FINGER PROTEIN WITH KRAB AND SCAN

DOMAINS

Chr09_3204462 9 3204462 8.92 25.98 Glyma.09g038300 CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR

(CAMTA)

Chr10_2089552 10 2089552 7.02 24.31 Glyma.10g023900 UNCHARACTERIZED CONSERVED PROTEIN

Chr10_19477000 10 19477000 3.29 31.62 NA NA

Chr10_24773517 10 24773517 3.42 29.51 NA NA

Chr10_26343503 10 26343503 3.63 22.55 NA NA

Chr10_27017034 10 27017034 4.33 24.26 NA NA

Chr10_29778879 10 29778879 5.40 23.23 NA NA

Chr13_29543721 13 29543721 4.87 12.30 NA NA

Chr16_30502283 16 30502283 5.10 45.90 Glyma.16g144600 GTP-BINDING PROTEIN ALPHA SUBUNIT

Chr17_32451159 17 32451159 4.76 40.16 Glyma.17g203300 O-FUCOSYLTRANSFERASE FAMILY PROTEIN

Chr18_1543178 18 1543178 5.84 5.69 Glyma.18g021100 GAMMA-GLUTAMYLTRANSFERASE

Chr18_2896796 18 2896796 4.69 32.11 Glyma.18g037000 RING ZINC FINGER PROTEIN

Chr18_9093423 18 9093423 6.24 24.57 NA NA

Chr19_9586720 19 9586720 8.52 27.97 NA NA

Chr19_44770496 19 44770496 3.72 28.80 Glyma.19g190000 TRANSCRIPTION FACTOR GT-2 AND RELATED

PROTEINS

Chr19_48289439 19 48289439 3.67 30.99 Glyma.19g232800 RING FINGER DOMAIN-CONTAINING

https://doi.org/10.1371/journal.pone.0255761.t002
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significant for maturity, plant height, seed weight and yield (S8 Table). When the training set

was taken from Q1 in order to predict yield of Q2, prediction accuracy was 0.72 and 0.41 for

2009 and 2008, respectively (S11 Table). A similar trend was found for yield when the training

samples were derived from Q2 to test on Q1 (S8 Fig).

In addition to performing a within-year prediction accuracy using two subpopulations,

trait prediction for other years of a genetically-distant population subset was also conducted.

Overall, results indicated a similar trend to what was found using a within-year prediction

approach (S9 Fig). The interaction effect of population structure and year on prediction accu-

racy was significant for maturity, plant height, seed weight, and yield (S9 Table). Prediction

accuracy for most traits was slightly higher when the samples from Q1 were used to train the

prediction model (S12 Table). Training the model on Q1 resulted in prediction accuracy of

yield being 0.62, 0.40, 0.36, and 0.41 when the training/testing year was 2008/2009, 2008/2010,

2009/2010, average 2008_2009/2010, respectively (S12 Table). When the prediction model was

trained using samples from Q2, the prediction accuracy for yield was 0.28, 0.13, 0.31, and 0.21

corresponding to the training/testing years 2008/2009, 2008/2010, 2009/2010, average

2008_2009/2010, respectively (S12 Table). Prediction accuracies were increased on plant

height, maturity date, and seed weight each year helped increase GS when the model was

Fig 2. Genomic selection accuracy for yield, maturity, plant height, and seed weight using training/testing sets from all 250 soybean accessions (all

samples), samples derived from Q1, and samples from the Q2 subpopulation. Cross-validation was conducted using the data from the same year.

https://doi.org/10.1371/journal.pone.0255761.g002

PLOS ONE Genome-wide association study and genomic selection for yield and related traits in soybean

PLOS ONE | https://doi.org/10.1371/journal.pone.0255761 August 13, 2021 12 / 21

https://doi.org/10.1371/journal.pone.0255761.g002
https://doi.org/10.1371/journal.pone.0255761


trained under Q2. The improvement was achieved by averaging the training set data from

2008 and 2009 to predict the testing set in 2010. Prediction accuracy was 0.47, 0.07, and 0.60

for plant height, maturity date, and seed weight, respectively, using the 2008 data from the Q2

samples to predict the 2010 data from the Q1 samples (S9 Fig) (S12 Table). By taking the com-

bined data from 2008 and 2009 to establish the training set, plant height, maturity date, and

seed weight of the Q2 samples were predicted with an accuracy of 0.52, 0.09, and 0.68, respec-

tively (S12 Table). These results indicated that prediction accuracy was impacted by multiple

factors such as population structure and the variable year from which the training set was

established.

Discussion

GWAS was conducted using a BLINK model. BLINK is one the latest and most improved sta-

tistical models to conduct GWAS [29]. Spurious associations could be reduced by incorporat-

ing population structure and Kinship effects into the GWAS model [37]. This has been

Fig 3. Genomic selection accuracy for yield, maturity, plant height, and seed weight using training/testing sets from all 250 soybean accessions (all

samples), samples derived from Q1, and samples from the Q2 subpopulation. Cross-validation was conducted in a way that the data from a year was used to

predict that of from the succeeding year(s).

https://doi.org/10.1371/journal.pone.0255761.g003
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established into the BLINK algorithm [29]. Therefore, we did not run the MLM (Q + K) of

Tassel 5 for GWAS [38] since previous investigations had successfully demonstrated that

BLINK had more statistical power in identifying true associations and reducing false positives

for a large number of traits [29]. The only purpose of running population structure (Q) in this

study was to assess GS accuracy between two unrelated subpopulations, which will be further

discussed in this report.

A total of 20, 37, 31, and 23 SNPs were found to be significantly associated with maturity,

seed weight, plant height, and yield, respectively, using the combined data obtained over 3 years

(Tables 1 and 2). Diers et al. [39] also reported a similar range of SNP number associated with

these traits using a nested association mapping (NAM) soybean population. A total of 19, 29,

15, and 23 SNPs were reported to be associated with maturity, seed weight, plant height, and

yield, respectively [39]. Assefa et al. [40] found a total of 14, 10, and 9 SNPs associated with seed

weight, plant height, and yield, respectively, based upon a GWAS study involving a total of 419

soybean accessions. After SNP validation is performed, the information from this report could

be used in trait introgression efforts in soybean breeding programs. This has been successfully

demonstrated by Hegstad et al. [41] who introgressed large-effect QTL regions from commer-

cial soybean cultivars with high yield into the Corteva Agriscience soybean accessions.

Previous investigations reported a total of more than 60 loci controlling maturity in Soybase

(https://www.soybase.org/). Chromosome 16 has been shown to harbor the most significant

loci affecting soybean maturity. Of the 20 SNPs found to be associated with the average matu-

rity over 3 years in this study, one was mapped at 31 Mb on chromosome 16. Diers et al. [39]

found a total of 19 regions for maturity on chromosome 16. However, Wang et al. [42]

reported a significant discrepancy in SNPs associated with maturity across multiple environ-

ments, which was also consistent with that of reported in this study where different SNPs were

reported in different years with different environmental conditions. A cluster of significant

SNPs were identified in a 232-kb region of chromosome 20. This region spanned a significant

SNP associated with maturity that was reported by Zatybekov et al. [43]. A high-LOD SNP

(LOD>10), Chr10_45903960, associated with maturity was also found on chromosome 10. A

total of 10 loci on chromosome 10 were reported to be associated with maturity in Soybase

(https://www.soybase.org/). One of those loci harbored the SNP Chr10_45903960. Two of the

SNPs associated with maturity, Chr10_45903960 and Chr20_41339091, were located into the

E2 and E4 loci that have been reported to control maturity in soybean [44]. For the plant

height-related SNPs, of 31 SNPs found to be associated with the average height over 3 years in

this study, a new plant height locus was mapped to chromosome 20 (Chr20_43000412,

LOD = 6.76, MAF = 43.83%). Previous investigations showed discrepancy in terms of SNP

location. Zatybekov et al. [43] reported two SNPs significantly associated with plant height on

chromosome 9 and 20, which were mapped at 42 Mb and 8 Mb, respectively. Our results did

not indicate any plant-height associated SNPs on chromosome 9, whereas the one mapped on

chromosome 20 is about 7.5 Mb away from that of reported by Zatybekov et al. Of the 68 loci

associated with plant height in Soybase (https://www.soybase.org/), 19 loci were found on

chromosome 19. The plant height-associated SNP with the highest LOD value found in this

study was mapped on chromosome 19. We found that all significant SNPs associated with

plant height and mapped on chromosome 19 overlapped with the Dt1 locus, which has been

well-described for controlling plant height in soybean [7]. These findings suggest that the pres-

ent investigation contributes towards enriching SNP markers associated with plant height,

which is essential in efficiently establishing a breeding pipeline for agronomic trait improve-

ment in soybean.

Zhang et al. [1] reported that seed weight was a complex trait controlled by a large number

of loci. This statement appeared to be sound when taking into account the number of SNPs
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associated with maturity reported in this study. To date, more than 100 QTLs affecting seed

weight have been reported (https://www.soybase.org/). A large number of these QTLs were

mapped on chromosomes 2, 4, 5, 7, 17, 18, and 20 [39, 43]. Our results revealed a SNP with an

LOD of 22.58 at 37 Mb on chromosome 4, indicating the likelihood of a strong QTL affecting

seed weight in this region. In addition, a large cluster of SNPs were found on chromosome 10.

Some of which overlapped with previously reported seed weight-related QTLs (https://www.

soybase.org/). For yield, previous reports showed that SNP markers associated with yield were

scattered across the soybean genome. To date, more than 170 loci have been associated with

yield in soybean (https://www.soybase.org/). Zatybekov et al. [43] mapped SNP markers asso-

ciated with soybean yield on chromosomes 14, 17, and 20. Diers et al. [39] reported 23 loci

affecting soybean yield on chromosome 16 alone. Two of the SNPs on chromosome 19

reported in this study were in the vicinity of a significant yield SNP marker identified by

Assefa et al. [40]. Despite the lack of overlapping SNPs between traits, overlapping significant

loci were identified to control two or more traits. A 7.2-Mb region of chromosome 2 and

defined by the SNP markers Chr02_12086588 and Chr02_19239630 were associated with

both seed weight and plant height. A 9-Mb region of chromosome 4 harboring the SNPs

Chr04_46043483, Chr04_46043518, and Chr04_36949349 was significantly associated with

both maturity date and seed weight. A genomic DNA sequence spanning a 450-Kb region of

chromosome 7 harbored the SNPs Chr07_33588669 and Chr07_7610107 and was associated

with seed weight and yield, respectively. In addition, a 270-Kb region of chromosome 8

defined by the significant SNP markers Chr08_47483065 and Chr08_47747059 were associ-

ated with both seed weight and yield. One of the most important regions reported in this inves-

tigation is defined by an 11.5-Mb region of chromosome 10 containing the significant SNPs

Chr10_18370776, Chr10_19170955, Chr10_19620114, Chr10_20805615, Chr10_24454215,

Chr10_24773660, Chr10_29894008, Chr10_19477000, Chr10_24773517, Chr10_26343503,

Chr10_27017034, and Chr10_29778879. These significant SNPs were associated with seed

weight and yield. A 4-Mb region of chromosome of chromosome 19 was found to be associ-

ated with maturity, plant height, and yield in soybean, which was in agreement with a study

investigated by Assefa et al. [40]. A 5.4-MB region of chromosome 20 harbored loci that were

associated with maturity, plant height, and seed weight. These findings were consistent with

previously reported studies [39, 43].

Our results suggested that maturity-associated candidate genes encoding Leucine-rich

repeat proteins were prevalent. Osakabe et al. [45] showed that LRR proteins acted as a key

regulator for maturity in plant. In addition, Jinn et al. [46] reported that these proteins were

also involved in floral organ abscission. These previous investigations supported that the LRR

domains found in this study could be good candidate genes for maturity in soybean and could

be further investigated towards validation. The findings indicated O-methyltransferase being a

candidate gene for maturity in soybean. Held et al. [47] found that O-methyltransferase-

related genes were highly expressed during cell maturation in maize. The candidate genes asso-

ciated with plant height consisted of transcription factors, kinases, and biomolecule transport-

ers. One of these transcription factors is NF-Y alpha-related. Zhao et al. [48] reported that this

transcription factor regulated plant growth, indicating that NF-Y alpha-related could be a

good candidate gene for plant height in soybean. The SNP markers associated with plant

height and mapped in the Dt1 locus on chromosome 19 were in the vicinity of a gene that

encodes for a tetratricopeptide repeat protein (TPR). However, the role of TPR domains in

affecting plant height has been poorly investigated. The candidate genes associated with seed

weight that were reported in this study had diverse functional annotations. A large number of

candidate genes playing significant roles in seed development were hormone-signaling [49].

However, no candidate genes involved in hormone signaling pathways were identified. A large
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number of candidate genes found for yield were transcription factors and transferases. These

results were consistent with that of reported by Diers et al. [39] who reported candidate tran-

scription factors that could affect yield in soybean. Candidate genes associated with maturity,

plant height, seed weight, and yield were reported in this study. Additional investigations

would be required to validate these candidate genes.

Prediction accuracy for maturity, plant height, seed weight, and yield was assessed. Howard

and Jarquin [50] reported that GS performed better than phenotypic selection in soybean

when dealing with complex trait. In this study, we found that the trend of prediction accuracies

were similar for all traits when all samples and Q1 samples, respectively, were used for cross

validation (Figs 2 and 3). Interestingly, prediction accuracy for plant height was lower than

yield when cross-validation was conducted using data from the same year from all samples

and Q1 samples, respectively. These results were different from that of reported by Ma et al.

[51] who also used a one-year data to estimate prediction accuracy for plant height and yield

in soybean. They reported a prediction accuracy of 0.86 and 0.47 for plant height and yield,

respectively. However, when cross-validation was conducted using data from different years

regardless of the subpopulation, prediction accuracy was higher for plant height than yield.

This could be explained by the fact that plant height has higher heritability than yield [51],

thus resulting in a higher genomic prediction accuracy. In addition, inconsistency in results

has been found in previous studies investigating prediction accuracy for yield in soybean. Jar-

quı́n et al. [21] suggested an accuracy of 0.64 for yield, whereas Stewart-Brown et al. [52] and

Duhnen et al. [20] reported an accuracy of 0.26 and 0.39, respectively. We have also

highlighted the effect of population structure on the prediction accuracy. The results indicated

that prediction accuracy for maturity was heavily affected by population structure. This could

be explained by the fact maturity can cause a structure within a population, thus using matu-

rity data from one subpopulation to predict the maturity data from another unrelated subpop-

ulation will decrease the prediction accuracy. We have also found that year can significantly

affect prediction accuracy, implying that updating the training model each year will be neces-

sary for efficiently establishing a GS pipeline within a breeding program for agronomic trait

improvement in soybean.

Conclusion

In this report, significant differences in plant height, maturity, seed weight, and yield were

identified among the genotypes. In addition, the year effect was also significant. Molecular

markers associated with the above traits were identified. GS accuracy in this study varies from

low to moderate and is affected by population structure and year. The SNP markers identified

in this study contributed towards enriching SNP markers associated with the above traits,

which were essential in efficiently establishing a marker-assisted selection (MAS) and GS pipe-

line for agronomic trait improvement in soybean.

Supporting information

S1 Fig. Distribution of maturity and plant height in 2008, 2009, and 2010, and the average

of the 3-year data.

(PPT)

S2 Fig. Distribution of seed weight and yield in 2008, 2009, and 2010, and the average of

the 3-year data.

(PPT)
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S3 Fig. Population structure and genetic diversity analysis. (A) Plot showing the delta K val-

ues on the y-axis and the corresponding K values on the x-axis. The plot was obtained from

STRUCTURE Harvester (Earl and VonHoldt, 2011; http://taylor0.biology.ucla.edu/

structureHarvester/). The delta K peak corresponds to K = 2. (B) Bar plot showing the popula-

tion structure using STRUCTURE 2.3.4 (Pritchard et al. 2000) where the red color corresponds

to cluster 1 and the green one to cluster 2. The y-axis of the bar plot indicates the proportion of

membership of a genotype to each cluster. (C) Phylogenetic tree involves a combined analysis

between population structure and genetic diversity. The solid red circles is for subpopulation 1

and the solid green circles is for subpopulation 2, solid blue circles is for admixture.

(PPT)

S4 Fig. Manhattan plots and QQ-plots for yield in 2008 (A), 2009 (B), 2010 (C), and the com-

bined data over 3 years (D).

(PPT)

S5 Fig. Boxplots showing the variation in plant maturity (A, B, C, D, and E), plant height (F,

G, H, I, and J), 100-seed weight (K, L, M, N, and O), and grain yield (P, Q, R, S and T) within

each genotypic class defined by the top 5 significant SNPs for each trait. The x-axis showed the

genotypic class from each SNP, the y-axis showed the phenotypic value for each trait. On the

y-axis, mat_snp, height_snp, seed_snp, and yield_snp denotes the maturity date, plant height,

100-seed weight and grain yield, respectively.

(PPT)

S6 Fig. Manhattan plots and QQ-plots for plant height in 2008 (A), 2009 (B), 2010 (C), and

the combined data over 3 years (D).

(PPT)

S7 Fig. Manhattan plots and QQ-plots for seed weight in 2008 (A), 2009 (B), 2010 (C), and

the combined data over 3 years (D).

(PPT)

S8 Fig. Genomic selection accuracy for plant height, maturity, seed weight and yield using

samples from Q1 as a training set and individuals from Q2 as a testing set, and vice versa.

Cross-validation was done using data from the same year.

(PPT)

S9 Fig. Genomic selection accuracy for plant height, maturity, seed weight and yield using

samples from Q1 as a training set and individuals from Q2 as a testing set, and vice versa.

Cross-validation was performed using the data from a year to predict that of from the succeed-

ing year(s).

(PPT)

S1 Table. List of genotypes evaluated for maturity, plant height, seed weight, and yield

over three years. SD represents the standard deviation for each trait over three years.

(XLSX)

S2 Table. Descriptive statistics for maturity (days), plant height (cm), seed weight (g/100

seeds) and yield (kg/hm2) among 250 soybean accessions over three years.

(XLSX)

S3 Table. ANOVA for maturity (days), plant height (cm), seed weight (g/100 seeds), and

yield (kg/hm2).

(XLSX)
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S4 Table. Pearson’s correlation coefficients (r) between maturity, seed weight, yield, and

plant height, and between years for each trait.

(XLSX)

S5 Table. Distribution of a total of 10259 high-quality SNPs among the 20 haploid chro-

mosomes, average distance between two adjacent SNPs, minor allele frequency (MAF),

average percentage of heterozygote SNP, and average percentage of missing SNP per chro-

mosome.

(XLSX)

S6 Table. Mean Fst values, average distance between samples within the same subpopula-

tion, average probability value of from each individual within each cluster, and allele fre-

quency divergence among populations.

(XLSX)

S7 Table. Genomic selection accuracy for maturity, plant height, seed weight and yield

using 100 replications and where cross-validation was performed within all samples, sam-

ples from subpopulation Q1, and samples from subpopulation Q2, respectively.

(XLSX)

S8 Table. ANOVA table relating the effect of population structure, year, and interaction

effect between population structure and year on the genomic prediction of maturity

(days), plant height (cm), seed weight (g/100 seeds), and yield (kg/hm2).

(XLSX)

S9 Table. ANOVA table showing the effect of population structure, years from which the

training and testing sets were established, respectively, and interaction effect between pop-

ulation structure and year on the genomic prediction of maturity (days), plant height

(cm), seed weight (g/100 seeds), and yield (kg/hm2).

(XLSX)

S10 Table. Genomic selection accuracy where cross-validation was performed within all

samples, samples from subpopulation Q1, and samples from subpopulation Q2, respec-

tively. Cross-validation within each group was conducted as following. The data from 2008

were used to predict the data from 2009 and 2010, respectively, the data from 2009 were used

to predict the data from 2010, and the average data from 2008 and 2009 were used to predict

the data from 2010.

(XLSX)

S11 Table. Genomic selection accuracy for maturity, plant height, seed weight, and yield

using samples from subpopulation 1 (Q1) as training set and samples from subpopulation

2 (Q2) as testing set and vice versa. Estimation of genomic selection accuracy was done using

100 replications.

(XLSX)

S12 Table. Genomic selection for maturity, plant height, 100-seed weight, and grain yield

using samples from subpopulation 1 (Q1) as training set and samples from subpopulation

2 (Q2) as testing set, and vice versa. Data from 2008 in the training set were used to predict

that of 2009 and 2010 in the testing set, respectively. Data from 2009 in the training set were

used to predict that of 2010 in the testing set. The average data from 2008 and 2009 in the

training set were used to predict that of 2010 in the testing set.

(XLSX)

PLOS ONE Genome-wide association study and genomic selection for yield and related traits in soybean

PLOS ONE | https://doi.org/10.1371/journal.pone.0255761 August 13, 2021 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255761.s021
https://doi.org/10.1371/journal.pone.0255761


Author Contributions

Conceptualization: Qijian Song.

Data curation: Waltram Ravelombola, Jun Qin, Ainong Shi.

Funding acquisition: Jun Qin, Mengchen Zhang.

Investigation: Jin Yuan, Fengmin Wang, Yan Feng, Tiantian Zhao, Yaning Meng, Kexin

Guan.

Methodology: Jun Qin, Tiantian Zhao.

Project administration: Long Yan, Chunyan Yang, Mengchen Zhang.

Validation: Fengmin Wang, Yan Feng.

Writing – original draft: Waltram Ravelombola.

Writing – review & editing: Jun Qin, Ainong Shi, Qijian Song, Pengyin Chen.

References
1. Zhang J, Song Q, Cregan PB, Jiang G-L. Genome-wide association study, genomic prediction and

marker-assisted selection for seed weight in soybean (Glycinemax). Theoretical and Applied Genetics.

2016; 129(1):117–30. https://doi.org/10.1007/s00122-015-2614-x PMID: 26518570

2. Yao D, Liu Z, Zhang J, Liu S, Qu J, Guan S, et al. Analysis of quantitative trait loci for main plant traits in

soybean. Genet Mol Res. 2015; 14(2):6101–9. https://doi.org/10.4238/2015.June.8.8 PMID: 26125811

3. Cao Y, Li S, He X, Chang F, Kong J, Gai J, et al. Mapping QTLs for plant height and flowering time in a

Chinese summer planting soybean RIL population. Euphytica. 2017; 213(2):39.

4. Zuo Q, Hou J, Zhou B, Wen Z, Zhang S, Gai J, et al. Identification of QTL s for growth period traits in

soybean using association analysis and linkage mapping. Plant Breeding. 2013; 132(3):317–23.

5. Hu Z, Zhang D, Zhang G, Kan G, Hong D, Yu D. Association mapping of yield-related traits and SSR

markers in wild soybean (Glycine soja Sieb. and Zucc.). Breeding science. 2014; 63(5):441–9. https://

doi.org/10.1270/jsbbs.63.441 PMID: 24757383

6. Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F. Identification of loci governing eight agronomic

traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant biotechnology

journal. 2015; 13(2):211–21. https://doi.org/10.1111/pbi.12249 PMID: 25213593

7. Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, et al. Genome-wide association studies dissect the

genetic networks underlying agronomical traits in soybean. Genome biology. 2017; 18(1):1–14. https://

doi.org/10.1186/s13059-016-1139-1 PMID: 28077169

8. Copley TR, Duceppe M-O, O’Donoughue LS. Identification of novel loci associated with maturity and

yield traits in early maturity soybean plant introduction lines. BMC genomics. 2018; 19(1):1–12. https://

doi.org/10.1186/s12864-017-4368-0 PMID: 29291715

9. Zhang H, Hao D, Sitoe HM, Yin Z, Hu Z, Zhang G, et al. Genetic dissection of the relationship between

plant architecture and yield component traits in soybean (Glycine max) by association analysis across

multiple environments. Plant Breeding. 2015; 134(5):564–72.
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