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Abstract: Coronary atherosclerosis is a potentially chronic circulatory condition that endangers
human health. The biological cause underpinning cardiovascular disease is coronary atherosclerosis,
and acute cardiovascular events can develop due to thrombosis, platelet aggregation, and unstable
atherosclerotic plaque rupture. Coronary atherosclerosis is progressive, and three specific changes
appear, with fat spots and stripes, atherosclerosis and thin-walled fiber atherosclerosis, and then
complex changes in arteries. The progression and severity of cardiovascular disease are correlated
with various levels of calcium accumulation in the coronary artery. The therapy and diagnosis of
coronary atherosclerosis benefit from the initial assessment of the size and degree of calcification.
This article will discuss the new progress in the early diagnosis of coronary atherosclerosis in terms of
three aspects: imaging, gene and protein markers, and trace elements. This study intends to present
the latest methods for diagnosing patients with early atherosclerosis through a literature review.

Keywords: coronary atherosclerosis; computed tomography coronary angiography; genes; protein;
trace element

1. Introduction

Coronary atherosclerosis is a life-threatening chronic cardiovascular condition. Coro-
nary atherosclerosis is one of the leading causes of death among the aged. The localized
deposition of fat in the arteries, along with the development of smooth muscle cells and
a fibrous matrix, is the primary issue with atherosclerosis. Over time, this encourages
the formation of atherosclerotic plaques [1]. The biological root of cardiovascular dis-
ease is atherosclerosis, and thrombosis, platelet aggregation, and unstable atherosclerotic
plaque rupture will result in arterial stenosis or occlusion, resulting in acute cardiovascular
illness [2,3]. Because inflammation plays a major part in all stages of coronary atherosclero-
sis’s progression, it is commonly regarded as a chronic inflammatory disease. Inflammation
is the common cause of the physiological and pathological alterations that occur throughout
the onset and progression of coronary atherosclerosis. Years of extensive research have
revealed that coronary atherosclerosis has a complicated etiology, with lipid buildup and
chronic inflammation in the artery wall being the crucial attributes [4].

Typically, atherosclerosis of the coronary arteries is linked with alterations in lipid
metabolism and hypercholesterolemia [5]. Increased low-density lipoprotein (LDL) levels
are known cardiovascular disease risk factors [6]. However, the pathophysiology of the dis-
ease appears to be more complex than alterations in lipid metabolism, involving numerous
variables, with inflammation being the most significant [7]. Local endothelial dysfunction,
which may be induced by blood flow instability near an artery’s bend or bifurcation, is
the pathological cause of the development of atherosclerosis. The activation of vascular
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endothelial cells in response to mechanical stress results in the recruitment of circulating
immune cells. An atherosclerotic plaque is developed by circulating monocytes adhering
to and infiltrating into the affected area of the artery wall, differentiating into macrophages,
aggressively taking up lipids through phagocytosis, and producing a significant number of
foam cells [8].

Fat spots and stripes, atherosclerosis, thin-walled fiber atherosclerosis, and eventually
complicated arteries are the three types of particular changes that develop in sequence as
atherosclerosis progresses [9,10]. According to the disease’s course, the American College
of Cardiology divides them into six groups [11,12]. The Type I and Type II early phases
can be identified by lipid patches. Yellow patches and a few foam cell accumulations can
be seen in the artery’s intima. Lipid droplets and smooth muscle cells that T lymphocytes
have penetrated are present in the intima. Preplaque, or Type III, is characterized by
more extracellular lipid droplets generating lipid nuclei between the layers of smooth
muscle cells in the intima and mesomembrane without forming a lipid pool. The stage of
atherosclerotic plaque production is Type IV. Since the lipids are more concentrated, the
lipid pool has already formed. The artery wall is distorted, and the intimal structure is
obliterated. The development of thin-walled fibro-atheroma is a hallmark of Type V. It
is the lesion of atherosclerosis that is most recognizable. Lumen stenosis develops when
white plaque enters the artery lumen. A proliferative fibrous cap encircles the lipid pool,
and the intima of the plaque surface is obliterated. Type VI is referred to as a complicated
atherosclerotic lesion, which is a serious lesion. It is distinguished by bleeding, necrosis,
ulceration, calcification, and fibrous plaque wall thrombosis.

Calcification is a key cause of coronary atherosclerosis [13] and a good marker to
forecast future heart problems. Heart disease worsens and spreads at different rates
depending on how much calcium builds up in the body [14]. Coronary atherosclerosis
is treated and has a favorable prognosis when the amount and extent of calcification are
determined early [15]. The purpose of the present study is to discuss the new progress in
the early diagnosis of coronary atherosclerosis in terms of three aspects: imaging, gene and
protein markers, and trace elements (see Figure 1 for details).
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2. Imaging Examination

High-spatial-temporal-resolution invasive coronary angiography (ICA) is the gold
standard for examining coronary lumens [16–18]. Over the last three decades, computed
tomography coronary angiography (CCTA) has evolved into an effective and inexpensive
imaging tool for assessing coronary artery disease (CAD). Because normal CTCA images
have a strong negative predictive value, they can effectively eliminate substantial CAD,
minimizing the requirements for additional imaging tests and lowering ICA use in patients
with low and intermediate CAD risk [19–22]. Because of its cost-effectiveness and clinical
efficacy, the National Institutes of Health guidelines in 2016 advised that CCTA be used as
a first-line survey in all suspected stable CAD patients [23]. The Society of Cardiovascular
Computed Tomography’s steering committee developed acceptable standards for using
CCTA to guide doctors [24].

CCTA is widely used to identify (a) patients with indicative coronary heart disease who
have a low or moderate pre-test probability of coronary heart disease and (b) patients with
a low or moderate pre-test probability of coronary heart disease who have newly diagnosed
heart failure and no known ischemic heart disease, as well as (c) in the evaluation of
cardiac health before surgery in patients thought to have a low or moderate risk of coronary
heart disease. The risk factors for atherosclerosis include smoking, older age, diabetes,
high cholesterol, and hypertension. As mentioned earlier, these are the fundamental
elements, and a person with these risk factors will undoubtedly have a higher probability
of developing coronary heart disease. These risks serve as the foundation to determine
which patients should undergo CCTA when determining whether their risks are high
or low. Several studies have demonstrated that CCTA provides patients with suspected
or established CAD with good prognostic and therapeutic potential. With a sensitivity
of 0.90 and a specificity of 0.92, CCTA revealed high diagnostic accuracy for coronary
plaques compared to intravascular ultrasound (IVUS) as a reference standard, per a meta-
analysis [25].

CCTA can substitute ICA in individuals with suspected acute coronary syndrome
(ACS) who have a low or medium pre-test risk of CAD. When analyzing over 3000 low-risk
patients with suspected ACS, four randomized controlled trials compared CCTA to the
standard of therapy [26–29]. These trials confirmed what was already known about the
negative predictive value of CCTA. They showed again and again that it is safe to send
CCTA-negative patients home from the emergency room with a very low rate of major
cardiovascular adverse events (MACE) (<1%). This reduces the time required to leave the
hospital and the length of stay, saving money and allowing processes to run more smoothly.
However, for patients likely to have CAD before the test, ICA should be the first imaging
test because CCTA has a low negative predictive value in this group [30].

Using conventional retrospective cardiac gating approaches, the cumulative mean
radiation dosage, and CCTA in adult patients varied from 6 to 20 mSv in the past (equivalent
to 300–1000 chest radiographs). Incorporating prospective cardiac gating into CCTA can
minimize radiation exposure by around 70% [31]. With the introduction of new generations
of CT scanners, the radiation dose, contrast dose, and patient turnover time of CCTA
have all lowered dramatically, while image quality has also increased. The number of
layers on the multi-slice spiral CT (MSCT) scanner has been increased from 64 to 128, 256,
320, and 640. This allows for the precise measurement of the degree of coronary artery
stenosis and the composition of the coronary atherosclerotic plaque. The CT coronary
artery calcium score and CCTA radiation dose can now be reduced further (equal to
<50 chest radiographs), and sub-millimeter accuracy can be reached with the latest 640-slice
CT scanner or third-generation DSCT scanner [32].

Additionally, the contrast load can be decreased from an average of 80 mL to 35 mL
by using these faster scanners, lowering the risk of contrast nephropathy [33,34]. Fur-
ther technological advances have resulted in faster CT scanners, ranging from 640-layer
dynamic-volume CT scanners to spectral CT and third-generation DSCT. The X-ray tube
is the primary focus of DSCT advancement. The transition from static to rotating X-ray
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tubes, with improvements in its properties, such as a larger heat capacity and cooling speed,
enhances the CT scanner’s efficiency and allows for a higher rack speed [35]. Using a DSCT
scanner with two X-ray tubes increases the efficiency of obtaining entire data sets. Each
X-ray tube must be rotated 90◦, reducing the picture radiation exposure and acquisition
time. The third-generation DSCT scanner can greatly boost the tube power at low potential,
significantly lowering radiation exposure [35].

Accurate cross-sectional vascular information can be obtained using intravascular
ultrasonography (IVUS) imaging. According to the most recent research, clinicians may
accurately assess pathophysiological changes in blood vessels, illness development, and the
impact of therapeutic interventions using IVUS data collected at two different times [36]. As
an early indicator of arterial injury, the endothelium with osmotic dysfunction is thought to
be the main factor in atherosclerosis. Tools and other methods based on magnetic resonance
imaging (MRI) enable us to understand the role of endothelial permeability in cardio-
vascular disease and the risks in vivo [37]. The most widely used radioactive tracer in
vascular research and a different marker of plaque inflammation is 18-F-fluorodeoxyglucose
(18-F-FDG). Increasingly, 18-F-FDG and other PET (positron emission tomography) tracers
are employed to provide imaging endpoints for cardiovascular intervention trials. Us-
ing biological processes, PET imaging can characterize the high-risk traits of susceptible
atherosclerotic plaques. Inflammation, microcalcification, hypoxia, and neovascularization
can all be tracked using current radioactive tracers in susceptible plaques. Developing
novel PET radioactive tracers, imaging techniques, and hybrid scanners may improve the
effectiveness and accuracy of characterizing high-risk plaques [38]. Plaque features are
identified through a novel atherosclerosis identification approach. Plaque detection fre-
quently uses multi-mode/hybrid imaging systems and near-infrared fluorescence imaging.
In both clinical and experimental settings, Indocyanine Green (ICG) targets human plaques
with endothelial anomalies and offers fresh insights into its targeting mechanism [39].

3. Gene and Protein Markers
3.1. Gene Level

MicroRNA (miRNA), which plays an important role in regulating pathophysiological
processes such as cell adhesion, proliferation, lipid uptake, efflux, and the production of
inflammatory mediators, offers a new molecular understanding for investigating their
effects on these pathways in coronary atherosclerosis and helps to pinpoint potential
therapeutic approaches. MiRNA’s potential as a diagnostic, prognostic, or therapy response
biomarker for cardiovascular disease has been particularly increased by the realization that
miRNA may be detected outside of cells, even in circulating blood [40]. Figure 2 illustrates
the connection between genes and proteins.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

3. Gene and Protein Markers 
3.1. Gene Level 

MicroRNA (miRNA), which plays an important role in regulating pathophysiologi-
cal processes such as cell adhesion, proliferation, lipid uptake, efflux, and the production 
of inflammatory mediators, offers a new molecular understanding for investigating their 
effects on these pathways in coronary atherosclerosis and helps to pinpoint potential ther-
apeutic approaches. MiRNA’s potential as a diagnostic, prognostic, or therapy response 
biomarker for cardiovascular disease has been particularly increased by the realization 
that miRNA may be detected outside of cells, even in circulating blood [40]. Figure 2 il-
lustrates the connection between genes and proteins. 

 
Figure 2. The entire process from gene to protein. 

Cholesterol homeostasis is essential to the physiology of the cell. Variations in cellu-
lar or systemic cholesterol concentrations are linked to metabolic disorders. In circulation, 
cholesterol is transported by lipoproteins, which maintain cholesterol homeostasis by 
transferring (such as low-density lipoprotein (LDL)) and removing (such as high-density 
lipoprotein (HDL)) cholesterol from cells and tissues. High-level low-density lipoprotein 
cholesterol (LDLC) and/or low-level high-density lipoprotein cholesterol (HDLC) imbal-
ances that encourage cell cholesterol buildup can induce coronary atherosclerosis. Recent 
discoveries of genes that regulate the abundance and function of low-density lipoprotein 
(LDL) and high-density lipoprotein (HDL) have significantly increased our knowledge of 
the regulatory circuits that regulate plasma lipoprotein levels [4,5,11]. 

MiRNA regulates lipoprotein metabolism and associated diseases such as metabolic 
syndrome, obesity, and atherosclerosis [41]. miR-33 regulates macrophage activation and 
mitochondrial metabolism. Furthermore, recent research has indicated that miR-33 con-
trols vascular homeostasis and cardiac responsiveness to pressure stress. Aside from miR-
33 and miR-122, single-nucleotide polymorphisms near the miRNA gene were linked to 
abnormal levels of human circulation lipids. Some of these miRNAs, such as miR-148a 
and miR-128-1, target proteins involved in cellular cholesterol metabolisms, such as the 
low-density lipoprotein receptor (LDLR) and the ATP binding cassette A1 (ABCA1) [42]. 

MiR-122 is a microRNA implicated in the metabolism of lipoproteins, and its expres-
sion is substantially enriched in the liver [43]. MiR-122 is a critical regulator of cholesterol 
and fatty acid production and hence a crucial regulator of lipoprotein homeostasis, as 
shown by tests in mice and non-human primates, where its function was inhibited [43,44]. 
It should be noted that miR-122 acts on specific genes in hepatocytes, rather than partici-
pating in all lipid metabolism pathways [45]. MiR-223 and miR-27b, on the other hand, as 
major post-transcriptional regulatory centers, regulate the gene network of cholesterol 
and lipoprotein metabolism [46,47]. MiR-223 suppresses the hmgs1, sc4mol, and srb1 

Figure 2. The entire process from gene to protein.



Int. J. Mol. Sci. 2022, 23, 8939 5 of 14

Cholesterol homeostasis is essential to the physiology of the cell. Variations in cellular
or systemic cholesterol concentrations are linked to metabolic disorders. In circulation,
cholesterol is transported by lipoproteins, which maintain cholesterol homeostasis by
transferring (such as low-density lipoprotein (LDL)) and removing (such as high-density
lipoprotein (HDL)) cholesterol from cells and tissues. High-level low-density lipoprotein
cholesterol (LDLC) and/or low-level high-density lipoprotein cholesterol (HDLC) imbal-
ances that encourage cell cholesterol buildup can induce coronary atherosclerosis. Recent
discoveries of genes that regulate the abundance and function of low-density lipoprotein
(LDL) and high-density lipoprotein (HDL) have significantly increased our knowledge of
the regulatory circuits that regulate plasma lipoprotein levels [4,5,11].

MiRNA regulates lipoprotein metabolism and associated diseases such as metabolic
syndrome, obesity, and atherosclerosis [41]. miR-33 regulates macrophage activation and
mitochondrial metabolism. Furthermore, recent research has indicated that miR-33 controls
vascular homeostasis and cardiac responsiveness to pressure stress. Aside from miR-33 and
miR-122, single-nucleotide polymorphisms near the miRNA gene were linked to abnormal
levels of human circulation lipids. Some of these miRNAs, such as miR-148a and miR-
128-1, target proteins involved in cellular cholesterol metabolisms, such as the low-density
lipoprotein receptor (LDLR) and the ATP binding cassette A1 (ABCA1) [42].

MiR-122 is a microRNA implicated in the metabolism of lipoproteins, and its expres-
sion is substantially enriched in the liver [43]. MiR-122 is a critical regulator of cholesterol
and fatty acid production and hence a crucial regulator of lipoprotein homeostasis, as
shown by tests in mice and non-human primates, where its function was inhibited [43,44].
It should be noted that miR-122 acts on specific genes in hepatocytes, rather than partic-
ipating in all lipid metabolism pathways [45]. MiR-223 and miR-27b, on the other hand,
as major post-transcriptional regulatory centers, regulate the gene network of cholesterol
and lipoprotein metabolism [46,47]. MiR-223 suppresses the hmgs1, sc4mol, and srb1
genes involved in HDL absorption and cholesterol production, resulting in higher levels of
HDL-C and total cholesterol in the liver and plasma in miR-223 mice [46].

Coronary atherosclerosis can easily occur on the artery wall due to ongoing hyper-
lipidemia and fluctuating shear stress. Endothelial cells experience several molecular and
cellular conformational changes in response to biomechanical and biochemical stimuli,
aiding coronary atherosclerosis development. For instance, leukocyte migration to the
arterial wall, which may be one of the primary indicators connected to new plaques, is
aided by the early elevation of the expression of adhesion molecules such as vascular adhe-
sion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, and E-selectin [48].
Some miRNAs can directly target the 3′-UTR of these molecules as a result of miR-17-3p
(targeting ICAM-1) and miR-31 (targeting E-selectin), which are connected to coronary
atherosclerosis [49]. These molecules induce an increase in macrophages in the process
of atherosclerosis [50–52]. It is unclear how these two miRNAs function in experimental
coronary atherosclerosis. In addition to these molecules that promote adhesion, several
other pro-inflammatory and pro-thrombotic factors are also activated by nuclear factor
(NF)-κB signaling, which is a significant route. Two cytokine-reactive miRNAs, miR-181b
and miR-146a, control NF-κ. Different components of the B signal have a protective effect
on coronary atherosclerosis [53].

Elevated plasma levels of miR-146a-5p and miR-21-5p have been established in studies
as general biomarkers of ACS circulation [54]. According to Amanpreet et al., the most
prevalent miRNAs in CAD (miR-1, miR-133a, miR-208a, and miR-499) are significantly
expressed in the heart and have an important role in cardiac physiology [55]. Even though
studies found that numerous miRNAs are expressed in ACS, and stable CAD, miR-1,
miR-133, miR-208a, and miR-499 are typically considered ACS biomarkers [41], these
biomarkers, particularly miR-499, whose concentration gradient level is associated with
myocardial damage, are most likely to diagnose ACS and stable CAD [55,56].

Ariana et al.’s study demonstrates that miR-132 is both required and sufficient to cause
the formation of pathogenic cardiomyocytes, a hallmark of unfavorable cardiac remodeling.
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As a result, miR-132 can be employed as a therapeutic target for heart failure (HF). At
the same time, anti-miR-132 therapy demonstrated good pharmacokinetics, safety, toler-
ability, a dose-dependent PK/PD relationship, and high clinical promise [39,57]. Several
pathologic cellular effects and molecular signaling pathways relevant to atherosclerosis
are continuously regulated and fine-tuned by miRNA [40]. The progression and balance
of atherosclerotic plaques are regressed due to changes in these pathways—for instance,
ventricular hypertrophy (miR-208 and miR-133), fibrosis (miR-21 and miR-29), and ven-
tricular arrhythmias (miR-1, miR-328, and miR-133) [58]. Table 1 describes the miRNAs
mentioned above.

Table 1. Description of miRNAs.

Name

miR-122
miR-223
miR-27
miR-33
miR-128
miR-148a

miR-17
miR-31

miR-181
miR-146

miR-146
miR-21
miR-1
miR-133a
miR-208a
miR-499

miR-132
miR-1
miR-133
miR-328

miR-21
miR-29

miR-208
miR-133

Role Lipid
metabolism Inflammatory Proliferation and

differentiation ACS Heart
failure Arrhythmias Fibrosis Ventricular

hypertrophy

There are potential drawbacks of using miRNA to identify atherosclerosis, including
differences in the reliability of different screening methods [59]. The challenge of isolating
miRNA using conventional RNA reagents necessitates the optimization of miRNA isolation
from complex materials. Detection methods vary as well, with Qubit and microRNA assays
offering the lowest variation (%CV 5.47, SEM ± 0.07), followed by Nano Drops (%CV 7.01,
SEM ± 0.92) and the Agilent Biological Analyzer (%CV 59.21, SEM ± 1.31) [59]. The long-
term clinical use of miRNAs necessitates additional work to address current methodological,
technical, or analytical shortcomings. Standard operating protocols, coordinated miRNA
isolation, and quantification techniques are necessary to increase repeatability among
different investigations [60].

The advancement of genome-wide analysis, particularly microarray analysis, is critical
in identifying clinical indicators of coronary atherosclerosis [61,62]. Whole-blood gene ex-
pression profiles can reveal illness status dynamics and suggest putative disease causes [63].
Many prevalent illnesses, such as AMI [64–67] and various forms of atherosclerosis [68],
have distinct gene expression profiles. Differential gene expression in peripheral blood
cells can provide more information on disease dynamics and better forecast the likelihood
of cardiovascular events than currently employed approaches [63]. Changes in gene expres-
sion in peripheral blood cells have high sensitivity and specificity for diagnosing coronary
heart disease (CAD) [69]. The expression level of the adior2 gene, for example, is linked to
the advancement of coronary atherosclerosis [70]. Meng et al. revealed that numb ABCB1,
ACSL1, ZHHC9, and other genes have important roles in the pathogenesis of atherosclero-
sis [71–74]. Furthermore, a study from the University of Washington discovered that the
SVEP1 gene causes atherosclerosis in the absence of cholesterol [75].

3.2. Protein Levels

Protein is the stage following the gene level and the product of gene translation.
Coronary atherosclerosis develops due to a complex combination of environmental and
hereditary variables. According to recent research, smoking and stress can quickly lead
to cardiovascular disease [76,77]. While genetic variables are uncontrollable, adjustments
in certain environmental effects, such as lifestyle and smoking behaviors, may alleviate
cardiovascular symptoms [78,79]. It is important to note that genetic factors account for
50% of the risk of atherosclerosis. As a result, early patient diagnosis using reliable genetic
indicators of atherosclerosis can result in prompt and precise therapy choices. Therefore,
finding new molecular markers is crucial in coronary heart disease for early detection,
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prompt warning, early intervention, and improved prognosis [80,81]. APOC3 and APOC4
have been confirmed to be involved in the process of atherosclerosis [82–84]. Meng et al.
found that different proteins were present in different types of coronary atherosclerosis
and that different protein markers identified different phases of atherosclerosis. Six genes
(ALB, SHBG, APOC, APOC3, APOC4, and SAA4) were found to be responsible for its
regulation [68].

4. Trace Elements
4.1. Zinc Ion

The rise in patients with coronary heart disease in the United States, Europe, and
China is related to diet-associated raised blood cholesterol and blood glucose levels, as
well as poor lifestyle habits such as smoking and genetic factors [85]. Smoking, blood
sugar, lipids, and hypertension are the four main risk factors for coronary heart disease.
These four independent risk variables were found to be primary predictors of coronary
atherosclerosis [86–88]. Simultaneously, an intriguing relationship has surfaced. The
prevalence of coronary heart disease in underdeveloped nations is positively connected
with the human development index.

In contrast, it is inversely correlated with the human development index in developed
countries (ρ = 0.47 and 0.34, accordingly). Furthermore, the incidence of coronary heart
disease has increased in emerging nations over the last few decades, while it has decreased
(p = 0.021 and 0.002) in developed countries [89–92]. This is due to dietary imbalances and
differences in the serum concentrations of several trace elements [93].

As a result, it is worthwhile to investigate the differences in trace element concentra-
tions in the human body and their associations with coronary heart disease. An analysis
reveals that coronary heart disease and other diseases are associated with trace elements
in the body [94–96]. Zinc ion helps to control many cellular metabolic processes, such as
how proteins, lipids, and carbohydrates are broken down and used by the body [97,98].
Zinc is a crucial component of over seventy enzymes, including superoxide dismutase and
glutathione peroxidase. As a cofactor of copper-zinc superoxide dismutase (Cu, Zn SOD),
zinc can influence CD. Research has demonstrated that zinc supplementation can lower the
activity of copper-zinc superoxide dismutase due to an antagonistic relationship between
excessive zinc consumption and copper absorption [99]. Zinc also has anti-inflammatory
and antioxidant effects [94]. An increased zinc concentration enhances cell antioxidant
capability and ensures the maintenance of appropriate endothelium function. Due to zinc’s
involvement in enzymes, humoral mediators, and mitosis, the immune system relies on
zinc to function. Zinc deficiency is associated with sensitivity to oxidative stress, IL-1
and tumor necrosis factor expression, and endothelial cell death [94]. These factors are all
involved in atherosclerosis progression. A decline in zinc ion concentration is associated
with coronary heart disease in non-smoking older patients and women, particularly post-
menopausal women. Patients with coronary artery disease benefit from taking zinc ions in
the appropriate amounts [100].

4.2. Iron Ion

Iron is required for numerous physiological activities. Iron-containing proteins and
enzymes serve as an essential part of cellular metabolism. These enzymes and proteins are
essential for cell proliferation, cell death, DNA synthesis, DNA repair, and mitochondrial
function [101–103]. Iron is the principal component of hemoglobin, which is needed to
produce red blood cells and transfer oxygen. Iron is also potentially harmful in high
concentrations due to its tendency to produce reactive oxygen species (ROS) and damage
biomolecules via Fenton reaction-generated hydroxyl radicals [104]. It is also a significant
component in determining bacterial toxicity [92].

Iron consumption or outflow irregularities can result in disease. Iron was originally
implicated in coronary atherosclerosis development [104,105]. Low-density lipoprotein
oxidation can be accelerated by free iron [106]. LDL receptors on macrophages then absorb
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LDL, causing foam cells to be recruited. Foam cell infiltration and necrotic core enlargement
are crucial steps in coronary atherosclerosis development [107]. In atherosclerotic plaques,
many macrophage subtypes have been identified [108]. Macrophages have a significant
role in the progression of coronary atherosclerosis. Lipid absorption, which can cause the
production of inflammatory cytokines and the formation of foam cells, is the principal
cause of M1 macrophage activation in plaques [109]. M1 macrophages are considered to
induce coronary atherosclerosis by paracrine stimulating SMC migration and proliferation
from the middle membrane to the intima.

Hydrolyzing collagen fibers in the fiber cap, MMP-1, MMP-3, and MMP-9 produced
by M1 cells might cause plaque instability [110]. In addition, Th2 cytokines (such as
IL-4, IL-10, and IL-13) activate M2 macrophages to create anti-inflammatory cytokines.
The inflammatory response is assumed to be balanced by M2 macrophages, which also
support tissue repair and inflammation remission. The M1/M2 model offers a condensed
structure for comprehending macrophage behavior in a damaged environment. While M2
macrophages can export and metabolize iron, M1 macrophages have high ferritin content
and are superior in terms of iron accumulation. Coronary atherosclerosis may result from
the variation in the iron turnover rate between M1 and M2 macrophages. The relationship
between the peripheral blood iron concentration and coronary atherosclerosis was validated
by a cross-sectional study involving more than 4000 individuals. Loss of peripheral blood
iron ions can be used as a biomarker for coronary atherosclerosis prognosis [64].

4.3. Other Trace Elements

Trace elements significantly influence cardiovascular disease by directly or indirectly
altering the circulatory process [111–113]. Blood metal levels and childhood and adolescent
obesity have been demonstrated to correlate positively, according to research by Fan
et al. [114]. It was discovered that obesity was associated with an increase in superoxide
dismutase (SOD) levels and total circulation copper concentrations. Metal ions influence the
expression of leptin in adipocytes by regulating the release of free fatty acids and glucose
uptake, highlighting that obesity is a significant coronary heart disease risk factor [114,115].
As per Kalita et al., variations in trace elements can improve insulin resistance in people
with type 2 diabetes [116]. Numerous diabetes-related enzymes utilize magnesium and
manganese as cofactors. Their insufficiency raises the risk of metabolic syndrome, impairs
glucose metabolism, and may lead to atherosclerosis [116,117]. The serum selenium level
was substantially linked with all-cause mortality in both men and women, particularly
women with coronary heart disease, according to Li et al. [118]. Consequently, alterations
in trace element concentrations in the body are regarded as the most important factor in
the development of some diseases and in transitioning from health to illness.

This article has certain limitations. The study only discusses imaging, genes and
proteins, and trace elements related to atherosclerosis, but other facets of the disease should
also be examined. The key to the early detection of atherosclerosis is the combination of
more cutting-edge diagnostic procedures and various examination techniques.

5. Conclusions

It is viable to assess coronary atherosclerosis risk using genes and trace elements. In
patients with definite symptoms of coronary heart disease, it is reasonable to perform
noninvasive investigations such as CCTA. One of the therapy methods for coronary artery
disease is the detection of trace elements, which is important for prognosis.
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Abbreviation
LDL Low-density lipoprotein
ICA Invasive coronary angiography
CCTA Computed tomography coronary angiography
CAD Coronary artery disease
ACS Acute coronary syndrome
MACE Major cardiovascular adverse events
MSCT Multi-slice spiral CT
DSCT Dual-source computed tomography
IVUS Intravascular ultrasound
MRI Magnetic resonance imaging
18-F-FDG 18 -F-fluorodeoxyglucose
PET Positron emission tomograph
NIR Near-infrared imaging
ICG Indocyanine green
miRNA MicroRNA
CV Coefficient of variation
ABCA1 ATP binding cassette A1
HDL High-density lipoprotein
LDLC Low-density lipoprotein cholesterol
HDLC High-density lipoprotein cholesterol
VCAM Vascular adhesion molecule
ICAM Intracellular adhesion molecule
NF Nuclear factor
ACS Acute coronary syndrome
HF Heart failure
PK/PD Pharmacokinetics/pharmacodynamics
AMI Acute myocardial infarction
ROS Reactive oxygen species
SOD Superoxide dismutase
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