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Abstract: Nickel (Ni) is an essential trace element for plant growth and a component of the plant
body that has many different functions in plants. Although it has been confirmed that nickel
ions (Ni2+) havea certain regulatory effect on nitrogen (N) metabolism, there are not enough data
to prove whether exogenous Ni2+ can increase the carbon (C) and N metabolism in the roots of
tomato seedlingsunder low-nitrogen (LN) conditions. Therefore, through the present experiment, we
revealed the key mechanism of Ni2+-mediated tomato root tolerance to LN levels. Tomato plants
were cultured at two different N levels (7.66 and 0.383 mmol L−1) and two different Ni2+ levels (0
and 0.1 mg L−1 NiSO4 6H2O) under hydroponic conditions. After nine days, we collected roots for
physiological, biochemical, and transcriptome sequencing analyses and found that the activities of
N assimilation-related enzymes decreased at LN levels. In contrast, Ni2+ significantly increased the
activities of N assimilation-related enzymes and increased the contents of nitrate (NO3

−), ammonium
(NH4

+), and total amino acids. Through root transcriptomic analysis, 3738 differentially expressed
genes (DEGs) were identified. DEGs related to C and N metabolism were downregulated after LN
application. However, after Ni2+ treatment, PK, PDHB, GAPDH, NR, NiR, GS, GOGAT, and other
DEGs related to C and N metabolism were significantly upregulated. In conclusion, our results
suggest that Ni2+ can regulate the C and N metabolism pathways in tomato roots to alleviate the
impact of LN levels.

Keywords: nickel; tomato root; RNA-seq; carbon and nitrogen metabolism; glycolytic pathway-
tricarboxylic acid cycle; low nitrogen; biosynthesis of amino acids

1. Introduction

Nitrogen (N) is an essential mineral nutrient element in plants; it is an important
component of proteins, nucleic acids, phospholipids, and certain growth hormones. It
also accounts for 40–50% of the total final crop yield [1–3]. Therefore, the application of
N fertilizer in agricultural production often increases crop yield. In actual production,
vegetable farmers often overapply N fertilizer, far exceeding the needs of the crop, to
increase economic efficiency [4,5]. However, instead of improving crop yield and quality,
excessive N fertilizer inputs have reduced efficiency and increased N fertilizer losses,
causing serious environmental problems [6].

Nickel (Ni) is considered an important plant micronutrient due to its different biologi-
cal functions [7]. Plants grown in Ni-deficient nutrient solutions may show significant Ni
deficiency symptoms such as the “mouse-ear or little-leaf” (ME–LL) found in pecan [8,9].
In addition, Ni is the only known urease activator that activates urease to then hydrolyze
urea to ammonia and carbon dioxide [10], thereby avoiding the toxic effects of urea ac-
cumulation. Further, urea accumulation can lead to severe limitations in the supply of
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ammonia for the synthesis of certain amino acids and various types of proteins, which
in turn appears to cause other disruptions in N metabolism (in particular, the disruption
of glutamine synthase [11,12]), which is ultimately detrimental to plant growth. On the
other hand, Ni is also a component of other enzymes responsible for nitrate reduction
and is therefore involved in N assimilation in plants [13]. A study on cowpea found that
Ni and urease were involved in N metabolism during the reproductive growth phase of
legumes [14]. Other studies have shown that the application of nickel at low concentrations
can increase the level of plant N metabolism and have a beneficial effect on plant growth
and development [15–17]. Through a previous experiment, we showed that exogenous
nickel ions (Ni2+) could regulate genes involved in the EMP pathway–TCA cycle, amino
acid biosynthesis, and N metabolism in tomato leaves [18]. As a major site of N uptake,
the physiological characteristics of the tomato roots system directly influence the growth
and development of tomatoes. However, it is not clear how the root system responds to
exogenous Ni2+ regulation under low-nitrogen (LN) conditions. Thus, physiological, bio-
chemical, and transcriptomic analyses were used in this study to analyzethe changes to the
carbon (C) and N metabolism in the roots of tomato seedlings following Ni2+ applications
under LN conditions.

2. Results
2.1. Carbohydrate Content

The starch content at LN levels was significantly decreased by 54% compared with
normal nitrogen (NN) levels, while fructose was significantly increased by 40%, glucose
by 68%, and sucrose by 76% (Figure 1A–D). These results show that starch is decomposed
in large quantities under LN levels and that the three soluble sugars—fructose, glucose,
and sucrose—are synthesized in large quantities to resist adversity. The starch and fructose
contents increased significantly by 46 and 13%, respectively, under LN conditions after Ni2+

addition.
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Figure 1. The contents of starch (A), fructose (B), glucose (C), and sucrose (D) in tomato roots 

treated with LN and Ni2+. Data are presented as the mean ± SD of three independent biological 

Figure 1. The contents of starch (A), fructose (B), glucose (C), and sucrose (D) in tomato roots treated
with LN and Ni2+. Data are presented as the mean ± SD of three independent biological replicates.
Different lowercase letters in the same column indicate significant differences at the 0.05 level among
treatments.
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2.2. Enzymatic Activities and N Content

As shown in Figures 2 and 3, Ni2+ treatment increased the enzymatic activities of
nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate syn-
thetase (GOGAT), glutamate dehydrogenase (GDH) and the contents of nitrate nitrogen
(NO3

−), ammonium nitrogen (NH4
+), and the total amino acids. Under LN treatment,

all enzymatic activities and contents of N compounds decreased in comparisonwith NN;
however, LN significantly inhibited NR (47%), NiR (47%), GS (47%), GDH (41%), and
GOGAT (60%) activities. This indicates that LN levels inhibit N assimilation, thereby
inhibiting the formation of nitrogen-containing compounds. However, after Ni2+ treatment,
the contents of NR, NiR, GS, GOGAT, GDH, NO3

−, NH4
+, and the total amino acids all

increased under LN conditions. Under LN conditions, the addition of Ni2+ significantly
increased the activities of NR, GDH, and GOGAT by 80, 45 and 72%, respectively. This
indicates that Ni2+ can regulate N metabolism.
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Figure 2. The NO3− content (A), NH4+ content (B), NR (C), and NiR (D) in tomato roots treated with LN 
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Figure 2. The NO3
− content (A), NH4

+ content (B), NR (C), and NiR (D) in tomato roots treated
with LN and Ni2+. Data are presented as the mean ± SD of three independent biological replicates.
Different lowercase letters in the same column indicate significant differences at the 0.05 level among
treatments.

2.3. Analysis of Differentially Expressed Genes (DEGs)

We found that each mRNA library contained a total of 40.68 to 54.42 million clean
reads with a Q30 percentage ≥91% (Table 1). We obtained approximately 41.27 million,
50.11 million and 41.95 million clean reads from the NN group, LN group, and Ni2+ + LN
group, respectively. We retained a large proportion (approximately 89.42, 89.47 and 90.45%)
of clean reads (approximately 36.89 million, 44.91 million and 37.94 million for the NN
group, LN group, and Ni2+ + LN group, respectively) for assembly and downstream analy-
sis. In addition, we obtained approximately 36.08 million, 44.15 million, and 37.24 million
reads from the NN group, LN group, and Ni2+ + LN group, respectively, which were
aligned to the unique position of the reference genome. The percentage of reads aligned to
the unique position of the reference genome in the clean reads was approximately 87.42,
87.96 and 88.78%, for the NN group, LN group, and Ni2+ + LN group, respectively. We
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identified 3738 DEGs using these treatments by analyzingthe full variation in DEGs across
different databases. Overall, 2944 and 1837 genes were differentially expressed between
the LN vs. NN groups and the Ni2+ + LN vs. LN groups, respectively. Among these DEGs,
1465 and 748 genes were upregulated, and 179 and 1089 were downregulated (Figure 4A–C
and Table S1).
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Table 1. Read quality in the RNA-sequencing (RNA-seq) analysis.

Sample
Name

Clean
Reads

Mapped
Reads

Mapping
Rate (%)

Uniq Mapped
Reads

Uniq Mapping
Rate (%) Q30 (%)

NN_1 40,944,522 37,175,166 90.79 36,353,079 88.79 91.62
NN_2 42,183,292 36,617,683 86.81 35,772,363 84.80 91.17
NN_3 40,683,494 36,883,568 90.66 36,079,625 88.68 91.42
LN_1 54,418,492 49,722,687 91.37 48,893,527 89.85 91.45
LN_2 51,221,772 46,191,761 90.18 45,404,214 88.64 91.95
LN_3 44,687,904 38,817,524 86.86 38,152,833 85.38 91.91

Ni2+ + LN_1 40,918,376 37,467,413 91.57 36,774,788 89.87 91.85
Ni2+ + LN_2 43,462,968 39,298,045 90.42 38,608,365 88.83 91.85
Ni2+ + LN_3 41,466,278 37,055,020 89.36 36,343,722 87.65 91.76

2.4. Functional Classification of DEGs and Validation by Quantitative Real-Time PCR (RT-qPCR)

The Venn diagram showed the existence of 1043 co-DEGs between the two comparison
groups (Figure 4C and Table S2), which can be regarded as the central DEGs for the
exploration of the corresponding co-acting mechanism. These 1043 common DEGs were
subjected to hierarchical clustering analysis, in which 706 or 346 genes were upregulated
and 337 or 697 genes were downregulated in the LN vs. NN group and the Ni2+ + LN
vs. LN group, respectively (Figure 5A and Table S2). We performed a KEGG classification
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analysis on these common DEGs, and the results showed the main and other metabolic
pathways involved (Figure 5B and Table S3). We used primers related to C metabolism
(Solyc08g079080.4, Solyc11g007690.2) and N metabolism (Solyc03g083440.3, Solyc04g014510.3,
Solyc09g010970.3, Solyc10g050890.2, and Solyc11g013810.2). We verified the authenticity
of the RNA-seq data and the relative expression levels of the eight DEGs of interest by
RT-qPCR. We found that the RT-qPCR results were consistent with the RNA-seq expression
profile (Table 2), thus demonstrating the authenticity of the RNA-seq data.
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2.5. Metabolic Regulation of Enzymes Encoded by DEGs

The common DEGs were significantly enriched in C and N metabolic pathways. LN
application inhibited the expression levels of pyruvate kinase (PK), pyruvate dehydro-
genase E1 component beta subunit (PDHB), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), nitrate reductase (NR), ferredoxin-nitrite reductase (NiR), glutamine synthetase
(GS), and glutamate synthase (GOGAT) (Figure 6 and Table S1). However, in the Ni2+

treatment (Ni2+ + LN), the expression levels of these genes were all increased, and NR
and NiR were significantly increased by 4.3 and 3.6 fold, respectively. The results for NR,
NiR, GS, and GOGAT in the N assimilation pathway were essentiallyconsistent with the
physiological detection results of the enzymes.
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Table 2. DEGs in the roots of tomato plants in response to Ni2+ and LN levels.

Gene Gene ID
LN vs. NN Ni2+ + LN vs. LN

RNA-Seq RT-qPCR RNA-Seq RT-qPCR

NR Solyc11g013810.2 −3.35 −0.08 4.32 1.40
NiR Solyc10g050890.2 −3.57 −0.53 3.58 1.40
GS Solyc04g014510.3 −2.43 −0.24 2.00 0.26

GOGAT Solyc03g083440.3 −2.70 −1.36 2.54 0.35
CA Solyc09g010970.3 1.08 0.34 −1.16 −0.92
PK Solyc11g007690.2 −1.05 −0.10 1.15 0.58

INV Solyc08g079080.4 3.09 1.72 −1.43 −1.17
Note: the number indicates log2(fold change).
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Figure 6. A simplified transcriptional map based on associated transcriptional pathways in tomato
roots in response to Ni2+ and LN levels. Each square represents DEGs, and the color indicates the
log2(fold change) of the DEGs (|log2(fold change)| ≥ 1 and p-adjusted value < 0.01; red indicates
upregulation, and green indicates downregulation).

3. Discussion

As an extremely common limiting factor for plant growth and development, N
plays a vital role in various metabolic processes. Efficient N supply and utilization re-
sult in extensive physiological and biochemical changes in plants [19], which, in turn,
reduce plant growth. Correspondingly, plants can respond to changes in N availabil-
ity through changes in morphological, physiological, and biochemical pathways [20,21].
Under LN levels, the activities of key N-assimilation enzymes such as NR/NiR and
GOGAT/GS (Figures 2 and 3) and their related genes (Solyc04g014510.3, Solyc03g083440.3,
Solyc08g044270.3, Solyc11g013810.2, Solyc01g108630.3, and Solyc10g050890.2) were signifi-
cantly reduced; they alsodisrupted the transcript levels of amino acid biosynthesis-related
genes (Figure 6 and Table S2), thereby reducing the accumulation of free amino acids
(Figure 3), and therefore indicating that N assimilation is affected by inhibition. Similarly,
a dramatic downregulation of N assimilation-related DEGs were found in apples and
rice [22,23] during N starvation. The downregulation of these DEGs may be a feedback
response to N starvation; however, further studies are needed to evaluate this hypothesis.
Exogenous Ni2+ increased the concentration of NO3

− in roots under LN conditions, thereby
promoting the activities of NR and NiR, and their related gene expression levels (Figure 3
and Table S2), which in turn promoted the reduction of NO3

−. GS/GOGAT is crucial for
regulating the N cycle and NH4

+ assimilation in response to adverse environments [24].
Exogenous Ni2+ induces GS/GOGAT activity under LN levels and mediates the transcrip-
tion level of its related coding genes, which may help promote NH4

+ reassimilation under
low-N conditions to improve plant tolerance to N deficiency [25]. As an important form
and the main transport form of N assimilation in plants, free amino acids can reflect the
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supply capacity of N assimilates [26]. The supply of Ni2+, under LN conditions, read-
justed the transcription levels of genes encoding amino acid synthesis-related enzymes
in tomato roots (Figure 6 and Table S2) in order to maintain the normal generation of
amino acids and ensure an adequate supply of N assimilates. At the same time, various
amino acids must be transported to specific sites by intracellular amino acid transporters
to perform their respective functions [27]. In this study, LN supply upregulated amino
acid transporter genes, including vacuolar amino acid transporter 1 (Solyc08g077823.1 and
Solyc09g098380.2); proline transporter 2 (Solyc03g096380.3 and Solyc05g052830.3); cationic
amino acid transporter 8 (Solyc12g011370. 2); the transcription of the uncharacterized protein
LOC101268525 (Solyc10g078470.2), and downregulated the transcription of cationic amino
acid transporter 6 (Solyc08g077823.1) (Figure 6 and Table S2). This seems to be an adaptive
response of tomato seedlings to LN levels, whereas Ni2+ stimulation restored the normal
expression levels of the above amino acid transporter genes, suggesting that Ni2+ played a
unique role in improving N utilization. On the other hand, N assimilation is a dynamic
and complex process involving multiple genes [28]; in addition to NO3

− reduction, NH4
+

assimilation, amino acid biosynthesis, and amino acid transport; it also includes NO3
−

and NH4
+ absorption and transportation. Studies have shown that a total of four protein

families are involved in nitrate transport [29], of which the high-affinity nitrate transporter
(NRT2) plays an important role in NO3

− uptake and N utilization. Normally, in the pres-
ence of a low N supply, NRT2 is activated to improve N uptake [30]. However, some
reports suggest that both NRT2 and low-affinity nitrate transporters (PTR family/NRT1)
contribute to meeting the plant’s nitrate demand [31,32]. In our study, NRT1, NRT2, and
the chloride channel (CLC) protein family CLC-b responded positively to changes in N
levels (Figure 6 and Table S2). Among them, NRT2 (Solyc00g090860.2 and Solyc11g069750.2)
showed an obvious response to both low N and Ni2+ supply. Previous studies have shown
that overexpression of OsNRT2.3b improves the uptake of nitrate in rice under low- and
high-N supply conditions, thereby increasing yield [31]. Therefore, these candidate genes
(Solyc00g090860.2 and Solyc11g069750.2) may be the focus of future research to improve the
uptake, transport, and utilization efficiency of NO3

− in the tomato seedling root system.
Interestingly, under low-N conditions, the ammonium transporter AMT1 (Solyc09g090730.2)
and AMT3 (Solyc09g065740.2) genes were upregulated in roots (Figure 6 and Table S2).
Further, the AMT1 protein plays a key role in NH4

+ uptake [33], suggesting that plants may
employ alternative strategies (such as increased NH4

+ uptake) to meet N requirements.
On the other hand, N availability affects C assimilation [34], and N assimilation de-

pends on the C source and reducesthe power provided by C assimilation. This interaction
has important implications for plant life activities. Generally, changes in environmen-
tal conditions lead to the disruption of metabolic balance in plants, as plants rely on
the regulation of energy and material metabolism (e.g., C tuning and N assimilation) to
adapt to stress [35]. In plants, sucrose (as the main nonstructural carbohydrate) can be
hydrolyzedinto glucose and fructose, which in turn enter the EMP–TCA pathway to ob-
tain a large amount of capacity and reduce the power required for the life activities of
organisms. Under LN conditions, the contents of sucrose, glucose, and fructose in tomato
roots were increased (Figure 1) and accompanied by an increase in the starch metabolism-
related gene α-Glucosidase (Solyc02g069670.3) and the sucrose metabolism-related gene INV
(Solyc08g079080.4). While the expression of those genes was upregulated, the expression
of SS (Solyc12g009300.3) was downregulated (Figure 6 and Table S2). This means that the
plant body is osmotically adjusted to maintain the osmotic pressure difference between
the inside and outside of the cells. Furthermore, an LN supply inhibits energy metabolism,
including the EMP–TCA pathway, in plants [36]. Our results also indicated that LN in-
deed suppressed the expression of the EMP-related genes GAPDH (Solyc06g071920.3),
PK (Solyc11g007690.2), and PDHB (Solyc06g072580.3) (Figure 6 and Table S2). After Ni2+

application, the expression levels of related genes were restored, which may increase
the availability of the C backbone for amino acid biosynthesis and other physiological
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and biochemical pathways and thus further promote the progression of related metabolic
processes.

In summary, the application of Ni2+ as a regulatory strategy further leads to changes
in metabolites and related metabolic pathways by altering the transcriptional levels and
enzymatic activities of genes related to the C and N assimilation pathways (such as NRT2,
NR/NiR, and GS/GOGAT). The results confirmed the effect of Ni2+ on C and N assimilation
in tomato roots.

4. Materials and Methods
4.1. Plant Materials and Treatments

The experiment was carried out in the plant culture room of Fujian Agriculture and
Forestry University. We used tomato (Solanum lycopersicum L. ‘Micro Tom’) seedlings
grown in cavity trays withup to 5 leaves and 1 heart and then planted into hydroponic
tanks and grown for 3 d. The experimental design is shown in Table 3 (for Ni2+ treatment,
NiSO4 6H2O was added to the hydroponic solution), and the specific nutrient solution
configuration is shown in the Appendix A. The experiment was carried out at the end of
0 d, and the nutrient solution was changed every 3 d for a total of 3 times. The experiment
was carried out with a completely randomized group design, consisting of four treatments.

Table 3. Design of experiment.

NiSO4 6H2O Concentration (mg L−1) N Concentration (mmol L−1)

0
0.383

7.66

0.1
0.383

7.66

4.2. Determination of Enzyme Activity in the C and N Metabolism

We used kits (from Comin, Suzhou, China) to determine the sucrose, glucose, fructose,
starch, total amino acid, NO3

− and NH4
+ contents; NR, NiR, GS, GOGAT, and GDH

activities.

4.3. RNA-Seq and RT-qPCR Analysis

The transcriptomic data used in this experiment were provided by Beijing BioMarker
and are detailed in the Appendix A. We screened for transcripts that met the criteria
for |log2(fold change)| ≥ 1 and a p-adjusted value < 0.01 in regard to DEGs. For RT-
qPCR analysis, total RNA was extracted from 0.3 g of root samples using the FastPure
Plant Total RNA Isolation Kit (Polysaccharides & Polyphenolics-rich) (Vazyme, Nanjing,
China). The kit used for reverse transcribing RNA and generating cDNA was FastKing
RT SuperMix (Tiangen, Beijing, China), and the 2−∆∆CT method was used to calculate the
relative expression levels of the genes. Please refer to Table 4 for the relevant gene sequence.

4.4. Statistical Analysis

We used DPS software 17.10 (Zhejiang University, Hangzhou, China) for statistical
analysis. Additionally, Duncan’s multiple range test (p < 0.05) was used to analyzethe
significant differences between experimental treatments.
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Table 4. Primers used for RT-qPCR analysis.

Gene Gene ID Primer Sequences (Forward/Reverse)

Actin LOC101253675 F 5′-GTCCTCTTCCAGCCATCCAT-3′

R 5′-ACCACTGAGCACAATGTTACCG-3′

NR Solyc11g013810.2 F 5′-GCAACTTCCCTCCTTCATCCAACC-3′

R 5′-CGTCATCGTCATCCTCGTCTTCAC-3′

NiR Solyc10g050890.2 F 5′-TGCTTGTGGGTGGATTCTTCAGTC-3′

R 5′-TTCTGCCTGTTCCCTCGGGTAC-3′

GS Solyc04g014510.3 F 5′-CAACGGAGAAGTGATGCCTGGAC-3′

R 5′-GCCCACAACTCGTCACCTGATG-3′

GOGAT Solyc03g083440.3 F 5′-GGCTGGTATGAGTGGTGGTGTTG-3′

R 5′-ACGCTGGTGTTGCTGTATCATCATC-3′

CA Solyc09g010970.3 F 5′-TGGTGCCTCCTTATGGAGCTGATCC-3′

R 5′-CGAATGCCTCCACAGCGACTATG-3′

PK Solyc11g007690.2 F 5′-TGCCTTGAATCGGGAATGTCTGTG-3′

R 5′-TAGTTCAGGACCACCAGTGTCTAGC-3′

INV Solyc08g079080.4 F 5′-ACGGTAACAACGACGGTACTGATG-3′

R 5′-TCCTCATGGTGGTTAACGGCATTAG-3′

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911398/s1.
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Appendix A

Appendix A.1. N Nutrient Solution Formula

Table A1. N nutrient solution formula with different concentrations.

N Concentration
(mmol L−1)

Reagent (mmol L−1)

Ca(NO3)2 4H2O CaCl2 KNO3 NH4H2PO4 KH2PO4 KCl MgSO4 7H2O

0.383 0.075 1.425 0.200 0.033 0.635 3.168 0.998
7.67 1.499 3.996 0.669 0.998

Appendix A.2. RNA Extraction and RNA-Seq Analysis

We extracted the total RNA from 0.2 g roots samples using an RNAprep Pure Plant Kit
(TIANGEN, Beijing, China). We then constructed and sequenced the mRNA libraries using
an Illumina platform. After processing for quality control and data filtering, we mapped the
clean reads to the reference genome(s) using TopHat2 (v2.2.13). We expressed the transcript

https://www.mdpi.com/article/10.3390/ijms231911398/s1
https://www.mdpi.com/article/10.3390/ijms231911398/s1
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level quantification as fragments per kilobase per million reads mapped. We performed a
differ-ential expression analysis of the two groups using the DESeq R package (v1.10.1). We
categorized the transcripts that satisfied the criteria |log2(fold change)|≥ 1 and p-adjusted
value < 0.01 as DEGs. We assigned the DEGs to obtain the GO annotations (i.e., functional
classes of DEGs, including biological process, cellular component, and molecular function)
to explore their involvement in biological pathways, and used KOBAS software to test the
statistical enrichment of differentially expressed genes in KEGG pathways.
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