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Abstract

Homozygosity mapping is a well‐known technique to identify runs of homozygous

variants that are likely to harbor genes responsible for autosomal recessive disease, but

a comparable method for autosomal dominant traits has been lacking. We developed an

approach to map dominant disease genes based on heterozygosity frequencies of

sequence variants in the immediate vicinity of a dominant trait. We demonstrate

through theoretical analysis that DNA variants surrounding an inherited dominant

disease variant tend to have increased heterozygosity compared with variants

elsewhere in the genome. We confirm existence of this phenomenon in sequence data

with known dominant pathogenic variants obtained on family members and in unrelated

population controls. A computer‐based approach to estimating empirical significance

levels associated with our test statistics shows genome‐wide p‐values smaller than 0.05

for many but not all of the individuals carrying a pathogenic variant.
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1 | INTRODUCTION

Thirty years ago, the concept of homozygosity mapping (HM) was

published (Lander & Botstein, 1987) and has since been highly

influential. For rare autosomal recessive traits due to a homozygous

genetic variant, when the two susceptibility alleles at the disease

variant are inherited as two copies of a single disease allele from a

common ancestor, variants in the DNA region surrounding the
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disease variant also tend to be homozygous. Thus, researchers may

simply look for extended runs of homozygosity (ROH) in affected

individuals, or compare lengths of ROHs between affected and

unaffected individuals, to identify genomic regions likely to harbor a

recessive disease gene (Lander & Botstein, 1987). HM has been

hugely successful for the mapping and identification of recessive

disease variants, particularly with massively parallel sequence data

(Morrow et al., 2008; Pippucci, Magi, Gialluisi, & Romeo, 2014; Stingl

et al., 2017).

Some 10 years later, a method called linkage disequilibrium (LD)

mapping was developed for the mapping of heterogeneous recessive

traits (Feder et al., 1996). This method was critically reviewed and

generalized to other disease models (Nielsen, Ehm, & Weir, 1999),

but it does not seem to have been used much since.

Klein et al. (1998) extended the LD mapping approach to dominant

traits and demonstrated that markers in the vicinity of a (rare)

dominant trait variant should show a heterozygote excess. For a given

marker, these authors developed a χ2 test statistic. However, in their

data on focal dystonia, χ2 turned out to be zero even though other data

(Leube et al., 1997a, 1997b; Leube et al., 1996) had shown evidence for

disequilibrium for the same markers and trait. The proposed approach

(Klein et al., 1998) does not seem to have been used further.

Here we describe a novel method, heterozygosity analysis (HA),

applicable to inherited dominant disease variants. It is based on the

rate of heterozygosity (vs. homozygosity), which tends to be elevated in

sequence variants surrounding an inherited dominant disease variant.

Such a variant is passed on a chromosome from a parent to offspring

within a (possibly short) segment of DNA in which variants have not

experienced recombination with the disease variant. The other

chromosome, however, is likely to have undergone recombination

throughout its length. We show that this discrepancy leads to a higher

rate of heterozygosity at variants in the immediate vicinity of a

dominant trait variant, particularly so for rare variants. It is important

to point out that we focus on local properties of an inherited dominant

disease variant, irrespective of other disease variants that might be

present on the same or on different chromosomes.

In contrast to previously proposed approaches (Klein et al., 1998),

as shown below, we work with average heterozygosities over

multiple adjacent markers. Our approach identifies peaks of high

variant heterozygosity and surrounding regions of increased variant

heterozygosity that are likely to contain pathogenic dominant

variants. Unlike linkage analysis, it can be applied to single individuals

and to families with a handful of individuals for which linkage analysis

would not be very informative, since small linkage blips would be

observed throughout the genome. Methods for disease gene mapping

have been proposed to combine different approaches (Koboldt et al.,

2014). Our method is purely genetic and is extremely useful in

conjunction with filtering since the number of variants which would

need to be tested is greatly reduced and this would be particularly

true when only one individual has been sequenced and/or whole‐
genome sequencing has been performed. We anticipate that HA will

preferentially be applied to candidate disease variants and will serve

as one of the methods to prioritize such variants as has recently been

done by the use of HM for recessive traits, where authors required a

candidate variant to be located in or near a homozygous region

greater than 2Mb (Sang et al., 2018).

2 | MATERIALS AND METHODS

2.1 | Simple population genetics model

To demonstrate that increased heterozygosity around an inherited

dominant trait variant is a general phenomenon and not disease‐
specific, we assume the following simple model. Consider a dominant

disease variant that is successively passed from parents to children.

In the course of its segregation through generations, recombination

events (due to crossing‐over) will occur to the left and right of the

pathogenic variant. In an individual carrying such a (heterozygous)

variant, for the chromosome carrying the variant, consider the

genomic region, R, between the two flanking recombination events

closest to the pathogenic variant. This region was passed unchanged

from parents to children, that is, the nucleotides in this region of the

disease chromosome stay fixed in different generations while

variants on the homologous chromosome (not carrying the disease

variant) change randomly due to recombination.

At the disease variant, we distinguish two alleles, where +

designates the wild‐type allele and u the mutant allele. Consider a

variant with alleles A and B in the R region. Population frequencies

for the u and A alleles are e and f, respectively, and D is the

disequilibrium parameter between the two sites (Table 1). Assume

that in the R region, only the A allele occurs on the chromosome

carrying the mutant disease allele so that the (u−B) cell (Table 2) has

zero frequency, that is, only three haplotypes exist (D’ = 1), and the

disequilibrium parameter is given by D = e(1−f) =Dmax. With this, an

individual is heterozygous when a B allele occurs in coupling with the

+ allele. Thus, the probability of being heterozygous A/B at the

variant in region R is given by:

= ( | + = ) = ( − )/( − ) > −H B D D f e fP , 1 1 1 .max

Thus, such a variant with low minor allele frequency (MAF), f, is

highly likely to be heterozygous. On the other hand, at an analogous

variant far away from the disease variant (outside the R region, or on

a different chromosome), the probability of being heterozygous is

given by 2 f(1−f), which is small for small f. As e is assumed to be a

small number, heterozygosity in region R is larger than in a random

region. The ratio of heterozygosity in the R region over hetero-

zygosity in a random region is given by r = 1/[2 f (1−e)] > 1/(2 f), which

can be rather high, particularly for small variant allele frequencies, f,

which are of most interest. Clearly, this model is very simple but it

unequivocally demonstrates increased marker heterozygosity around

an inherited dominant pathogenic variant.

As recombination events occur relatively randomly along a

chromosome, the length of the R region will depend on the number

of recombinations experienced by a chromosome. Therefore, a

pathogenic variant transmitted from parents to children over many
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generations is expected to be located in a short R region. Conversely,

a newly mutated pathogenic variant will not show increased

heterozygosity of variants surrounding it. However, there are various

factors other than the age of a pathogenic variant that can influence

the length of the R region, for example, local LD.

2.2 | Average heterozygosity

The main determinant of a variant’s heterozygosity is its allele

frequency. To mitigate the effects of varying allele frequencies and

missing genotypes, at each variant we compute a moving average for

heterozygosity and then follow these averages across each chromo-

some. As outlined below, we proceed in two stages.

At Stage 1, at each variant throughout the genome, we compute

an average heterozygosity, H. For example, for a 101‐point average
at a given variant, we consider it and the 50 variants on either side

and determine the proportion H of heterozygous genotypes in one or

more individuals. Thus, the first and last 50 variants on each

chromosome will not have an H value associated with it. Specifically,

a (2m+1)‐point average H is obtained by counting the number g of

homozygous genotypes and the number h of heterozygous genotypes

TABLE 1 Rankings of H (Stage 1) and Hmax (Stage 2) values for each individual analyzed and for family members analyzed jointly

Stage 1 (H values) Stage 2 (Hmax values)

Rank top% Nvar Rank d Rank2 Rank3 Rank4

S1; A, C 199,591 3.1 6,347,882 268 553 252 228 970

S5; A, C 78,924 1.2 6,347,882 480 533 464 420 138

S9; U, C 287,746 4.5 6,347,882 468 20 452 432 141

S2; U, N 1,889,519 29.8 6,347,882 366 119 354 332 1046

S6; U, N 1,148,993 18.1 6,347,882 994 1,429 978 923 279

S7; A, N 709,184 11.2 6,347,882 587 8 577 557 1176

S1, S5, S7; A 38,654 0.6 6,347,882 298 0.7 282 254 66

S1, S5, S9; C 78,225 1.2 6,347,882 516 3 494 458 1706

S2, S6, S7; N 207,214 3.3 6,347,882 394 115 374 342 102

M1; A, C 87,720 20.7 424,175 66 7,432 66 60 26

M2; A, C 126,896 29.5 430,739 58 7,497 56 48 18

M7; U, C 87,868 18.3 481,206 32 7,618 30 24 10

M9; A, C 77,205 20.1 383,563 26 2,238 26 20 10

M1,2,7,9; C (1) 39,632 3.7 1,082,429 124 67 111 81 33

M1,2,7,9; C (4) 6,010 5.9 102,321 25 2,285 20 16 11

L21; A, C 1,305,196 20.4 6,395,904 138 555 105 78 218

L22; A, C 172,382 2.9 5,996,970 84 556 57 39 18

L21,22; C (1) 318,778 3.0 10,549,605 1,898 0.2 1,194 768 2,896

L21,22; C (2) 133,870 7.3 1,843,269 93 553 73 205 172

False positives

Ctrl; BRCA2 131,040 22.0 594,234 66 66,596 66 56 26

Ctrl; WFS1 242,130 40.6 594,234 n n n n n

Ctrl; PHOX2 423,768 71.0 594,234 40 5,904 40 31 16

M9; NCBI1 223,045 58.2 383,563 26 15,889 26 20 10

M9; NCBI3 179,653 46.9 383,563 26 16,062 26 20 10

Family S contains three affected females (S1, S5, and S7), two unaffected noncarriers (S2 and S6), and one unaffected carrier (S9) of the BRCA2

pathogenic variant in this family. In family M, individuals M1, M2, and M9 are affected, and M7 is an unaffected obligate carrier. Symbols: A = affected,

U = unaffected, C = carrier, N = noncarrier, Nvar = number of variants (H values), d = absolute difference in kb between estimated and true position of

the pathogenic variant, rank2 = rank given that the RIH (region of increased heterozygosity) segment length is at least 25% of the average of all RIH

lengths; rank3 = rank given that RIH length is at least 50% of the average RIH length; rank4 = rank given that RIH length is at least equal to the average

RIH length; n at Stage 2 means that the H value for the known pathogenic variant does not occur in any RIH. False positives: First item = individual

(Ctrl = unaffected in psoriasis family 12), second item = assumed disease variant (NCBI: intronic variants).

TABLE 2 Standard parameter settings for haplotypes at a disease
variant and a nearby marker variant

Marker variant

Disease variant A B Sum

u ef+D e(1−f)−D e

+ (1−e)f−D (1−e)(1−f) +D 1−e

Sum f 1−f 1

Symbols: e = disease allele (mutation) frequency, P(u); f = marker variant

allele frequency, P(A); D = disequilibrium parameter
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at the given variant and the m variants on either side of it. Analogous

counts would be obtained when n family members are analyzed

together. Heterozygosity is then obtained as H = h/(g+h). Without

missing genotypes and n individuals analyzed jointly, the total

number of genotypes would be (2m+1)n = g + h. Thus, on each

chromosome, the first and last m variants will not obtain an H value.

At Stage 2, to focus on high H values at a good number of

consecutive variants, we form regions of increased heterozygosity,

RIH, such that H values keep increasing up to a maximum, Hmax, and

then decrease again. For a given chromosome, consider an ordered

set of Hi values, i = 1…k. We now form successive differences, Ci =Hi –

Hi‐1, for i = 2…k. Negative values of C signal an increase and positive

values a decrease in H. Thus, we search for the first Ci < 0 and keep

going until C turns positive (at Hmax); we keep going as long as C

values stay positive until we reach Cj < 0. In this manner, we find an

RIH segment ranging from variants with Ci through Cj. Values of C = 0

are skipped in this process.

Calculations described above for stages 1 and 2 have been

implemented in a computer program, PH, which is available for

Windows and Linux computers (http://lab.rockefeller.edu/ott/

programs).

2.3 | Significance testing

Previous attempts at disequilibrium mapping for dominant traits

(Klein et al., 1998) may have been hampered by low informativeness

of single marker variants. As mentioned above, we use average

marker heterozygosity for at least 101 adjacent markers. While the

use of single markers allows derivation of elegant test statistics

(Klein et al., 1998), this does not seem possible for our approach, so

we resort to computer‐based estimation of empirical significance

levels. Assuming as the null hypothesis that the disease variant can

be at any of the marker positions in the dataset, we randomly place

the disease variant at one of the n marker positions, where n is the

total number of markers used in the analysis; for example,

n = 6,347,882 for individuals in the S family. With a given null

position, we carry out analysis as done for the observed data and

record the value H at the null disease variant and the Hmax value in

the segment containing the null disease variant. This completes one

replicate in our computer‐based procedure. Based on the H values

obtained in N replicates and the observed value, Hobs, we count the

number k of values at least as large as Hobs and obtain the empirical

significance level associated with Hobs as p = k/(N+1). Analogous

calculations are done for Hmax.

3 | RESULTS

3.1 | Family data

We applied our approach to three dominant traits with known

pathogenic variants, breast cancer in family S (Ataei‐Kachouei et al.,
2015; BRCA2 gene), neuroblastoma in family M (McConville, Reid,

F IGURE 1 Stage 1 heterozygosity rate,
H (y‐axis), plotted against marker positions
(x‐axis) surrounding a pathogenic BRCA2

mutation in three females affected with
breast cancer in family S. The x‐axis scale is
the distance in kb from the pathogenic

BRCA2 mutation

F IGURE 2 Stage 1 heterozygosity rate,
H (y‐axis), plotted against marker positions
(x‐axis) surrounding a pathogenic BRCA2
mutation in a control individual, that is, the

first individual in our unpublished
collection of family members affected with
psoriasis. The x‐axis scale is the distance in

kb from the pathogenic BRCA2 mutation
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Baskcomb, Douglas, & Rahman, 2006; Mosse et al., 2004; PHOX2B

gene), and low‐frequency nonsyndromic hearing impairment in family

L (Bespalova et al., 2001; WFS1 gene). Family graphs are provided as

Figures S1, S2, and S3, respectively, and technical details on

sequencing are provided in Supporting Information. For each trait,

one family with multiple individuals was investigated. As an example,

for all affected members of family S, Figure 1 shows H values

(Stage 1) on the ordinate (y‐axis) at variants within +/− 30 KB of the

BRCA2 pathogenic variant, rs276174825, on chromosome 13.

Clearly, variant heterozygosity is increased in the vicinity of the

pathogenic variants. Analogous figures occur for the other families

(not shown here) and have somewhat varying shapes in different

families, depending on variant densities and sequencing properties.

For comparison, for the first individual in our unpublished collection

of family members affected with psoriasis, Figure 2 shows the rather

unremarkable curve of H values, obtained in analogy to those in

Figure 1. As a pseudo‐disease variant, we chose the variant in that

dataset closest to the pathogenic variant in the BRCA2 gene on

chromosome 13. The resulting Stage 1 rank of this pseudo‐disease
variant was 277,393 (top 37%) among all 742,520 H values.

Based on these variant‐specific H values, RIH segments of

increasing and then decreasing H values were created at Stage 2,

with each segment containing a local Hmax value. Thus, both stages

furnish heterozygosity values, H at Stage 1 and Hmax at Stage 2,

where the latter may be used for prioritizing variants as candidates

for pathogenic disease variants. As will be shown below, while Hmax

values serve to identify the approximate location of a disease variant,

the top % rankings of the associated H values can discriminate

between true and false peaks. Table 1 shows rankings for each

analyzed individual and for families analyzed as a whole. For Stage 1,

the H value of the pathogenic variant was ranked among H values at

all variants, where the largest H value is ranked 1. For Stage 2, the

Hmax value in the RIH segment containing the pathogenic variant was

ranked among all Hmax values. It is immediately clear that Hmax values

are much better predictors than H values. It is also obvious that

analyzing multiple individuals in a family is better than analyzing one

individual at a time.

Rankings of Hmax may be improved by disregarding Hmax values in

RIH segments that are unusually short. One might expect that an RIH

segment containing a pathogenic disease variant should be longer

than the average of all RIH segments. However, our analysis has

shown (not detailed here) that this is not always the case. Thus, we

tested four different ways of ranking Hmax values: All Hmax values

(“rank” in Table 1, Stage 2); Hmax values in RIH segments longer than

w/4, where w is the average length of all RIH segments (“rank2”);

Hmax values in RIH segments longer than w/2 (“rank3”); and Hmax

values in segments longer than w (“rank4”). Ranking all Hmax values is

most conservative while ranking based on “rank4” values is most

risky in the sense that RIH segments may be disregarded that contain

the pathogenic variant. If this happens then ranking can be worse

than when all Hmax values are used as may be seen, for example, for

individual S1 in Table 1. In our data, applying the “rank2” criterion

has always been better than ranking all Hmax values. Thus, we

recommend as a rather safe approach to disregard RIH segments

smaller than w/4 and rank the Hmax values in the remaining RIH

segments. The pathogenic variant was generally found to be close to

one of the top few hundred best‐ranked Hmax values. For families S

and L, the highest ranked variants were within a distance d of a few

kb base pairs although, for unknown reasons, this distance was

considerably larger (d = 237 kb) for the affected and obligate carriers

in family M (M1, M2, M7, M9).

3.2 | Statistical significance

Based on N = 999 random replicates, genome‐wide empirical sig-

nificance levels, p, were obtained for observed H and Hmax values in

each individual in families L, M, and S, with the smallest possible

value being p = 1/1000 = 0.001. None of the Hmax values furnished

significant results (p < 0.05) while several H values were highly

significant: In family S, all individuals carrying the pathogenic BRCA2

mutation (“carrier” in Table S1) show p < 0.05 for their H values and

all noncarriers show p > 0.10. Evidently, H values have the potential

to discriminate between carriers and noncarriers; this issue is

evaluated more formally in the next section. One individual, S7, is

an affected noncarrier, yet shows p = 0.019. Thus, it appears likely

that this individualʼs affection status is caused by a mutant variant

close to the known BRCA2 pathogenic variant investigated here but

this was not further pursued. Results for families L and M are largely

nonsignificant (Table S1).

3.3 | Discriminating between true and false
positive results

As shown above and demonstrated in Table 1, Hmax values are highly

suitable for prioritizing marker variants as candidates for inherited

dominant pathogenic variants. For example, out of over 6 million

variants in family S, Hmax values in the segments containing the

known disease variants rank in the top few hundred, and in family M,

out of over 400,000 variants, less than 100 variants show an Hmax

rank higher than that of the known pathogenic variant. However, as

Hmax values have been maximized (they represent the largest of all H

values in an RIH segment), they also tend to be relatively high in

noncarrier individuals even though average ranks in carriers is lower

(better) than in noncarriers. For example, the three carrier and the

three noncarrier individuals in family S (Table 1) show respective

average Hmax ranks of 405.3 and 649.0. Nonetheless, Hmax values are

not good for discriminating between true and false positive results

(see below). On the other hand, we show here that H values, not

being maximized, are well suited for discriminating true from false

results. To demonstrate this feature, we relied on our relatively small

sample of nine known carriers and three known noncarriers (Table 1).

To increase the latter number, we used our psoriatic control

individual three times, each time pretending that the known

pathogenic variants of the BRCA2, WFS1, and PHOX2 genes are

disease variants for this individual. In addition, individual M9 was
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used twice: (a) with a variant in the UTR (position 55,396,207 on

chromosome 4; here called “NCBI1”) of the TMEM165 gene, and (b)

with an intronic variant (position 55,569,682 on chromosome 4;

“NCBI3”) in the PDCL2 gene (all base pair positions in this report

refer to the GRCh37.p13 assembly).

Now we had nine carriers and eight noncarriers and applied our

PH program to each of these 17 individuals. Table 3 shows top %

results for H values. For each of the 17 lines in Table 3, we

considered a top % value just below the one on that line as a

threshold to predict individuals to be carriers when they have a top %

value above this threshold. For example, for line 6, a suitable top %

threshold would be 18.2. For each of these 17 thresholds, we

estimated sensitivity (proportion of carriers predicted to be carriers)

and specificity (proportion of noncarriers predicted to be noncar-

riers). For example, there are six individuals with a top % value below

the threshold of 18.2, so these would be predicted to be carriers

while the 11 individuals exceeding the threshold would be predicted

to be noncarriers. In reality, among all nine carriers, based on this

threshold, four are predicted to be carriers and five are predicted to

be noncarriers, so sensitivity =4/9 = 0.444. As is customary, we

graphed y = sensitivity against x = (1 − specificity). The resulting

receiver operating characteristic (ROC) curve is shown as Figure 3.

The area under the curve, AUC, is generally considered a measure for

discriminating power, where AUC =0.5 refers to no discrimination.

Despite our small sample size, we obtained a respectable AUC =0.85.

Thus, based on this admittedly very small sample, a reasonable rule

would be to declare a candidate variant a true positive when analysis

for a given individual or family results in an H value with associated

top % smaller than 21%, which is estimated to have sensitivity of

0.889 and specificity of 0.750 (the corresponding total probability of

correct prediction is estimated to be 0.824, the highest value for

these data). It is planned to collect many more known carriers and

noncarriers for various pathogenic disease variants so as to make

prediction as accurate as possible.

We constructed an ROC curve also for Hmax values associated

with the H values used in the previous paragraph (details not shown)

and obtained a value of AUC = 0.60. Clearly, H values are much

better discriminators than Hmax values, which is in line with our

findings in the paragraph on statistical significance in Section 3.

3.4 | Population data

We also investigated a collection of control individuals, the ALSPAC

dataset (Boyd et al., 2013; Fraser et al., 2013) of 1,927 population

individuals who had been whole‐genome sequenced (ascertainment

and study numbers are provided in Supporting Information). The

ALSPAC study website contains details of all the data that are

available through a fully searchable data dictionary and variable

search tool (http://www.bristol.ac.uk/alspac/researchers/our‐data/).
Rather than identifying individuals affected with a genetic condition,

we were looking for relatively common dominant pathogenic variants

to identify individuals in this dataset carrying such variants. To keep

the total number of variants to a manageable level, we focused on the

n = 3,758,237 variants on chromosome 2. In the OMIM (https://www.

ncbi.nlm.nih.gov/omim) database, we looked up dominant pathogenic

variants on chromosome 2 and found 357 of them with their

chromosomal positions. However, only 10 positions were present in

the ALSPAC dataset.

TABLE 3 Nine carriers (C) and eight noncarriers (N) and top %
results for H values of disease variants and pseudo‐disease variants,

respectively

ID H top % Status Sensitivity Specificity

S5 1.2 C 0.111 1

L22 2.9 C 0.222 1

S1 3.1 C 0.333 1

S9 4.5 C 0.444 1

S7 11.2 N 0.444 0.875

S6 18.1 N 0.444 0.750

M7 18.3 C 0.556 0.750

M9 20.1 C 0.667 0.750

L21 20.4 C 0.778 0.750

M1 20.7 C 0.889 0.750

Ctrl; BRCA2 disease

variant

22.0 N 0.889 0.625

M2 29.5 C 1 0.625

S2 29.8 N 1 0.500

Ctrl; WFS1 disease

variant

40.6 N 1 0.375

M9; NCBI3 46.9 N 1 0.250

M9; NCBI1 58.2 N 1 0.125

Ctrl; PHOX2 disease

variant

71.0 N 1 0

F IGURE 3 Receiver operating characteristic curve based on
results of Table 3. The graph shows y = sensitivity plotted against
x = 1 − specificity. The area under the curve is AUC =0.85
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Using our PH program, for all individuals combined (phenotypes =

“unaffected”), we computed H and Hmax values for each of these 10

dominant pathogenic variants. Resulting largest H top% values

ranged from 2.1 (variant rs3214759 in the CRYGB gene) to 96.8%

(rs2020912 in the MSH6 gene). According to the OMIM database,

rs3214759 is involved in various forms of dominantly inherited

cataract (OMIM number 615188). As Figure S4 shows, the graph of H

values around the pathogenic variant rs3214759 shows a peak very

similar to the one seen for breast cancer families (Figure 1), which

confirms the inherited nature of this pathogenic variant.

As a negative control, we wanted to work with a nonpathogenic

variant. The CRYGB gene is only 3.58‐kb long, so we were looking for

variants 10MB upstream (far away) of the CRYGB gene and

identified rs1978890, a common intron variant in the PLCL1 gene

without known functional consequences. Figure S5 demonstrates

absence of a peak of H values around this seemingly neutral variant.

These observations in the ALSPAC dataset demonstrate that our

approach is not only useful in family data but can also be successfully

applied to population data. For the pathogenic variant rs3214759 for

cataracts, at Stage 2, 1,756 RIH segments were formed, each

containing a local Hmax value. One segment contains rs3214759,

whose Hmax value ranks 118 and is located (estimated position of the

disease variant) 45 kb away from rs3214759 while the peak H value

close to rs3214759 is only 277 bp from it.

4 | DISCUSSION

There are several similarities and differences between HA developed

here for dominant traits and HM previously published (Lander &

Botstein, 1987) for recessive traits. One important similarity is that both

can be used on single individuals; when multiple (affected) individuals

are analyzed, their relationships, if any, need not be known. On the

other hand, HM relies on linkage and furnishes long ROHs while the

basis for HA is LD between marker and disease variants, and LD is

known to dissipate quickly with increasing distance between two

variants, which has previously been documented (Genomes Project

et al., 2015; Hartl & Clark, 1989). Consequently, our HA approach can

be expected to furnish rather precise results, and this is likely to hold

also in the presence of multiple disease‐causing variants throughout the

genome. With three or more affected individuals, if there is a single

pathogenic variant in the exome, one may have only a few variants in

the selected region which can be further reduced by removing those

variants which are not rare, for example, MAF <0.005 in all populations

in gnomAD (Lek et al., 2016; Zhang et al., 2017) and by biomathematics

evaluation. In this situation, when exomes are analyzed, our approach

may be only somewhat superior to current filtering approaches, since

for three affected individuals only a limited number of variants will be

shared. However, HA becomes very important for analyzing single

individuals and variants which lie outside of the coding region as it will

greatly reduce the number of variants since the space where the

pathogenic variant lies is reduced from the genome to a small genomic

region. An additional benefit of this method is that it can aid in the

detection of locus heterogeneity within a pedigree. For multiple

affected family members, it can be observed whether or not they share

a region of heterozygosity. This information can then be used to inform

the filtering process.

In HM, low MAF of a variant is a major confounder as it tends to

render variants homozygous just because of allele frequency. On the

other hand, in HA, variants with a generally low MAF are highly likely

to be heterozygous when they are close to an inherited dominant

pathogenic variant, which represents a major difference between HM

and HA.

One might have expected that runs of heterozygous variants

could be found by tricking one of the HM procedures into focusing on

heterozygous rather than homozygous variants. We tried such an

approach with the HM algorithm implemented in plink (Purcell et al.,

2007) and for individual S1 changed all homozygous variants to being

heterozygous and vice versa. However, plink reported that no “ROH”

was found, and this did not change even when we tried different

parameter settings to make it easy for plink to detect runs of

heterozygosity, so we did not pursue this avenue further.

In addition to H and Hmax values, we considered several other

statistics and their performance for prioritizing variants, for example,

the length L of each RIH (containing an Hmax value each), and Hmax

weighted by L. For our data with known pathogenic variants, Hmax

consistently showed the highest ranks, particularly when Hmax values

in short RIH segments are disregarded.

As shown in Section 2, results depend somewhat on the choice of

Navg, that is, what value is used at Stage 1 for Navg‐point moving

averages of H. However, this sensitivity is not unique to our

approach. For example, results of HM as implemented in plink

(Purcell et al., 2007) depend on at least four different parameters.

The approach presented here might be improved by working with

map positions instead of base‐pair positions (Li et al., 2015). A given

distance in bp has a different meaning in areas of low and high LD.

Working on a map with constant LD (Tapper et al., 2005) would

presumably be particularly beneficial at Stage 2 as it would make

lengths of RIHs more comparable in different genomic areas, but this

has not been investigated in this context. Another potential

improvement might be to assign weights to variants based on their

allele frequencies although their effects might be minimized by our

use of n‐point averages for H values.
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