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Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric 
patients. 
Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using 
filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction 
(ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided 
into four subgroups according to the patients’ ages. Clinical and dose-related data were reviewed. 
Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), 
and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharp-
ness, artifact, acceptability, and unfamiliar texture change were evaluated and compared.
Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-
level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, im-
provement of GM-WM differentiation, and improvement of sharpness was noted among strength levels 
of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did 
not show a significant difference among the adapted levels of DLIR.
Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image 
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noise. Modification is needed while processing artifacts.

Index terms   Brain; Children; Computed Tomography, X-Ray; Image Quality Enhancement; 
Deep Learning; Image Processing, Computer-Assisted

INTRODUCTION

There are increasing concerns about radiation exposure during medical imaging examina-
tions, particularly in pediatric patients undergoing CT, who are relatively sensitive to radiation 
(1-5). Although efforts are being made to reduce the examination itself, it does not decrease 
much due to unclear symptoms and past history of the pediatric patient, and for this reason, 
head CT is often performed in emergency situations in children (3-5).

Therefore, in response to these concerns for radiation dose reduction, CT image recon-
struction methods were developed from conventional filtered back projection (FBP) to itera-
tive reconstruction (IR) (1-3, 5-8). Moreover, widely used variable IR techniques have been 
successful and useful in reducing radiation dose recently. However, image texture, spatial 
resolution and lesion detectability remain challenging (1, 2, 5-9).

 Recently, deep learning techniques have been spotlighted in the medical imaging field to 
detect lesions, segmentation, characterization and image reconstruction (1, 2, 6-8). Adapta-
tion of the deep learning algorithm for image reconstruction is expected to lower the image 
noise and increase the spatial resolution simultaneously (1, 2, 6-8). Therefore, there have been 
many recent studies using variable deep learning image reconstruction (DLIR), including 
phantom study (1, 2, 6-8). However, a majority of these studies have been performed in adults, 
with a limited information about children (1, 2, 7-11). Therefore, the purpose of this study was 
to evaluate image quality using DLIR of pediatric head CT data, compared with conventional 
FBP and IR methods.

MATERIALS AND METHODS

Approval of the Institutional Review Board was obtained and the requirement for subject/
parent informed consent was waived (IRB No. 2020-08-032-001).

STUDY DESIGN
A 512-slice CT scan (Revolution; GE Healthcare, Milwaukee, WI, USA) was installed in our 

hospital in February 2019, and all CT images were displayed after FBP and IR using adaptive 
statistical iterative reconstruction (ASiR)-V (GE Healthcare, Waukesha, WI, USA). After DLIR of 
this vendor received approval from the Food and Drug Administration (FDA) as a commercial-
ized deep learning reconstruction method, adaptation of DLIR (TrueFidelity; GE Healthcare) 
was followed at our center in December 2019. 

Before adaptation for real clinical examination, reconstructed images using DLIR with con-
ventional dose setting for head CT of our center was analyzed using an American Association 
of Physicists in Medicine CT performance phantom (Model 76-410-4,130; Nuclear Associates, 
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Carle Place, NY, USA). All parameters were noted to be acceptable for clinical adaptation. 
For exact comparison, we included pediatric patients who encountered to our emergency 

center and underwent non-contrast head CT studies from December 2019 to August 2020. 
Among those studies for follow-up in the same patients were excluded, and there were no stud-
ies where obtaining an appropriate region of interest (ROI) was impossible owing to patholo-
gy or severe artifacts. Therefore, a total of 126 studies were finally included.

CLINICAL DATA
Owing to different protocols, each image set group was divided into four subgroups accord-

ing to the patient’s age: less than 1 year, 1–6 years, 6–12 years and more than 12 years. Clinical 
data including age on examination date, sex, body weight, height and body mass index were 
recorded for each patient. The reasons for examination were also recorded.

CT SCAN IMAGE ACQUISITION
We used a non-enhanced head CT protocol with 100 kVp and a reference mA of 250 (effective 

mAs of 125) in younger than 1 year, 290 (effective mAs of 145) in ages 1–6 years. And 120 kVp 
and a reference mA of 200 (effective mAs of 100) in ages 6–12 years, or 270 (effective mAs of 135) 
in older than 12 years. Slice thickness was about 2 mm and coronal and sagittal reformation 
was done with 2 mm reconstruction interval with 0.625 mm thickness source data.

DATA RECONSTRUCTION
In those patients, image sets for study was concluded with studies reconstructed by FBP 

(FBP group), ASiR-V (ASiR-V group) and DLIR (DLIR group). Among the ASiR-V level, 30% ASiR-
V was adapted for the patient with under age 12 and 40% ASiR-V was adapted for the older pa-
tients based on the previous studies (5, 12). All three level (low, medium and high) of DLIR were 
used and compared, which were blinded for all clinical data, medical information and radia-
tion dose data. 

All CT image data sets were displayed at the picture archiving and communication systems 
(PACS) workstation (G3 PACS; G3 Infinitt PACS; Infinitt Healthcare, Seoul, Korea) with brain 
setting of 80 Hounsfield units (HU) window width and 40 HU window level.

RADIATION DOSE
We collected estimated CT dose index volume (CTDIvol), size specific dose estimates 

(SSDE) and dose length product (DLP) data for all scans. Those data were automatically cal-
culated by the CT machine during examination and displayed on the PACS. Effective dose was 
calculated using the conversion factor in International Commission on Radiological Protec-
tion report 2007 (13, 14), and adapted according to the mean age of age group. The conversion 
factor for 100 V was used for age group under 6 years old; 0.0054 for patients younger than 1 
year and 0.0035 for ages 1 to 6 years. And conversion factor for 120 V was adapted for patients 
older than 6 years old ; 0.0027 for ages 6 to 12 years and 0.0019 for those older than 12 years.

QUANTITATIVE IMAGE QUALITY
Objective analysis for quantitative image quality was done by calculating signal-to-noise ra-
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tio (SNR) and contrast-to-noise ratio (CNR). The average signal attenuation is measured by 
using mean HU within the ROI. The standard deviation within the ROI was calculated and con-
sidered as parameters for noise. 

To reduce bias, two pediatric radiologists (H.-H.C. and S.K.Y., each with 10 years of experi-
ence with CT), who were blinded for all clinical data, medical information and radiation dose 
data. 

Each observer drew regions of interest in each area, level for each image set, and the mean 
value was used for final analysis. We measured noise in air by averaging the standard devia-
tion of three 30-mm2 circular regions of interest that were drawn at three different places in 
the air on the lateral ventricle level. We drew a 10-mm2 ROI for noise of cerebrospinal fluid 
on the level of lateral ventricle and drew three different regions of interest within the white 
matter (WM) of centrum semiovale for noise in the WM on the level of high convexity. These 
measuring methods were adapted from our previous study (4).

With the measured data, SNR of air, cerebrospinal fluid and WM were calculated by the 
following equation:

SNR = 
Mean HU of tissue in ROI

SD of HU in ROI

where Mean and SD refer to the mean and standard deviation, respectively, of Hounsfield 
numbers and ROI refer to region of interest of measured level. 

CNR was calculated at three different levels: high convexity, lateral ventricle and infraten-
torial. We drew six 4-mm2 circular regions of interest at each level of the centrum semiovale 
of high convexity level and infratentorial level, three of which were placed in the WM, and 
three of which were placed in the cortical gray matter (GM). We averaged the mean density 
and standard deviation of measured data, as described in the previous studies for pediatric 
head CT (4).

To calculate CNR of the lateral ventricle level, three regions of interest for GM were placed 
within the deep GM, such as the thalamus or basal ganglia. To reduce the bias made by mea-
suring at different levels of the different patients, we placed regions of interest at the high con-
vexity level where the central gyrus appears longest, the lateral ventricle level as the 3rd ven-
tricle appearance level, and the infratentorial level as the level where the 4th ventricle shows 
an inverted U shaped for standardization of measurement level.

The CNR was calculated at each of the three levels―high convexity, lateral ventricle and in-
fratentorial levels―by using the following equation:

CNR = 
Meangray matter–Meanwhite matter

SD2
gray matter+SD2

white matter

where Mean and SD refer to the mean and standard deviation, respectively, of Hounsfield 
numbers.

QUALITATIVE IMAGE QUALITY
Qualitative image quality was rated with reference to subjective noise, GM-WM differentia-

tion of the supratentorial and infratentorial levels, sharpness, artifact, acceptability and im-
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age texture. Among the parameters, sharpness was defined according to how clearly the 
margin of ventricles was defined. Artifact was defined based on whether there exist motion 
or beam hardening artifacts and how severely displayed. Image texture was defined by how 
severely “blotchy” or “plastic-like texture” is noted when it was compared to the FBP. If there 
exist severe texture change with unfamiliar smoothness, the lower score was recorded. Analy-
sis for qualitative image quality was conducted by two attending pediatric radiologists (H.-H.
C and S.M.L., each with 10 years of clinical experience). To reduce bias, all identifying data 
were removed for each image set and then image sets were reordered randomly before anal-
ysis. Interobserver agreement between the two radiologists was also calculated.

STATISTICAL ANALYSIS
To compare the quantitative parameters of DLIR high, medium and low level were com-

pared with that of ASiR-V group, the Wilcoxon signed rank test was used for the results of the 
1 year and younger group and 1 to 6 years age group. The paired Student’s t test was used for 
the analysis of those results of ages 6 to 12 years, as well as for the group 12 years and older. 

To compare the results of the qualitative analysis of image quality, those results of DLIR high, 
medium and low level were compared with that of ASiR-V group by using McNemar’s test in 
age group of 1 year and younger group and 1 to 6 years age group. To compare the results of the 
those qualitative analysis of age group 6 to 12 years and 12 years and older, the Kruskal Wallis 
and analysis of variation (ANOVA) was used. Interobserver agreement was assessed with the 
weighted Cohen’s kappa statistic. All statistical analyses were conducted using commercially 
available software (SPSS Statistics, Version 19.0; IBM Corp., Armonk, NY, USA).

RESULTS

CLINICAL DATA AND RADIATION DOSE
The study group of 126 patients (male:female = 78:48, mean age: 109.5 months; range: 4 

month-204 month from December 2019 to August 2020) were included. Those were divided 
into 4 subgroups according to the patient’s age due to different scan protocols. Table 1 summa-
rizes the clinical data and radiation dose results of each subgroups.

Among those patients, 83 patients were referred due to head trauma, 22 patients due to head-
ache, 14 patients due to seizure, 4 patients due to syncope and 3 patients for other nonspecific 
reasons.

Table 1.  Comparison of Clinical Factors of Patients Based on Age Groups 

Age Group N
Mean Age 
(months)

Body Weight 
(kg)

Height 
(cm)

CT Dose Index 
Volume (mGy)

DLP 
(mGy*cm)

Effective Dose 
(mSv)

SSDE*

< 1 year   8     6.3     7.93   59.3 10.5 135.1 0.73 12.29
1–6 years 28   37.7 14.7   99.6 12.5 197.9 0.69 26.00
6–12 years 48 117.9 42.2 147.4 14.0 242.1 0.85 28.14
> 12 years 42 182.2 68.0 167.8 17.7 297.5 0.42 36.82
*SSDE was calculated based on the American Association of Physicists in Medicine report No. 204.
DLP = dose length product, SSDE = size specific dose estimates
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QUANTITATIVE ANALYSIS OF IMAGE QUALITY
The quantitative image analysis results are present in Tables 2 and 3. A gradual reduction 

of noise in WM, cerebrospinal fluid and air was noted among strength levels of DLIR in se-
quence from low to high. The SNR of high convexity level WM, lateral ventricle level WM, in-
fratentorial level WM and cerebrospinal fluid in all age groups increased among strength lev-
els of DLIR in sequence from low to high. That of air showed reversed pattern due to negative 
value HU of air. When compared with ASiR-V, high level DLIR showed significantly improved 
SNR (p < 0.05) in all measured areas. The SNR of low level DLIR showed significant lower p 
value compared with ASiR-V (p < 0.05). 

The CNR of high convexity level WM, lateral ventricle level WM, infratentorial level WM in 
all age groups increased among strength levels of DLIR in sequence from low to high. When 
compared with ASiR-V, high level DLIR showed significantly improved CNR (p < 0.05). And the 
CNR of low level DLIR showed significant lower p value compared with ASiR-V (p < 0.05) in all 

Table 2.  Comparison of the SNR of Image Sets

FBP ASiR-V DLIR-Low DLIR-Medium DLIR-High 
p-Value*

DLIR-Low DLIR-Medium DLIR-High 
High convexity level WM

< 1 year 4.50 ± 1.41 5.90 ± 2.24 4.90 ± 1.92 5.79 ± 2.43 9.88 ± 2.62 0.017 0.779 0.012
1–6 years 4.21 ± 2.11 6.27 ± 2.32 4.90 ± 2.63 5.88 ± 2.31 8.89 ± 1.41 < 0.001 0.076 < 0.001
6–12 years 3.25 ± 1.97 4.80 ± 2.56 4.05 ± 2.44 4.97 ± 1.83 6.50 ± 1.72 < 0.001 0.572 < 0.001
> 12 years 3.47 ± 2.39 5.56 ± 1.93 4.24 ± 1.14 5.33 ± 2.56 7.84 ± 2.18 < 0.001 0.244 < 0.001

Lateral ventricle level WM
< 1 year 5.27 ± 1.63 7.37 ± 1.56 5.98 ± 1.24 7.13 ± 3.12 12.58 ± 2.44 0.017 0.092 0.012
1–6 years 3.55 ± 1.28 4.77 ± 1.24 4.11 ± 1.93 4.67 ± 1.67 6.37 ± 3.42 0.308 0.554 < 0.001
6–12 years 3.95 ± 1.96 5.92 ± 1.12 4.93 ± 1.29 6.06 ± 2.31 8.40 ± 2.92 < 0.001 0.503 < 0.001
> 12 years 4.35 ± 2.44 6.63 ± 1.42 5.23 ± 1.61 6.85 ± 1.61 10.17 ± 1.38 < 0.001 0.153 < 0.001

Infratentorial level WM
< 1 year 4.95 ± 1.28 5.74 ± 0.84 5.13 ± 0.92 6.09 ± 2.13 10.15 ± 1.81 0.680 0.740 0.014
1–6 years 4.26 ± 2.42 6.63 ± 1.63 5.05 ± 1.06 5.97 ± 2.69 8.64 ± 2.45 < 0.001 0.001 < 0.001
6–12 years 3.46 ± 1.31 4.77 ± 0.92 4.07 ± 0.86 4.86 ± 1.63 6.41 ± 1.94 0.007 0.673 < 0.001
> 12 years 4.13 ± 1.94 7.09 ± 1.45 5.10 ± 1.34 6.40 ± 1.41 8.71 ± 1.78 < 0.001 < 0.001 < 0.001

CSF
< 1 year 1.3 ± 0.74 1.8 ± 0.52 1.32 ± 0.86 1.55 ± 1.28 3.47 ± 1.11 0.012 0.682 0.012
1–6 years 1.25 ± 0.72 1.96 ± 1.39 1.39 ± 0.74 1.67 ± 1.69 2.71 ± 1.27 < 0.001 < 0.001 0.003
6–12 years 0.90 ± 0.49 1.56 ± 1.69 1.16 ± 0.84 1.54 ± 0.92 2.36 ± 1.24 < 0.001 0.801 < 0.001
> 12 years 0.82 ± 1.30 1.70 ± 1.97 1.14 ± 0.96 1.63 ± 1.19 2.74 ± 1.36 < 0.001 0.101 < 0.001

Air
< 1 year -209.6 ± 17.84 -242.7 ± 15.69 -278.2 ± 19.21 -359.5 ± 12.04 -525.9 ± 13.97 0.012 0.012 0.012
1–6 years -151.3 ± 14.82 -191.8 ± 18.24 -167.0 ± 17.64 -222.0 ± 15.07 -270.3 ± 24.21 0.263 0.010 < 0.001
6–12 years -133.2 ± 23.3 -183.5 ± 17.61 -158.1 ± 21.93 -205.7 ± 24.63 -292.5 ± 13.81 0.037 0.017 < 0.001
> 12 years -126.8 ± 19.27 -183.0 ± 22.64 -161.0 ± 12.74 -207.7 ± 21.69 -269.0 ± 21.36 < 0.001 0.055 < 0.001

*p value was calculated by comparison between each level of DLIR with that of ASiR-V.
ASiR = adaptive statistical iterative reconstruction, CSF = cerebrospinal fluid, DLIR = deep learning image reconstruction, FBP = filtered 
back projection, SNR =  signal to noise ratio, WM = white matter
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levels, like those of SNR. 

QUALITATIVE ANALYSIS OF IMAGE QUALITY
The qualitative image analysis results are presented in Table 4. Sequential decreased score, 

which means reduction of noise, improvement of GM-WM differentiation of supratentorial 
and infratentorial level, improvement of sharpness, noted among strength levels of DLIR in 
sequence from low to high level. Most high level DLIR showed similar scoring compared with 
ASiR-V without significant difference. And in GM-WM differentiation of supratentorial level in 
age group between 1 to 6 years old, the high level DLIR scored significantly better than that of 
ASiR-V (p < 0.05).

However, artifact and acceptability didn’t showed significant difference among the adapted 
levels of DLIR. Even worsening of artifact was observed in the third age subgroup, when us-
ing high level DLIR when compared with ASiR-V group with significant difference. It adversely 
affect for overall acceptability (Figs. 1, 2). Image texture was noted most unfamiliar on ASiR-V 
group when compared with FBP set and showed significant improvement on DLIR image sets 
(p < 0.05). The interobserver agreement between the two readers was more than substantial 
(mean kappa value about 0.68) (Table 5).

DISCUSSION

This study observed that high level DLIR yielded significantly lower image noise and high-
er SNR and CNR, compared with conventional FBP and ASiR-V. This result, as the first clini-

Table 3.  Comparison of the CNR of Image Sets 

FBP ASiR-V DLIR-Low DLIR-Medium DLIR-High 
p-Value*

DLIR-Low DLIR-Medium DLIR-High 
CNR high convexity

< 1 year 0.80 ± 0.34 1.23 ± 0.42 0.98 ± 0.24 1.17 ± 0.93 1.99 ± 0.67 0.035 0.326 0.012
1–6 years 0.99 ± 0.38 1.44 ± 0.46 1.22 ± 0.48 1.42 ± 1.08 2.01 ± 0.71 < 0.001 0.665 < 0.001
6–12 years 0.81 ± 0.47 1.10 ± 0.32 0.89 ± 0.51 1.04 ± 0.91 1.48 ± 0.58 0.001 0.355 < 0.001
> 12 years 0.93 ± 0.32 1.28 ± 0.69 1.11 ± 0.29 1.32 ± 0.84 1.87 ± 0.69 0.013 0.481 < 0.001

CNR lateral ventricle
< 1 year 0.74 ± 0.29 1.21  ± 0.65 0.93 ± 0.38 1.00 ± 0.56 1.65 ± 0.54 0.040 0.889 0.036
1–6 years 0.59 ± 0.17 0.87 ± 0.36 0.47 ± 0.21 0.62 ± 0.29 1.58 ± 0.61 < 0.001 0.011 0.001
6–12 years 0.83 ± 0.38 1.26 ± 0.44 1.01 ± 0.28 1.15 ± 0.31 1.63 ± 0.79 < 0.001 0.011 0.005
> 12 years 0.57 ± 0.20 0.90 ± 0.36 0.71 ± 0.45 0.87 ± 0.32 1.40 ± 0.58 < 0.001 0.019 < 0.001

CNR infratentorial
< 1 year 0.99 ± 0.12 1.34 ± 0.46 0.46 ± 0.17 0.58 ± 0.14 0.98 ± 0.36 0.017 0.207 0.012
1–6 years 0.99 ± 0.25 1.50 ± 0.51 1.19 ± 0.39 1.47 ± 0.37 2.07 ± 0.69 < 0.001 0.056 < 0.001
6–12 years 0.61 ± 0.30 1.01 ± 0.16 0.76 ± 0.22 0.89 ± 0.16 1.10 ± 0.31 0.020 0.250 0.045
> 12 years 0.72 ± 0.14 1.01 ± 0.32 0.81 ± 0.21 0.98 ± 0.29 1.28 ± 0.39 < 0.001 0.248 0.002

*p value was calculated by comparison between each level of DLIR with that of ASiR-V.
ASiR = adaptive statistical iterative reconstruction, CNR = contrast-to-noise ratio, DLIR = deep learning image reconstruction, FBP = filtered 
back projection
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Table 4.  Comparison of Qualitative Parameters of Image Sets 

FBP ASiR-V DLIR-Low DLIR-Medium DLIR-High 
p-Value*

DLIR-Low DLIR-Medium DLIR-High
Noise

< 1 year   3.38 ± 1.21 1.38 ± 1.13 2.38 ± 1.22 1.88 ± 1.42 1.00 ± 0.86 0.023 0.045 0.083
1–6 years 2.68 ± 0.92 1.11 ± 1.14 2.21 ± 1.09 1.39 ± 0.89 1.04 ± 0.63 < 0.001 0.021 0.317
6–12 years 2.20 ± 1.02 1.06 ± 1.02 2.19 ± 0.81 1.42 ± 0.49 1.02 ± 0.69 < 0.001 < 0.001 0.322
> 12 years 2.60 ± 1.48 1.14 ± 0.98 2.12 ± 0.65 1.62 ± 0.67 1.05 ± 0.85 < 0.001 < 0.001 0.534

GM-WM differentiation (supratentorial level)
< 1 year 3.13 ± 0.79 1.50 ± 0.84 2.25 ± 0.19 2.13 ± 0.54 1.13 ± 0.28 0.056 0.059 0.180
1–6 years 2.50 ± 0.46 1.86 ± 0.39 2.26 ± 0.82 2.04 ± 0.75 1.25 ± 0.64 0.001 0.132 < 0.001
6–12 years 2.44 ± 0.71 1.73 ± 0.82 2.44 ± 0.41 2.15 ± 0.46 1.79 ± 0.51 < 0.001 < 0.001 0.001
> 12 years 2.40 ± 1.21 1.79 ± 0.62 2.40 ± 0.74 2.02 ± 0.66 1.21 ± 0.39 < 0.001 0.058 < 0.001

GM-WM differentiation (infratentorial level)
< 1 year 2.88 ± 0.49 1.63 ± 0.78 2.25 ± 0.87 1.88 ± 0.39 1.13 ± 0.45 0.129 0.157 0.046
1–6 years 2.29 ± 0.42 1.39 ± 0.39 2.00 ± 0.55 1.86 ± 0.34 1.07 ± 0.24 < 0.001 0.007 0.013
6–12 years 2.13 ± 0.57 1.27 ± 0.61 2.13 ± 0.46 1.85 ± 0.46 1.38 ± 0.34 < 0.001 < 0.001 0.302
> 12 years 2.33 ± 0.38 1.56 ± 0.31 2.10 ± 0.45 1.86 ± 0.59 1.07 ± 0.32 < 0.001 < 0.001 0.003

Sharpness
< 1 year 3.00 ± 0.44 1.75 ± 0.21 2.25 ± 0.24 1.75 ± 0.59 1.15 ± 0.44 0.234 1.000 0.059
1–6 years 1.86 ± 0.67 1.29 ± 0.41 1.39 ± 0.46 1.21 ± 0.43 1.14 ± 0.33 0.026 0.021 0.206
6–12 years 1.48 ± 0.57 1.19 ± 0.30 1.48 ± 0.37 1.42 ± 0.42 1.08 ± 0.37 0.003 0.062 0.096
> 12 years 2.02 ± 0.64 1.24 ± 0.42 1.38 ± 0.45 1.55 ± 0.31 1.10 ± 0.21 0.262 0.014 0.083

Artifact
< 1 year 2.75 ± 0.17 2.00 ± 0.27 2.75 ± 0.35 2.50 ± 0.39 2.50 ± 0.36 0.014 0.646 0.234
1–6 years 2.32 ± 0.44 1.64 ± 0.38 2.25 ± 0.51 2.29 ± 0.29 2.07 ± 0.41 0.002 < 0.001 0.007
6–12 years 2.33 ± 0.32 1.75 ± 0.25 2.13 ± 0.18 2.15 ± 0.41 2.29 ± 0.27 < 0.001 < 0.001 < 0.001
> 12 years 2.64 ± 0.29 1.67 ± 0.26 2.10 ± 0.29 2.00 ± 0.32 1.90 ± 0.19 < 0.001 0.012 0.049

Acceptability 
< 1 year 3.25 ± 0.31 1.63 ± 0.23 2.25 ± 0.29 2.25 ± 0.35 2.00 ± 0.32 0.131 0.102 0.257
1–6 years 2.07 ± 0.25 1.46 ± 0.21 2.54 ± 0.31 2.07 ± 0.36 2.04 ± 0.35 < 0.001 < 0.001 0.006
6–12 years 1.92 ± 0.46 1.40 ± 0.33 1.92 ± 0.17 2.13 ± 0.51 2.06 ± 0.26 < 0.001 < 0.001 0.000
> 12 years 2.71 ± 0.56 1.52 ± 0.36 1.95 ± 0.36 2.29 ± 0.39 1.83 ± 0.27 0.002 < 0.001 0.057

Image texture
< 1 year   1.02 ± 0.28†   4.02 ± 0.96†   2.16 ± 0.63†   1.18 ± 0.91† < 0.001 < 0.001 < 0.001
1–6 years   1.38 ± 0.38†   3.24 ± 0.66†   3.20 ± 0.72†   1.98 ± 0.42† < 0.001 < 0.001 < 0.001
6–12 years   1.19 ± 0.42†   4.26 ± 0.38†   2.96 ± 0.42†   2.45 ± 0.39† < 0.001 < 0.001 < 0.001
> 12 years   1.61 ± 0.30†   3.94 ± 0.74†   3.12 ± 0.51†   2.01 ± 0.67† < 0.001 < 0.001 < 0.001

*p value was calculated by comparison between each level of DLIR with that of ASiR-V. 
†Scores were scored image texture compared with the FBP image set. 
ASiR = adaptive statistical iterative reconstruction, DLIR = deep learning image reconstruction, FBP = filtered back projection, GM = gray 
matter, WM = white matter

cal validation of commercialized DLIR, can prove that using DLIR can aid in achieving better 
image quality in low-dose pediatric head CT scans compared with ASiR-V. Since ASiR-V is an 
established reconstruction method for pediatric CT studies (5), high-level DLIR can be an al-
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ternative choice for pediatric head CT scans in all age groups. 
As the first FDA-granted DLIR platform, TrueFidelity (GE Healthcare) used a deep neural 

network with massive training sets for both patients and phantoms (6). Training was per-
formed using qualified FBP datasets for the differentiation of noise from signals and suppres-
sion of noise without alteration of normal anatomical and pathological structures (6). There-
fore, DLIR has no choice but to show better image quality than FBP, but it is meaningful in 
that it has implemented better image quality than ASiR-V, which uses other reconstruction al-
gorithms compared with FBP. 

As TrueFidelity is a recent method for reconstruction, not many reports have been published 
about its application. There have been only a few published reports about adaptation of this 
method to phantom study (8) and clinical patients with the abdomen (2) and low-dose chest 
study (7) for the adult age group. Although these studies were not for the same or similar loca-
tions and age groups as our study, they revealed similar trends to our study and proved that 
noise reduction of DLIR can be applicable. Therefore, a wider adaptation of DLIR for other body 
parts and age groups is required. 

The previous studies about the DLIR method emphasized noting less unfamiliar image tex-

Fig. 1. A representative case of head CT of a 29-months-old boy.
A-E. It was reconstructed using FBP (A), ASiR (B), and DLIR-low (C), medium (D), and high (E). An increment of white-gray matter differen-
tiation and sharpness when using higher grade DLIR on the supratentorial level are noted.
ASiR = adaptive statistical iterative reconstruction, DLIR = deep learning image reconstruction, FBP = filtered back projection

D E

A B

C
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ture compared with conventional IR methods, called as “blotchy” or “plastic-like texture” (12). 
Previous studies on other vendors (1, 2, 10, 11, 15, 16) or self-developed DLIR (15) also assert-
ed that the image texture of DLIR is more familiar than that of IR methods. Therefore, these 
DLIR methods can be a solution for the unfamiliar image texture of IR studies. We also con-
cluded that the image texture of DLIR can be more familiar than that of IR methods.

However, among the parameters for qualitative image quality, artifacts revealed no re-
markable difference or improvement on higher-level DLIR. It revealed worsening in age 

Fig. 2. Infratentorial level of the 29-month-old boy of Fig. 1. 
A-G. It was reconstructed using FBP (A), ASiR-V (B), and DLIR-low (C), medium (D), and high (E). Increment 
of artifacts (arrows) of both frontal base and cerebellum when using higher grade DLIR is noted. The magnified 
images of artifact areas using ASiR-V (F) and DLIR-high (G) show more prominent artifacts than those using 
others and an increased density is noted using DLIR-high than that of others. 
ASiR = adaptive statistical iterative reconstruction, DLIR = deep learning image reconstruction, FBP = filtered 
back projection

Table 5.  Interobserver Agreement of Qualitative Analysis (Weighted Kappa)

< 1 Year 1–6 Years 6–12 Years > 12 Years
Noise 0.569 0.846 0.673 0.781
Gray matter-white matter differentiation (supratentorial level) 0.684 0.791 0.591 0.660
Gray matter-white matter differentiation (infratentorial level) 0.614 0.673 0.613 0.703
Sharpness 0.644 0.611 0.839 0.638
Artifact 0.521 0.733 0.640 0.825
Acceptability 0.531 0.642 0.768 0.655
Image texture 0.829 0.796 0.681 0.740

E

F G
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group 3, while the level of DLIR increased. These results adversely affected lowering of the 
overall acceptability. Other previous study about adaptation of DLIR for pediatric chest and 
abdomen also mentioned that there is no significant difference in artifact reductions among 
the reconstruction including FBP, IR and DLIR (17). And this shortness of DLIR may be owing 
to the limitation of the reconstruction method itself, which differentially remove noises. It can 
be due to limitation in differentiating artifacts from normal anatomical structures. However, 
this trend was not noted in previous studies with the same reconstruction modality (2, 7, 8). 
Therefore, these findings can be specific to the examination of pediatric patients. Artifacts 
owing to movement are common in pediatric patients; however, the data utilized for training 
this reconstruction method are mainly adult data (6), and those motion artifacts themselves 
might not be included in the training set. Thus, it is possible that the differentiation of arti-
facts might be difficult and requires modification. And there might need more training with 
pediatric patients image for wider adaptation of DLIR in pediatric examinations with rela-
tively many artifacts than adults. 

Our study had some limitations. First, the study population was relatively small, and our in-
vestigation was retrospective. Second, the study was carried out at a single institution. There-
fore, we consider our findings preliminary. An extremely large sample size may reject the null 
hypotheses with clinically negligible differences, leading to the possibility that what is insig-
nificant may become significant (18). Third, we divided patients into four age groups; howev-
er, the division of age group may be different in other centers with different dose settings for 
each age group; therefore, a more standardized division is needed. 

In summary, high level DLIR improves the image noise, image quality, SNR and CNR of the 
pediatric head CT scan images with more familiar image texture, compared with ASiR-V. Thus, 
the use of high level DLIR may be helpful in clinical practice as it yields lower image noise 
while maintaining overall image quality at equal diagnostic accuracy. Although there needs 
more training and modification for processing artifacts which can be more common in pediat-
ric age group. 

In conclusion, adaptation of DLIR for the pediatric head CT can significantly reduce image 
noise without degradation of image quality, compared with ASiR-V. For wider adaptation in 
pediatric CT field, there needs some modification for processing of artifacts. 
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소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 
영상 품질에 대한 고찰

이   님1,2 · 조현혜1* · 이소미3 · 유선경4

목적 소아 환자에서 두부 컴퓨터단층촬영(이하 CT)에 대한 딥러닝 이미지 재구성(deep 

learning image reconstruction; 이하 DLIR; TrueFidelity; GE Healthcare, Milwaukee, 

WI, USA)의 효과를 평가하고자 한다. 

대상과 방법 총 126개의 소아 두부 CT 이미지를 수집했으며, adaptive statistical iterative re-

construction (이하 ASiR)-V를 사용한 반복적 재구성 및 세 가지 수준의 DLIR을 사용한 재

구성을 시행하였다. 각 이미지 세트 그룹은 환자의 연령에 따라 4개의 그룹으로 구분하였으

며 각 연령군의 임상 및 방사선량 관련 데이터를 검토하였다. 양적 매개 변수에는 signal to 

noise ratio (이하 SNR) 및 contrast to noise ratio (이하 CNR)가 포함되었으며 질적 매개 변

수로 영상의 잡음(noise), 회백질의 구분 정도, 선명도, 인공물 및 수용 가능성(acceptabili-

ty), 영상의 질감이 포함되었고 이에 대한 평가와 비교를 시행하였다.  

결과 모든 연령 그룹의 모든 수준의 SNR 및 CNR은 높은 수준의 DLIR 사용 시 증가하였다. 

ASiR-V와 비교했을 때 높은 수준의 DLIR은 SNR 및 CNR이 개선되었다(p < 0.05). 그리고 

DLIR의 수준이 증가될수록 순차적인 잡음 감소, 회백질 구분 개선, 선명도 개선이 나타났다. 

이러한 변수들에서 높은 수준의 DLIR 사용 시 ASiR-V와 유사한 정도의 수치가 측정되었다. 

인공물과 수용 가능성의 경우에 적용된 DLIR 수준 간에 큰 차이를 보이지 않았다.

결론 소아 두부 CT에 고수준 DLIR을 적용하면 영상의 노이즈를 줄일 수 있으나 인공물 처리

에 대한 개선이 필요하다. 
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