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Despite increasing use of in vivo multielectrode array (MEA) implants for basic
research and medical applications, the critical structural interfaces formed between
the implants and the brain parenchyma, remain elusive. Prevailing view assumes that
formation of multicellular inflammatory encapsulating-scar around the implants [the
foreign body response (FBR)] degrades the implant electrophysiological functions.
Using gold mushroom shaped microelectrodes (gMµEs) based perforated polyimide
MEA platforms (PPMPs) that in contrast to standard probes can be thin sectioned
along with the interfacing parenchyma; we examined here for the first time the
interfaces formed between brains parenchyma and implanted 3D vertical microelectrode
platforms at the ultrastructural level. Our study demonstrates remarkable regenerative
processes including neuritogenesis, axon myelination, synapse formation and capillaries
regrowth in contact and around the implant. In parallel, we document that individual
microglia adhere tightly and engulf the gMµEs. Modeling of the formed microglia-
electrode junctions suggest that this configuration suffice to account for the low and
deteriorating recording qualities of in vivo MEA implants. These observations help define
the anticipated hurdles to adapting the advantageous 3D in vitro vertical-electrode
technologies to in vivo settings, and suggest that improving the recording qualities and
durability of planar or 3D in vivo electrode implants will require developing approaches
to eliminate the insulating microglia junctions.

Keywords: neural-engineering, neuroelectronics, neuroimplant, interfacing, microelectrodes, ultrastructure
(electron microscopy), immunohistology, polyimide
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INTRODUCTION

Basic and clinically oriented brain research and their applications
rely on the use of sophisticated neuroimplants for long-
term, simultaneous, multisite extracellular recordings of field
potentials (FP) generated by neurons in freely behaving subjects.
Despite significant technological progress, contemporary in vivo
multielectrode array (MEA) technologies suffer from inherent
limitations that include: (a) a low signal-to-noise ratio (S/N),
(b) low source resolution, and (c) deterioration of the recording
yield and FP amplitudes within days to weeks of implantation
(Jackson and Fetz, 2007; Perge et al., 2013; Voigts et al.,
2013; Harris et al., 2016; Lee et al., 2018, 2021). In addition,
current in vivo brain implants are “blind” to sub-threshold
synaptic potentials generated by individual neurons. This implies
that critical elements of the brains signaling repertoire and
computational components are ignored. The prevailing view
relates these limitations to: (a) the gradual increase in the
thickness of the inflammatory glia scar that displaces neurons
from the implant surfaces (Edell et al., 1992; Biran et al.,
2005; Polikov et al., 2005; Malaga et al., 2016; Salatino et al.,
2017a; Michelson et al., 2018), (b) the glial scar encapsulating
the implant (Szarowski et al., 2003; Johnson et al., 2005;
Polikov et al., 2005; Otto et al., 2006; Williams et al., 2007;
Prasad and Sanchez, 2012) and a biofouling layer assembled
on the electrode surfaces insulate the electrodes from the
current sources by their relatively high resistivity compared
to the intact brain tissue (Sommakia et al., 2009, 2014;
Malaga et al., 2016), (c) pro-inflammatory cytokines released
from the glia and injured neurons lead to demyelination of
the axons and thereby disrupt action potential propagation
(Winslow and Tresco, 2010; Winslow et al., 2010), (d) released
cytokines reduce the excitability and synaptic connectivity of
neurons in the implant’s vicinity (Vezzani and Viviani, 2015;
Salatino et al., 2017b, 2019; Hermann and Capadona, 2018;
Thompson et al., 2020), (e) damage to blood capillaries by
the implant leads to infiltration of neurotoxic factors and
myeloid cells (Saxena et al., 2013) and reduces the blood
supply to individual cells. Although objective experimental
attempts to relate the thickness of the inflammatory foreign
body response (FBR) to deterioration in recording qualities have
failed, this concept has continued to dominate the field and still
shapes extensive research efforts to mitigate or overcome this
deterioration. Whereas ever-improving spike-detecting, spike-
sorting and signal averaging techniques make it possible to
extract significant information from monitoring extracellular FP
(Quiroga et al., 2004; Einevoll et al., 2012; Carlson and Carin,
2019), the limited recording qualities of current multielectrode
array-implants (MEA implants) and their deterioration in time
considerably hinder the research progress.

The realization that the use of substrate integrated planar
MEA technologies for extracellular recordings (Figure 1)
inherently limits the qualities of in vitro and in vivo systems has
prompted the development of new 3D in vitro technologies to
enable parallel, multisite intracellular recordings and stimulation
from many individual cultured cells (neurons, cardiomyocytes
and striated muscles). In principle, this family of in vitro

MEA technologies utilizes different forms of 3D vertical
nano-structures (nano-pillars) that pierce the plasma membrane
of cultured cells (by electroporation or spontaneously) in a way
similar to classical sharp electrodes (Figure 1 and Tian et al.,
2010; Angle and Schaefer, 2012; Duan et al., 2012; Gao et al., 2012;
Robinson et al., 2012; Xie et al., 2012; Angle et al., 2014; Lin and
Cui, 2014; Lin et al., 2014; Qing et al., 2014; Abbott et al., 2017,
2018, 2019; Dipalo et al., 2017; Liu et al., 2017; Mateus et al., 2019;
Li et al., 2020; Teixeira et al., 2020; Yoo et al., 2020; Xu et al., 2021;
Zhang et al., 2021).

At the same time, a number of laboratories have developed
the “IN-CELL” recording and stimulation configuration, in
which micrometer-sized, extracellular gold mushroom-shaped
microelectrodes (gMµEs) record attenuated synaptic and action
potentials (Figure 1 and Spira et al., 2007; Hai et al., 2010a,b;
Fendyur and Spira, 2012; Spira and Hai, 2013; Rabieh et al., 2016;
Shmoel et al., 2016; Weidlich et al., 2017; McGuire et al., 2018;
Spira et al., 2018, 2019; Mateus et al., 2019; Jones et al., 2020;
Teixeira et al., 2020). Ultrastructural imaging complemented by
electrophysiology and model system analysis of the cultured-
neurons/gMµEs configuration have revealed that the biophysical
principles of “IN-CELL” recordings are identical to those of the
perforated patch electrode configuration (Horn and Marty, 1988;
Akaike and Harata, 1994).

Successful adaptation of the vertical nano-pillar and gMµEs
MEA approaches to in vivo brain research could effectively
address the limitations of the currently used planar MEA
technologies (low S/N, poor source resolution and deterioration),
and importantly would make it possible to record the
entire signaling repertoire from many individual neurons.
It is thus expected that such adaptation will significantly
improve the likelihood of understanding the codes of brain-
circuit computations.

Ultrastructural examinations of the interfaces formed between
cultured neurons and gMµEs or vertical nano-pillar based MEAs
have played key roles in revealing that cultured neurons and
other cell types tightly engulf vertical structures by evolutionarily
conserved cell biological mechanisms (Hai et al., 2010b; Santoro
et al., 2014, 2017b; McGuire et al., 2018). And, that the narrow
cleft formed between the engulfing plasma membrane and the
gMµEs form a high seal resistance (Rs). This, together with
the increased conductance of the cell’s membrane that faces
the gMµEs (the junctional membrane—Rj, Figure 1), make it
possible to record attenuated action potentials and subthreshold
synaptic potentials with features and biophysics similar to
perforated patch recordings (Horn and Marty, 1988; Akaike and
Harata, 1994; Spira et al., 2007; Hai et al., 2009a,b; Fendyur et al.,
2011; Santoro et al., 2013, 2014, 2017a,b).

In contrast to meticulous ultrastructural studies of the
interfaces formed between cultured cells and different types
of vertical nanoelectrodes, structural studies of the interfaces
formed between implanted neuroprobes and in vivo brain
parenchyma were of very low resolution. Besides the inherent
low spatial resolution of the immunohistological methods
used, in the vast majority of light and electron microscope
studies, the implants were pulled out (extracted) from the brain
tissue prior to thin sectioning for histological examination.
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FIGURE 1 | (A) Passive analog electrical circuit models depicting the structural interfaces formed between cells and recording microelectrodes under in vitro
conditions. (A1) Substrate integrated planar electrode for extracellular field potential recordings, (A2) a vertical nano-pillar electrode that pierces the plasma
membrane for intracellular recordings, and (A3) extracellular gold mushroom shaped vertical microelectrode (gMµE) for IN-CELL recordings. The three configurations
differ mainly in terms of the nature and dimensions of the cleft formed between the cultured cells (neurons, cardiomyocytes, or striated muscle fibers) and the
recording electrode. In panel (A1), the extracellular field potential generated by propagating action potentials is largely attenuated across the high resistance
non-junctional membrane (Rn) and the low seal resistance (Rs). In panel (A2), the vertical nanoelectrode pierces the cell’s plasma membrane, gaining direct access
to the cytosol (Rn is reduced to zero). A very high seal (∼G�) resistance (not drawn) formed between the vertical nanoelectrode’s (yellow electrode with a red
insulating layer) surface and the plasma membrane (green). In panel (A3), the cell engulfs a mushroom shaped vertical electrode (yellow) to form relatively high Rs by
the narrow cleft. Along with reduced junctional membrane resistance (Rj -purple) the configuration makes it possible to record attenuated intracellular potentials.
(B) Low magnification image of the polyimide based perforated MEA platform (PPMP), the proximal solid part and distal perforated part are shown. For orientation,
the rows of perforations are numbered. (C) SEM enlargement of a PPMP segment, showing the perforations of the polyimide platform and dense rows of gMµEs
along the PI “ribs.” (D) A SEM image of a gMµE. (E) Schematic illustration of an implanted PPMP and the orientation of thick horizontal tissue slices. (F) The
integrated immuno-fluorescent intensity within the electrode (central rectangle-E) and within 25 µm wide centripetal shells around it were measured and processed
to establish the Normalized Fluorescent Intensity level (NFI) or the number of a given cell type at a given distance and time around the implant.

This unavoidably damages the parenchyma/implant interfaces,
making it impossible to examine and understand the structural
relationships between the abiotic implant and the tissue (for
example Schultz and Willey, 1976; Moss et al., 2004; Grand et al.,
2010; Marton et al., 2020).

Using gMµEs based perforated polyimide MEA platforms that
can be thin sectioned along with the interfacing parenchyma; we
examined here for the first time the interfaces formed between
brains parenchyma and implanted 3D vertical microelectrode
(gMµEs) platforms at the ultrastructural level. Our study
demonstrates remarkable structural parenchyma regenerative
processes including neuritogenesis, axon myelination and
synapse formation in contact and around the implant. In parallel,

we documented that individual microglia adhere tightly and
engulf the gMµE electrodes. The extracellular cleft formed
between the implant and the adhering microglia in parallel
to the microglia’s input resistance suggest that high resistance
barriers are formed in contact with the electrodes. We posit
that these microglia-electrode-junctions, rather than the thick
multicellular inflammatory encapsulation that is thought to
displace neuronal cell bodies and induce axon demyelination or
structural synapse degeneration, are the underlying mechanisms
governing the deterioration of the electrical coupling between
neurons and the in vivo implanted electrodes. In addition, our
ultrastructural observations objectively highlight the expected
hurdles to applying arrays of vertical nano-pillars in general
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FIGURE 2 | Confocal microscope images showing horizontal-sections of immuno-labeled cortical brain tissue along with cross sections of the perforated segment
of an implanted PPMP, 2 weeks post implantation. Shown are: microglia (cyan) within and around the implant marked by asterisks (A), astrocytes (B, red), neurons
and neurites (C, green), and a merged image of (A–C) which also includes the nuclei of the cells labeled in yellow (D). (E) Histograms depicting the average
Normalized Fluorescent Intensity (NFI) or number of cells/100 µm2. Microglia (E1, cyan), astrocytes (E2, red), neurites and cell bodies (E3, green), and neuronal cell
bodies (E4, green) within and around the platform’s perforated segments. The time post-platform implantation is coded by the darkening of the column color as
indicated by the legend on the right hand side of the histograms. The average NFI values or the cells/100 µm2 within the platforms (PPMP) are highlighted in yellow.
The distance of the average NFI from the MEA platform is given by shell number. Each shell is 25 µm wide (as illustrated in Figure 1F). Vertical lines correspond to
one standard deviation. The orange lines indicated by the arrowheads depict the normal NFI values or the number of cell/100 µm2 in the control cortices. An
enlarged image of (D) is presented as Supplementary Figure 2.

and gMµEs in particular to record intracellular potentials from
cortical neurons in freely behaving rats. Approaches to mitigate
or selectively eliminate the adhering microglia are thus needed
to advance the application of 3D microelectrode arrays for
intracellular recording of the entire signaling repertoire of the
in vivo brain.

MATERIALS AND METHODS

Animals
All the procedures in the present study were approved by the
Committee for Animal Experimentation at the Institute of Life
Sciences of the Hebrew University of Jerusalem. This study was
conducted using female Sprague Dawley rats (215–340 g).

Neuroimplants
To address the technical features required to prepare thin sections
of implanted gMµE-platforms along with the parenchyma
around it, we fabricated non-functional implants constructed of
a Perforated Polyimide (PI)-based MEA Platform (PPMP) that
carries a dense array of gold mushroom shaped microelectrodes
(gMµE, Figure 1). The 1.7 mm long, 280 µm wide, and 16 µm
thick non-functional gMµE-PPMPs were divided to a 0.9 mm
long solid proximal part and a 0.8 mm perforated distal part
(Figure 1). The perforated segment tapered to form a sharp tip.
The width of all the rectangular perforations was 7–8 µm and
the lengths of the different perforations were 65, 47, and 44 µm
(Figure 1). gMµEs were electroplated at a pitch of 8 µm in rows
along the 15 gold conducting lines that run along the platform
(Figure 1 and Supplementary Figure 1).
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Implant Fabrication
The gMµE-PPMPs were constructed using standard
photolithography fabrication methods as follows
(Supplementary Figure 1). First, an aluminum releasing
layer was sputtered on a 3-inch silicon wafer (University Wafer,
United States), followed by a spin-coated 15 µm thick polyimide
layer (PI 2610, HD Microsystems, Germany) that served as
an insulating layer and the main mechanical backbone of the
platform. A triple metal layer of Cr/Au/Cr (20/120/20 nm) was
then patterned and e-beam evaporated as interconnects, pads
and scribe-lines. Next, a second 1 µm thick insulating layer
of polyimide was spin-coated, followed by the deposition of a
1 µm SiO2 with Plasma Enhanced Chemical Vapor Deposition
(PECVD). A 1.5 µm photoresist layer was then patterned. Dry
etching by RIE was used to define 1.5 µm molds for electroplating
the gMµEs and pads through the SiO2 and the one micrometer
thick insulating PI layer. After removal of the top Cr layer by wet
etch, gMµEs with cap diameters of∼2 µm were electrodeposited
at a pitch of 8 µm along the tip and a perforated section of the
platform (Figure 1 and Supplementary Figure 1). An additional
300 nm of SiO2 was deposited with PECVD and a photoresist
layer were used to define the perforated pattern of the platform.
The photoresist and SiO2 layers were then removed and the
platforms were then released from the wafer by anodic metal
dissolution and thoroughly rinsed in distilled deionized water.

Platform Implantations
A 1–1.5 cm longitudinal cut of the skin on the head was made
and the anterior, dorsal surfaces of the skull were exposed.
Two craniotomies, one in the left and the other in the right
frontal bones, were performed at the desired reference points
(coordinates: AP: +3.5 mm; ML: ±2.5 mm from the Bregma)
and the dura was gently resected (0.3–0.5 mm long incision).
The 1.7 mm long platforms held by forceps mounted on a
micromanipulator were slowly inserted into the motor cortex
to a depth of 1.8 mm. The electrodes were gently released
from the holder and the craniotomy was sealed with melted
bone wax (W810, Ethicon, Belgium). The wound was treated
in situ with antibiotic ointment (Synthomycine, chloramphenicol
5%) and sutured with nylon sutures. Then the rats received an
intraperitoneal injection of the antibiotic Enrofloxacin 50 mg/ml
(5% W/V) at a dose of 15 mg/kg diluted with saline to 1 ml
(Baytril, Bayer Animal Health GmbH, Leverkusen, Germany).
In line with standard protocols to prevent postoperative pain,
the rats received for three consecutive days after gMµE-
PPMP implantation non-steroidal anti-inflammatory/analgesic
drugs. A subcutaneous injection of Carprofen 50 mg/ml (5%
W/V) in a dose of about 12 mg/kg (Norocarp, Norbrook
Laboratories Limited, Newry, Co. Down, Northern Ireland)
during surgery. Then, to further reduce the stress and pain
caused by injections and prevent mechanical stress to the skin
around the implantation site, the rats were fed on days 2 and
3 post PPMP implantation by Meloxicam (Rheumocam, oral
suspension 1.5 mg/ml, Chanelle pharma) dissolved in palatable
Jelly. To that end, Meloxicam dissolved in agar (Meloxicam-jelly)
prepared in a small Petri dish (diameter of 35 mm) was placed in
the rat cages. The Petri dishes were removed at the end of days 2

and 3. Visual checks confirmed that the rats consumed the entire
volume of the Meloxicam-jelly. After surgery, the animals were
housed individually to prevent them from chewing the implants.
Actually, this is relevant only for transcuteneous implants. In case
of dummy probes it is important to keep rats separately only for
the first 10–14 days after the surgery. I overlooked it because
automatically, i keep all my transcutaneously implanted animals
separately.

Tissue Processing for Immunohistology
and Transmission Electron Microscopy
For brain tissue fixation, individual rats were deeply anesthetized
with isoflurane (Piramal, United States) followed by an IP
overdose injection of pentobarbital (4.5 ml per 250 g rat,
CTS Group, Israel). When breathing had stopped, the rats
were transcardially perfused with phosphate buffer saline
(PBS). This was followed by a 4% paraformaldehyde in
PBS (PFA, Sigma-Aldrich) perfusion for immunohistology
and 1–2.5% glutaraldehyde/2% paraformaldehyde (Agar
Scientific) for transmission electron microscopy (TEM).
In both cases, the perfusion rate was 10 ml/min and
lasted for 40 min. Next, the skulls were removed and
the implanted brains were post-fixed at 4◦C for an
additional 12–24 h. in either PFA (for immunohistology),
or glutaraldehyde/paraformaldehyde (for TEM). Thereafter, the
fixed and exposed brains destined for immunohistology were
washed in PBS and incubated for 1–3 days in a 30% sucrose
solution in PBS at 4◦C.

To prepare the brain tissue for cryosectioning
(immunohistology), cubic shaped portions of tissue
(approximately 1 × 1 × 1 cm) with the PPMP in their
center were isolated. The isolated piece was placed in a freezing
medium (Tissue- Plus O.C.T. Compound, Scigen) and frozen at
−80◦C. The frozen tissues along with the implanted platform
were then horizontally sectioned into 40 µm thick slices using
a Leica CM1850 Cryostat. Individual slices were collected and
placed in 24 well plates containing PBS. The tissue slices were
then incubated in blocking solution (1xPBS, 1% heat-inactivated
horse serum (Biological Industries), 0.1% Triton X-100 (Sigma
Aldrich)) for 1 h at room temperature (RT) under gentle shaking.
Next, the slices were incubated with a diluted primary antibody
for 3 h at room temperature (RT) and washed three times with
the blocking solution. This was followed by 1-h incubation at
RT with the diluted secondary antibody after which the slices
were washed with the blocking solution three times and stained
with the nuclear marker DAPI (Sigma–Aldrich, 1 mg/ml 1:1,000)
for 15 min at RT. After washing with the blocking solution and
PBS, the slices were mounted on Superfrost Plus Slides (Thermo
Fisher Scientific) and sealed by a Vectashield (VE-H-1000
-Vector Labs) mounting medium.

Electron Microscopy
For TEM imaging, glutaraldehyde/paraformaldehyde fixed tissue
along with the PI, MEA platform implants were washed with
PBS and sliced by a Leica VT1000S Vibrotome using a ceramic
blade (Campden Instruments Ltd.) into 200 µm thick horizontal
sections. The slices were deposited in 24 well plates with PBS.
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After eight washes with 0.1 M cacodylate buffer at pH 7.4
(SigmaAldrich) the tissue was post fixed by 1% osmium tetroxide
(Electron Microscopy Sciences) and 0.6% K3Fe(CN)6 in a 0.1 M
cacodylate buffer for 1 hr. at room temperature. The slices were
then washed again in a 0.1 M cacodylate buffer and dehydrated by
a series of increasing concentrations of ethanol solutions of 10, 25,
50, 75, 90, 96, 100, and 100%. Finally, the slices were embedded in
Agar 100 (Agar Scientific). The embedded preparation was then
thin-sectioned and observed using a TEM Tecnai 12 microscope
at 100 kV. The shown TEM images were taken from sections
prepared across the perforated part of the implant (rows 2–6 as
marked in Figure 1). Efforts were made to orientate the thin
sections perpendicular to the long axis of the polyimide platform
and along the gMµEs. As the diameter of the stalks and caps of
the gMµEs are in the range of 1–3 µm, a slight deviation from
a perfect sectioning angle, resulted in imperfect sections that did
not pass through the entire length of the gMµE cap and stalk.
Thus, in some cases, the sections went through the entire length
of the mushrooms cap, stalks and the contact between the stalk
and the conducting line (for example Figures 6, 7A). In others,
the thin sections were slightly tilted in respect to the long axis
of the gMµE stalks. In these cases the stalk of the mushroom
appears to taper toward the polyimide platform. The observed
TEM images and conclusions represent transmission electron
microscope imaging of over 250 thin sections prepared from 25
different PPMPs implants.

Immunolabeling, Confocal Imaging,
Image Processing, Analysis, and
Statistics
Immunolabeling, imaging, image processing, and analysis were
conducted as detailed in previous studies from our laboratory
(Huang et al., 2020; Sharon et al., 2021). Briefly, neurons
were concomitantly labeled with two antibodies: one for
neurite labeling [mouse anti-Neurofilament 160/200 monoclonal
antibody (Sigma-Aldrich N2912, 1:10,000–1:20,000)] and the
other for neuronal nuclei [mouse anti-NeuN monoclonal
antibody (Merck MAB377, 1:200)]. Astrocytes were labeled with
chicken anti-glial fibrillary acidic protein (GFAP) polyclonal
antibodies (Thermo Fisher PA1-10004, 1:500–1,000). Microglia
were labeled using rabbit anti-Iba-1 monoclonal antibody
(Abcam ab178846, 1:1,000). For the secondary antibodies we
used goat anti-mouse Alexa 488, goat anti-chicken Alexa 647
(Thermo Fisher A-11001 and A21449, respectively, 1:100) and
sheep anti-rabbit Cy3 (Sigma–Aldrich C2306, 1:100).

Confocal image stacks of the immunolabeled slices were
acquired with an Olympus FLUOVIEW FV3000 confocal
scan head coupled to an IX83 inverted microscope, using
a 20X air objective (NA = 0.75). Typically, 15–30 confocal
slices were acquired, with a vertical spacing of 1 µm. Image
processing of the immunolabeled sections was conducted
using the Fiji distribution of ImageJ (Schindelin et al., 2012;
Schneider et al., 2012).

Two methods of analysis and representation of the cell
densities in contact and around the PPMPs were used: (1) The
densities of the astrocytes and neurons, including their cell

bodies and neurites, were analyzed and displayed as the relative
fluorescent intensities with respect to the normal background.
These are referred to in Figures 2E2,E3 as the Normalized
Fluorescent Intensity (NFI) values (Huang et al., 2020). (2) The
density of the microglia and neuronal cell bodies per 100 µm2,
at a given shell around the implant, and within the pores were
calculated by manual counting (Figures 2E1,E4). The counting
of these cell bodies was done by merging Iba1 labeled microglia
or NeuN labeled neurons with the nuclear marker DAPI.

Average fluorescent values and cell counting characterizing
the FBR in space and time were measured and calculated
from cortical brain slices prepared from sections across
rows 4–8 of the perforated part of the implant (Figures 1B,
2). We used 2–10 hemispheres/experimental points in
time (Supplementary Table 1). Each brain hemisphere
was used to prepare 1–6 tissue slices. Each slice was
used to prepare a single maximal projected image
generated by 10 consecutive optical sections. For more
data on the numerical values and statistical tests, see
Supplementary Table 2.

RESULTS

Probe Design Principles
To address the technical features required to prepare thin sections
of implanted gMµE platforms along with the parenchyma
around it, we fabricated non-functional implants constructed of
a Perforated Polyimide (PI)-based MEA Platform (PPMP) that
carries a dense array of gold mushroom shaped microelectrodes
(gMµE-PPMP, Figure 1). PI was selected because it is a
biocompatible polymer with a Young’s modulus of 2.5 GP.
Importantly, based on studies demonstrating that PI implants
can be thin-sectioned for histological examinations (Mercanzini
et al., 2007, 2008; Richter et al., 2013; Xie et al., 2014; Boehler
et al., 2017; Huang et al., 2020) our laboratory has developed
procedures to section implanted gMµE-PPMPs along with
the surrounding brain parenchyma for light and transmission
electron-microscope (TEM) studies (Huang et al., 2020; Sharon
et al., 2021). In the present study, we fabricated 1.7 mm long,
280 µm wide and 16 µm thick non-functional gMµE-PPMPs.
The proximal 0.9 mm of the implant was constructed of solid
PI, and the remaining distal part was perforated (Figure 1). The
perforated segment tapered to form a sharp tip. The width of
all the rectangular perforations was 7–8 µm and the lengths of
the different perforations were 65, 47, and 44 µm (Figure 1).
gMµEs were electroplated in rows along the conducing gold
lines which run in between the perforations (Supplementary
Figure 1). The high density of the gMµEs served to increase
the probability of successfully preparing thin sections (80 nm)
for TEM imaging through gMµEs and PI along with the
interfacing brain parenchyma. The perforated microarchitecture
of the platform reduced the projected solid surface area of the
perforated part by 35% and allowed cells to extend branches
or migrate through the perforations. Each pore in the PI
platform approximately doubled the PI surface to which the
cells could adhere.
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Ultrastructure of the Implant and
Parenchyma
To examine the interfaces formed between the brain parenchyma
and implanted gMµE-PPMPs, cross-sections for transmission
electron microscopy of gMµE-PPMPs along with the
surrounding tissue were prepared. We selected to examine the
ultrastructure of the inflammatory scar at 2, 4, and 8 weeks after
electrode implantation, since our earlier immunohistological
studies showed characteristic alterations in the distribution
and densities of the microglia, astrocytes and neurons at these
points in time (Figure 2 and Huang et al., 2020; Sharon et al.,
2021). For the reader’s convenience, the overall spatiotemporal
relationships between microglia, astrocytes, neurons, and PPMP
implants is briefly presented in Figure 2 using conventional
immunohistological imaging.

For the ultrastructural analysis, gMµE-PPMP implanted
brains were chemically fixed by standard transcardial perfusion of
glutaraldehyde/paraformaldehyde fixative. Since MEA platform
implantation unavoidably damages blood capillaries along the
insertion path, concern was raised whether the quality of
tissue fixation around the implant will suffice to preserve the
tissue ultrastructure. In retrospect, based on the preservation
qualities of the cell membranes and subcellular organelles
including the mitochondria, the smooth and rough endoplasmic
reticulum, synaptic vesicles, post-synaptic densities and myelin,
we concluded that the perfusion of the fixative was not impaired
in the surroundings of the implant. It is important to note,
however, that as in other ultrastructural studies of the CNS, the
extracellular spaces between the various cell types is reduced by
approximately 20% (Korogod et al., 2015; Hrabetova et al., 2018;
Soria et al., 2020). Since the volume of the implanted PPMPs
is not altered by the fixatives, transcardial fixation led to the
generation of mechanical tension around the implant. This often

tears the tissue around the implant. Importantly, tissue growing
into the PPMP pores and adhering to the platform surfaces
remained tightly attached to the platforms, and the break in
the tissue took place between cells or even across cells a few
micrometers away from the implant surface.

Since the relative positioning of the PPMP and the cells around
it are not altered by the classical method of transcardial fixative
perfusion, the TEM analysis presented here suffices to provide
the essential and missing information on implant brain-tissue
interfaces. In addition, because the range of the shrinkage factor
is known, the genuine extracellular clefts can be estimated. It is
important to note that TEM examination of hundreds of thin
sections representing over 25 gMµE-PPMP implants revealed
that the gMµEs maintain stable contact with the conducting lines
used for their electroplating. That is, the gMµEs are not striped
off during the platforms insertion or during the thin sectioning of
the tissue along with the implant for TEM imaging.

Insulation of the Perforated Polyimide
MEA Platform Implants by Microglia at
2 Weeks Post-perforated Polyimide MEA
Platform Implantation
Typically, at 2 weeks post gMµE-PPMPs implantation,
tightly adhering dark cytoplasmic microglia processes (dark
as compared to other cell profiles in their surroundings)
encapsulated individual PI “ribs” (Figures 3, 4). The cell
bodies from which the dark cytoplasm emanated contained
characteristic microglia nuclei with clumps of heterochromatin
beneath the nuclear envelope and throughout their nucleoplasm
(Figure 3 and see Tremblay et al., 2012; Garcia-Cabezas et al.,
2016; Savage et al., 2018; Nahirney and Tremblay, 2021). The
electron-dense cytoplasm of these microglia was bordered by

FIGURE 3 | Encapsulation of individual PPMPs “ribs” by adhering microglia. (A) A low magnification transmission electron microscope cross-section of an implanted
PPMP along with the parenchyma around it 2 weeks after platform implantation. The PI “ribs” are encompassed by microglia (cytoplasm marked in cyan and typical
microglia nuclei µG -yellow) and astrocytes (cytoplasm marked pink, and astrocyte nuclei Ast- yellow). (B) Microglia adhering to the PI surface interposed between
the implant and non-myelinated neurites containing microtubules and astrocyte branches that invaded the platform pores. No myelinated axons were seen in the
immediate vicinity of the implant at this point in time after PPMP implantation. PI, polyimide ribs; gMµE, yellow asterisks, mAx- myelinated axons (green); CL,
conducting line; µG, microglia; µT, microtubule; Ast, astrocyte. Note that an unmarked copy of this figure is presented as Supplementary Figure 3.
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FIGURE 4 | Transmission electron microscope images of a gMµE (black
mushroom shaped profiles A,B) tightly engulfed by microglia, 2 weeks after
PPMP implantation. Note the thin 0.5–1 µm layers of microglia branches that
adhered tightly to the PI surface and the gold mushroom microelectrode
(cyan). Additional microglia layers characterized by dark cytoplasm (not
labeled in color) contained a rough endoplasmic reticulum and dark inclusions
which plausibly were lysosomes and lipofuscine granules. Astrocyte branches
characterized by sparse electron dense material containing intermediate
filaments invaded in between the microglia branches but did not form direct
contact with the implant. Note that the TEM section is slightly tilted in respect
to the long axis of the gMµE. For that reason the mushroom’s stalk appears
to taper toward the polyimide platform and looks like it end in the tissue rather
than attached to polyimide. Astrocyte cell bodies resided micrometers away
from the implant. PI, polyimide ribs; gMµE, yellow asterisks; µG, microglia;
Rer, rough endoplasmic reticulum; Ast, astrocyte; Ph, phagocytosed
materials. An unmarked copy of this figure is presented as Supplementary
Figure 4.

a clear plasma membrane and contained rough endoplasmic
reticulum, mitochondria and dark inclusions which may
plausibly be lysosomes and lipofuscin granules (Figures 3, 4).

In line with Figure 2 and our earlier immunohistological
studies (Huang et al., 2020; Sharon et al., 2021), 2 weeks
post-PPMP implantation, TEM images revealed the presence
of astrocyte cell bodies and branches in close proximity to the
platform surface and within the platform pores (Figures 3B,
4A). Astrocyte cell bodies could be identified by their pale nuclei
that had a thin rim of heterochromatin and pale cytoplasm
(Figures 3, 4A). Typically, the cytoplasm of astrocyte branches
are characterized by sparse electron- dense material containing
intermediate filaments (glial fibrillary acidic protein, GFAP,
Garcia-Cabezas et al., 2016; Nahirney and Tremblay, 2021).

Two weeks after implantation, the dark microglia cytoplasm
that adheres tightly to the gMµE-PPMPs surfaces are often
interposed between the PPMP surfaces and the astrocytic

branches, thus mechanically preventing direct contact
between the neurite and astrocytic branches and the platform
surfaces (Figure 3B).

Immunohistological imaging of the neurite revealed that
at 2 weeks post-implantation, neurites extended into the PI
platform pores (Figures 2C,E3). Based on the presence of
microtubules in axons and GFAP in astrocytes (Figure 3B) it was
possible to differentiate between the branches of the astrocytes
and the unmyelinated neurites (axons and dendrites). At 2 weeks
post-PPMP implantation, no myelinated axonal profiles were
observed in the immediate vicinity (<10 µm) to the gMµE-
PPMPs. Further away from the implants (>10 µm) myelinated
axons were observed (Figure 3).

Neuronal cell bodies characterized by typical round
euchromatic nuclei, the presence of electron dense nucleoli
and nuclear membrane invaginations were observed as close as
∼20 µm from the PI platform and onwards (see also Figure 2E4).
Chemical presynaptic terminals identified by the presence of
profiles containing clusters of synaptic vesicles or chemical
synapses identified by presynaptic fibers in association with
typical post-synaptic densities were imaged at a distances of
approximately 10 µm from the platform.

Regenerative Processes in Contact and
Around Perforated Polyimide MEA
Platform Implants at 4 Weeks
Post-perforated Polyimide MEA Platform
Implantation
Immunohistological examination of the changes in cell
composition and distribution within and around the implanted
PPMPs 4 weeks after PPMP implantation (Figure 2) suggested
that the parenchyma around the implant had undergone
regenerative processes. These included: (a) a reduction in the
average microglia density in the first shells around the implant,
but not within the PPMP pores (Figure 2E1 and Huang et al.,
2020); (b) a significant increase in the average density of the
neuronal cell bodies in the first shell around the implant,
preceded by the extension of neurites toward the implant and
into the PPMP pores (Figures 2E3,E4 and Huang et al., 2020). In
contrast to these regenerative processes, the astrocyte branches
and cell bodies continued to increase during the fourth week
post- implantation both within the PPMPs and in the first shell
around it (Figure 2E2).

The overall regenerative processes observed at the confocal
microscope resolution were reflected and more finely delineated
at the ultrastructural levels. TEM images revealed myelinated
axons extending toward and in the vicinity of the implant
surface (Figure 5). A considerable increase in the density of
structurally mature chemical synapses was seen. At 4 weeks post-
implantation, the PPMP’s “ribs” were no longer enwrapped by
dark protoplasmic protrusions emanating from microglia cell
bodies. Rather, relatively thin layers of electron opaque cytoplasm
adhered to the surface of the PPMPs and the gMµEs (Figure 5).
Relevant to the electrophysiological recording functions of the
implant (see discussion), it is noted that the extracellular cleft
formed between the microglia membranes that enwrapped
the gMµE remained in the range of 10–20 nm (Figure 5B).
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FIGURE 5 | A low and high magnification, transmission electron microscope image of the interfaces formed between a gold mushroom shaped microelectrode
extending from a polyimide platform implanted for 4 weeks and the surrounding cortical tissue. The mushroom shaped microelectrode (black) emerges from the PI
substrate (gray). Note the thin layer of dark microglia (cyan in A,B, and unmarked dark gray branches in B) adheres tightly to the gMµE and PI substrate. The
parenchyma around the implant underwent regenerative processes as indicated by the large number of myelinated axons (green and black envelope) and the
presence of oligodendrocytes in the immediate vicinity of the implant (yellow). Whereas, axonal branches with a relatively large diameter (∼3 µm) extended close to
the gMµE, it is conceivable that the adhering microglia (and in this instance the myelin as well) insulated the electrode from the surrounding excitable tissue. PI,
polyimide ribs; CL, conducting line; gMµE, yellow asterisks; Ol, oligodendrocyte; µG, microglia; mAx, myelinated axons. Note an unmarked copy of this figure is
presented as Supplementary Figure 6.

The microglia clearly interposed between the myelinated axons
extending in the electrodes’ vicinity and between pale cytoplasmic
profiles of astrocytic branches and unmyelinated axons. Astrocyte
branches and cell bodies, microglia and unmyelinated axonal
profiles were seen occupy the pores between the PI “ribs” and
directly adhere to the PI surfaces.

In addition, large profiles of dark cytoplasm containing
phagocytosed materials were occasionally observed to reside
within the pores (Supplementary Figure 5). In a few cases,
the section went through the nucleus of these large cells. Based
on the heterochromatin distribution of the nucleus, these cells
were likely to be microglia. These cell types were never observed
outside the PI implant pores.

In summary, whereas clear regeneration of the neuron cell
body densities, axons, dendrites and synapses took place within
the first shell around the implant, dark microglia branches
adhering to the gMµEs and PPMPs were still present. These
adhering microglia can be assumed to electrically insulate
the electrodes from the surrounding neurons (see section
“Discussion”).

Increased Density of Neurons Near the
Implant Surface 8 Weeks
Post-perforated Polyimide MEA Platform
Implantation
Confocal microscope imaging of the cortical parenchyma
interfaced 8 weeks after PPMP implantation revealed that the
overall regenerative processes that were observed 2–4 weeks
after implantation persisted. (a) The microglia density within
the implant was further reduced to half of its peak value and
to a third in the first shell around the implant (Figure 2E1 and
Huang et al., 2020). (b) Whereas, the neurite density (NFI values,
Figure 2E3) did not change, the average neuronal cell body
density in the first shell around the implant further increased
to 86% with respect to the control level (Figure 2E4). (c) On

the other hand, the astrocyte (branches and cell bodies together)
continued to increase mainly in the first shell around the
implant (Figure 2E2). These regenerative trends were reflected
at the TEM level, in particular in that neuronal cell bodies
were imaged to reside as close as ∼2 µm from the gMµE
caps (Figures 6, 7A). The narrow space between the cell
bodies membrane and the gMµE caps were occupied by small
profiles (with a diameter in the range of <1 µm) of either
astrocytes or neurites. Parts of the gMµE stalk and caps were
enwrapped by narrow (∼100 nm) dark cytoplasmic protrusions
probably corresponding to microglia branches, while other parts
appeared to be free of microglia. Myelinated axonal profiles were
observed to form a direct contact with gMµE caps (Figure 7B).
Chemical synaptic profiles were observed as close as ∼0.5 µm
to the PI platform and the gMµEs, and within the parenchyma
surrounding the implant (Figures 6, 7). The pores within
the PI platform were mainly occupied by astrocytic branches
and unmyelinated axonal profiles. No synaptic structures were
observed within the pores.

TEM observations conducted 8 weeks after the PPMP
implantation, occasionally revealed gMµE that were not
insulated by microglia. Under these conditions, the gMµEs
formed a direct contact with many small (∼100 nm) axonal
or astrocytic profiles (Figure 7D). It is conceivable that the
small surface area of these tentatively identified unmyelinated
axonal profiles were too small to generate sufficient current to be
measured by the gMµE system.

DISCUSSION

Despite significant progress, contemporary in vivo MEA
technologies suffer from inherent limitations that include a low
signal-to-noise ratio, low source resolution and deterioration of
the recording yield and FP amplitudes within days to weeks
of implantation. Whereas, these drawbacks constitute a critical
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FIGURE 6 | A low magnification, transmission electron microscope image of the interfaces formed between a gold mushroom shaped microelectrode extending
from a polyimide platform implanted for 8 weeks and the surrounding cortical tissue. The mushroom shaped microelectrode (black) immerges from the PI substrate
(gray). A thin layer of dark microglia (cyan) adheres tightly to the gMµE and the PI substrate. A neuronal cell body with a typical nuclear structure (yellow) and
cytoplasm (green) resides approximately a micrometer away from the gMµE and the PI platform’s surface. Myelinated axons (green surrounded by a black sheath)
are distributed in the parenchyma in contact with the microglia that adheres to the platform. Unmyelinated neurites and synaptic structures (labeled purple) were
identified (using large magnification of the image) by the presence of presynaptic vesicles. The remainder of the unmarked profiles are astrocyte branches and
non-myelinated neurites. PI, polyimide ribs; gMµE, yellow asterisks; Neu, neuron; mAx, myelinated axons. Note that an unmarked copy of this figure is presented as
Supplementary Figure 7.

impediment to the progress of basic and clinically oriented brain
research, the mechanisms that generate these limitations remain
elusive. For that reason, attempts to develop effective methods to
overcome these drawbacks have only been marginally successful.

To achieve a better understanding of the mechanisms
that limit the functions of implanted electrophysiological
neuroprobes, for the first time, the present study examined
the intact ultrastructural interfaces formed between the cortical
parenchyma and a large footprint implanted neuroprobes. The
findings reveal remarkable tissue regeneration around and in
contact with the large-footprint implanted MEA platform. This
include the regrowth of neurites toward the implant, myelination
of the newly grown axons, the formation of structurally
mature chemical synapses, the recovery of neuronal cell body
densities in the vicinity of the electrodes (at a distance of
∼1 µm from the electrodes’ surfaces) and cortical capillaries
(Figure 8). Along with this remarkable tissue regeneration, we
documented that individual microglia adhering to the gMµEs-
PPMP surfaces formed a micrometer-thin barrier in contact
with the PI backbone and the gMµEs which we dub the

“microglia-insulating-junction.” For a period of approximately
8 weeks post-PPMP implantation (the longest observation period
made here), the adhering microglia prevented the formation of
a direct contact between the axons or neuronal cell bodies and
the gMµE. Thus, engulfment of gMµEs and most likely other
3D or planar microelectrodes by neurons is likely to be impeded.
Because the microglia insulating junctions are formed at the
electrode surfaces, this configuration offers an explanation to the
enigma as to why no correlation has been found between the
dimensions and density of the FBR and recording qualities (Kozai
et al., 2014, 2015; McCreery et al., 2016; Du et al., 2017; Salatino
et al., 2017a; Michelson et al., 2018).

Ultrastructural analysis of the junctions formed between
different cell types and planar or 3D microelectrodes under
in vitro conditions have served a pivotal role in deciphering the
biophysics and potential applications of the junctions formed.
An order of magnitude estimate of microglia- gMµE-junction
impedance can be derived using a passive electrical circuit model
composed of two parallel resistors: the seal resistance (Rs) formed
by the cleft between the plasma membrane of the microglia and
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FIGURE 7 | A low (A) and high magnification (B), transmission electron microscope image of the interfaces formed between a gold mushroom shaped
microelectrode extending from a polyimide platform implanted for 8 weeks and the surrounding cortical tissue. As the regenerative processes of the brain
parenchyma proceed with time, the dark microglia adhering layer becomes thinner (A,B, cyan). It is conceivable that even a thin microglia layer might insulate the
electrodes from the surrounding parenchyma. (D) The regenerative processes of the parenchyma are also evidenced by the presence of a chemical synaptic profile
as close as a few micrometers from the implant (C1,C2, see D for the location of the synapses with respect to the electrode). Note that the TEM section (in D) is
slightly tilted in respect to the long axis of the gMµE. For that reason the base of the mushrooms stalk appears to taper toward the polyimide platform. Interestingly,
8 weeks after implantation we also observed gMµE that were not enwrapped by microglia and formed a direct contact with the small profile of astrocyte and
possibly neurons (D). gMµE, yellow asterisks; Neu, neuron; mAx, myelinated axons; µG, microglia. An unmarked copy of this figure is presented as Supplementary
Figure 8.

the surface of the gMµEs, and the input resistance (Rµg) of the
adhering microglia.

The seal resistance (Rs) is given by Rseal = ρs · δ/d, where ρs is
the resistivity of the electrolyte solution (ρs = 0.7 �Cm), d is the
average cleft width between the neuron’s plasma membrane and
the electrodes’ surface, and δ is the overlapping surface coefficient
that takes into account the percentage of the electrodes’ sensitive
area in contact with the microglia (Massobrio et al., 2016).
Because of the unavoidable ∼20% shrinking artifact of the
extracellular spaces due to the chemical fixation of the tissue for
TEM imaging (Korogod et al., 2015; Hrabetova et al., 2018; Soria
et al., 2020) the actual width (d) of the clefts formed between
the microglia and the implanted gMµEs-PPMPs surfaces cannot

be extracted with precision from the ultrastructural images.
In addition, the fraction of the surface area of the contact between
a gMµE or planar electrode and the adhering microglia (δ)
cannot be obtained from classical TEM images. Nonetheless, an
order of magnitude estimate of Rs formed by different cell types
can be obtained by using parameters published previously in
the literature. A large number of in vitro studies have revealed
that the cleft width formed between different cultured cell types
and artificial substrates ranges from 20 to 100 nm (Braun
and Fromherz, 1998; Iwanaga et al., 2001; Straub et al., 2001;
Lambacher and Fromherz, 2002; Brittinger and Fromherz, 2005;
Gleixner and Fromherz, 2006; Wrobel et al., 2008) and the
contact surface area of these junctions has been estimated. The
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FIGURE 8 | Regeneration of capillaries close to implanted PPMPs. A capillary
located micrometers away from the surface of the polyimide (PI) “ribs” of an
implanted PPMP for 8 weeks.

estimated seal resistance derived in these studies ranged from
∼1 M� in the case of planar electrodes (Weis and Fromherz,
1997; Buitenweg et al., 1998, 2002) to ∼40–100 M�s for gMµEs
(Hai et al., 2009a; Fendyur et al., 2011; Spira and Hai, 2013;
Ojovan et al., 2015; Shmoel et al., 2016; Massobrio et al., 2018;
Spira et al., 2019).

The input resistance of mice microglia (Rµg) was reported to
be 2–5 G� (Avignone et al., 2008; Schilling and Eder, 2015). Since
the morphology and physiology of microglia are known to change
under different functional states and in response to different
substrates (Eder, 1998, 2005, 2010; Kettenmann et al., 2011), it
is conceivable that the input resistance of microglia adhering to
the gMµEs is <2–5 G�. Assuming that the input resistance of
adhering microglia is reduced to the range of 10–100 M�, the
resistance formed by an adhering “microglia insulating junction”
is in the range of ∼1 M� for a planar electrode and ∼50 M�s
for a gMµE or a vertical nano-pillar engulfed by a microglia
(Rµg ·Rs/Rµg + Rs.).

Given that the estimated resistance of intact brain parenchyma
is in the range of 1–4 � (Logothetis et al., 2007), and 300–
6,000 �, across an encapsulation glial scar (Turner et al., 1999;
Szarowski et al., 2003; Moffitt and McIntyre, 2005; Grill and
Mortimer, 2014), the current generated by neurons positioned
very close or in contact with microglia adhering to a sensing
electrode is expected to be attenuated by 1–3 orders of magnitude.
Thus, the FPs generated by neurons positioned in the immediate
vicinity of a microglia-insulating-junction might be below the
level of detection.

It is worth noting that recent progress in bioengineering
has led to the implementation of ultra-small and ultra-flexible
platforms, with dimensions comparable to those of a single
neuron (Xiang et al., 2014; Fu et al., 2016; Luan et al., 2017;

Zhao et al., 2017; Wei et al., 2018; Guan et al., 2019; Yang
et al., 2019; Zhang et al., 2021). Immunohistological observations
have shown that these ultra-small, flexible implants integrate
seamlessly with brain tissue, and that under these conditions
neuronal cell bodies are seen to reside in close proximity to the
implant (Fu et al., 2016; Luan et al., 2017; Zhou et al., 2017;
Hong et al., 2018; Yang et al., 2019). Despite the fact that the
impedances of these ultra- small and ultra-flexible electrodes
are similar to those of conventional implants (0.5–1 M�) and
despite the seamless integration of these platforms with brain
tissue, the recorded amplitudes of the FP have been within the
range of those recorded by implants that trigger FBR. These
observations are inconsistent with the prevailing hypothesis that
in the absence of a histological FBR the FPs amplitudes should
be larger. This apparent paradox may be resolved by assuming
that even if a “classical” FBR is not imaged as having been formed
by these implants, microglia insulating-junctions that were not
detected by standard immunohistology nevertheless formed and
insulated the electrodes.

Overall, the present study resolves two critical questions:
(1) what are the cellular mechanisms that underlie the limited
electrophysiological functions of implanted in vivo neuroprobes
and (2), can the successfully developed and advantageous
gMµE or other 3D vertical nano-pillars be applied to in vivo
settings? We posited that the insulation formed by individual
microglia that tightly adhere to or engulf in vivo implanted
electrodes rather than multicellular FBR deteriorate the electrical
coupling coefficient between the neurons and the implanted
electrodes. The microglia electrode junctions structurally isolate
and electrically insulate the electrodes from the neurons
and hence limit the electrophysiological functions of the
electrodes. Overcoming the challenging microglia insulating-
junction requires developing new protocols to specifically
and temporally target the adhering microglia. This should
be complemented by methods to increase the density of
neuronal cell bodies to enable the formation of direct contact
with the electrodes.

It is conceivable that the effective structural regeneration of
the parenchyma in the immediate vicinity of the gMµE-PPMP
implants and the implant-parenchyma integration documented
here reflect compound abiotic and biotic factors. For that
reason, it is premature to extrapolate the observation made
here to implants composed of different materials, with different
microarchitecture, sizes and shapes, and implanted in different
brain regions in different organisms.
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