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Abstract

Background: Although many cervical cytology diagnostic support systems have
been developed, it is challenging to classify overlapping cell clusters with a vari-
ety of patterns in the same way that humans do. In this study, we developed a fast
and accurate system for the detection and classification of atypical cell clusters
by using a two-step algorithm based on two different deep learning algorithms.
Methods: We created 919 cell images from liquid-based cervical cytological sam-
ples collected at Sapporo Medical University and annotated them based on the
Bethesda system as a dataset for machine learning. Most of the images captured
overlapping and crowded cells, and images were oversampled by digital process-
ing. The detection system consists of two steps: (1) detection of atypical cells
using You Only Look Once v4 (YOLOV4) and (2) classification of the detected
cells using ResNeSt. A label smoothing algorithm was used for the dataset in the
second classification step. This method annotates multiple correct classes from a
single cell image with a smooth probability distribution.

Results: The first step, cell detection by YOLOv4, was able to detect all atypi-
cal cells above ASC-US without any observed false negatives. The detected cell
images were then analyzed in the second step, cell classification by the ResNeSt
algorithm, which exhibited average accuracy and F-measure values of 90.5% and
70.5%, respectively. The oversampling of the training image and label smoothing
algorithm contributed to the improvement of the system's accuracy.
Conclusion: This system combines two deep learning algorithms to enable ac-
curate detection and classification of cell clusters based on the Bethesda system,
which has been difficult to achieve in the past. We will conduct further research
and development of this system as a platform for augmented reality microscopes
for cytological diagnosis.
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1 | INTRODUCTION
The Cytoanalyzer' was developed in the United States as
the first automated diagnostic support system for cytology
in 1957. This system classified cells into two classes based
on nuclear size and density. However, this system detected
clumps of blood cells, connections between tissues and mu-
cosa, and overlapping epithelial cells as abnormalities and
thus had a low accuracy of 36.6%.! Thereafter, there were
attempts to develop similar systems in the UK? and Japan,’
but neither were put into clinical use. In the 1990s, the im-
portance of obtaining specimens with minimized cell over-
lap for the establishment of automated screening systems
was emphasized, and the ThinPrep* and SurePath’ systems
were developed. These systems use a method called liquid-
based cytology (LBC). The AutoPap system (BD Tripath
Imaging), an automatic cytological diagnostic system that
received FDA approval for smear use in 1998, was approved
for use with SurePath slides in 2002.° In 2003, the FDA ap-
proved TIS (Hologic) as the primary screener for ThinPrep
Pap slides, and in 2008, the FDA approved the FocalPoint
Guided Screening (GS) imaging system. However, LBC per-
formed so well in clinical trials against smears that it also
found a market apart from automated screening.®

In LBC, unlike conventional smears, cytology slides
have a clean and uniform background, which is essential
for the construction of an automatic cytological diagnostic
system. Since the development of LBC, research on au-
tomated cytological classification has progressed dramat-
ically. Two-class classification (normal or cancer cells) for
single-cell images is the easiest and most accurate classi-
fication approach reported in the literature. A classifica-
tion method based on estimating the width and center of
gravity of cytoplasm and inputting values using support
vector machine (SVM) methods has reached 98.61% accu-
racy in classification.” A previous study using the AlexNet
convolutional neural network (CNN) achieved classifica-
tion with 99.3% accuracy, and the same study classified
samples into seven classes with 93.75% accuracy using a
unique CNN architecture for the Herlev dataset.’ The
Herlev dataset is a Pap-smear dataset of cases from the
University Hospital (Denmark) and consists of single cell
images with nuclear positions. The C-means method im-
plementations have exhibited 98.88% accuracy'® and 99.6%
accuracy in an algorithm using a unique CNN architec-
ture.'! Other studies have reported accuracies of approx-
imately 999 1214 Furthermore, multiclass classification
for single-cell images has also been reported to be highly
accurate. A classification system constructed by inputting

feature values, such as the ratio of nucleus and cytoplasm
areas, into an SVM achieved 93.7% accuracy in seven-class
classification for single-cell images.'> Other SVM-based
methods have successfully classified samples as negative
for intraepithelial lesion or malignancy (NILM) or low-
or high-grade squamous intraepithelial lesions (LSIL or
HSIL, respectively) with 88.88% accuracy.'® This indicates
that it is possible to classify single-cell images with high
accuracy using existing techniques.

However, even though LBC specimens are ideally pro-
cessed, the existence of crowded and overlapping cells in
cell images is inevitable. Therefore, there is a serious need
for an algorithm that can classify overlapping cell clusters
accurately to enable the implementation of a human-like
automatic diagnostic system. As a classification method
for multiple-cell images, most two-class classification
methods obtain high accuracy by separating multiple-
cell images into single-cell images. Zhang et al. simply
divided multiple-cell images into grids, automatically de-
termined whether each grid contained background or not,
and then extracted non-background images.'” They used
the features obtained from the wavelet transform of the
non-background images as input to classify normal and
abnormal cells using an SVM method. They succeeded in
classifying samples into two classes with an accuracy of
86-99% based on the true positive rate.'” In another study,
Zhao et al. divided multiple cell images into a grid in the
same way and classified each grid image into two classes
with an accuracy of 98.98% using SVM.'® However, they
did not try to classify the grade of atypia, and cell clusters
were excluded from the determination of atypia before
classification. Although SVM-based systems are consid-
ered to be limited in detailed classification, these results
indicate that two-class classification for multiple-cell im-
ages can also be achieved with high accuracy. However,
two-class classification alone is insufficient for applica-
tions in actual clinical practice, and multi-class classifica-
tion is thus required. However, the accuracy of multi-class
classification for multiple-cell images is still insufficient.
For example, Gautam et al. proposed a method for seg-
menting the nuclear region of each single cell and inputted
the obtained nuclear regions into AlexNet-based CNNs.®
An accuracy of 78.25% was obtained in four-class classi-
fications of NILM, LSIL, HSIL, and SCC. In recent years,
general object detection methods have been proposed for
detecting abnormal cells from multiple-cell images and
classifying them into multiple cytological classes based on
CNN. For example, Xu et al. used Faster R-CNN to clas-
sify samples into five classes," namely atypical squamous
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cells of undetermined significance (ASC-US), LSIL, HSIL,
endocervical cells (EC), and mesenchymal stromal cells
(MSC), achieving 87.52% precision (i.e., positive predic-
tive value) and 44.46% recall (i.e., sensitivity) on average.
The low recall value indicates that atypical cells were often
missed in their system. Because cervical cytology tests are
generally performed as a cancer screening method, a high
recall value is the most important performance require-
ment of the system. Therefore, the diagnostic accuracy of
previous studies is insufficient for clinical use.

In the present study, we developed an automated method
for detecting and classifying squamous atypical cells from
overlapping and crowded multiple-cell images with high
diagnostic accuracy using a two-step detection and classi-
fication system. The algorithm consisted of a first-step lo-
cation detector of atypical cells using You Only Look Once
v4 (YOLOv4)® and a second-step detailed classifier using
ResNeSt.”! The developed algorithm enables highly sensitive
and near real-time diagnosis support of cervical cytology.

2 | MATERIALS AND METHODS
2.1 | Ethics approval and consent to
participate

Informed consent was obtained via opt-out on the website
of Sapporo Medical University. Those who opted out of the
study were excluded. This investigation of the deep learning-
based cytological diagnosis assistance system was approved
by the Ethics Committee of Sapporo Medical University.

2.2 | Image preparation and processing

For machine learning with YOLOv4 and ResNeSt,
image datasets of cervical cytology samples were con-
structed. The cytological images of LBC specimens
(CellprepQ, Roche Diagnostics, Basel Switzerland) were
acquired using a Nikon ECLIPSE Ci upright microscope

(Nikon) and DS-Ri2 digital camera (16.25 megapix-
els; Nikon). The focus was manually adjusted, and the
depth of focus was searched for to best fit the entire
area of each cell cluster. A total of 919 cell clusters of
cytological images were captured to be classified into six
cervical cytological classes based on the Bethesda clas-
sification system (NILM, ASC-US, LSIL, ASC-H, HSIL,
and squamous cell carcinoma [SCC]). This study was
limited to cervical squamous atypia, and the Bethesda
classifications of atypical glandular cells, such as AGC
and Adenocarcinoma, were excluded from the scope
of this study. The specimens were randomly selected
from cases of Pap tests performed at Sapporo Medical
University between 2015 and 2018. The distribution of
the datasets is summarized in Table 1.

The magnification was 400X, and the size of the cap-
tured cell image was 1636 X 1088 pixels. Two specialists
in cytology (one obstetrician and one pathologist) and one
cytologist discussed and annotated the images of each
Bethesda class. An estimated Bethesda classification was
assigned to each cell group as an annotation. Of the anno-
tated datasets, 70% were used as a training dataset, 15% as
a validation dataset, and 15% as a test dataset. In applying
the YOLOv4 algorithm, the NILM classification was in-
cluded only in the test dataset because it is exclusively de-
termined based on a sample result not being classified into
any of the five atypical cell classes. YOLOV4 is based on
a single image containing multiple cell clusters, whereas
ResNeSt is based on the same image, though the number
of datasets differs because they were constructed for each
cell cluster. We oversampled the training dataset to im-
prove the learning accuracy. Oversampling is the process
of padding the amount of data to increase the learning
accuracy by processing images with various filters when
there are not enough images to serve as training data. First,
both vertical and horizontal inversion as well as nine types
of image filtering were performed (Figure 1A). These fil-
ters are intended to increase the robustness of the model
by mimicking the light exposure and diverse specimen
states across a variety of image capture environments.

TABLE 1 Number of images used for machine learning for each CNN algorithm

ResNeSt datasets

YOLOV4 datasets

Bethesda Number Training Postdata

classification ofcases datasets augmentation datasets
NILM 26 0 0 0
ASC-US 35 104 3744 22

LSIL 33 123 4428 26
ASC-H 29 138 4968 29

HSIL 24 119 4284 26

SCC 14 91 3276 19

Validation Test

Training Post data Validation Test

datasets datasets augmentation datasets datasets
100 118 4248 30 26

22 121 4356 32 26

26 114 4104 29 25

29 131 4716 34 28

26 201 7236 51 44

19 267 9612 68 58
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In addition, we used Scale Augmentation (Figure 1B)*
and Random Erasing (Figure 1C)* together only for the
ResNeSt training data. Scale Augmentation is performed
by randomly enlarging the input image to a predeter-
mined range of sizes and then randomly cropping out an
image of the original size as the input image from that
image. Random Erasing is a technique that conceals pix-
els in a portion of the input image. These two techniques
have been shown to improve the accuracy of CNN-based
image classification models.

2.3 | Two-step diagnosis based on a
combination of CNN algorithms

We used a computer with an accelerated computing unit
(NVIDIA GeForce RTX 2070 super GPU) for machine
learning calculation. Training, validation, and testing
were performed using the constructed image dataset. The
investigated system consists of two CNN, YOLOv4? and
ResNeSt,” corresponding to the detection step and clas-
sification step, respectively (Figure 2A). In this system, we
decided to use individual learning of each CNN, YOLOv4
and ResNeSt, instead of end-to-end learning for efficiency
of both memory usage and learning. If end-to-end learning
had been used, YOLOv4 and ResNeSt would have needed
to be loaded into memory at the same time. Then, the
ResNeSt parameters would have needed to be frozen for
YOLOV4 learning, while the YOLOv4 parameters would
have needed to be frozen for ResNeSt learning. For the de-
tection of atypical cells using YOLOv4, training was per-
formed using the Darknet machine learning library.® All
hyperparameters in the training were set as recommended
by the developers of YOLOv4. Clusters of atypical cells
were detected within boundary boxes (Figure 2B-D). In
the second step, the detailed classifier using ResNeSt was
trained using the Tensorflow machine learning library.
The parameters image size, number of channels, and
learning rate were set to their default values, and the batch
size was set to 16, which is the maximum value that can
be loaded on the graphics processing unit (GPU) used in
the study. The maximum number of iterations was set to
10,000 as recommended by the Darknet manual. During
the iterations, the mean average precision (mAP) for the
validation dataset was evaluated, and the model param-
eter obtaining the highest value before overfitting was
saved. The training loss and validation mAP plots in this
process are shown in Figure S1. Figure S1A shows that the
decrease in loss slowed down and the accuracy of mAP did
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not improve from about 2300 batches in training without
oversampling. Additionally, the same trend was observed
in training with oversampling from about 6400 batches in
Figure S1B, and this was determined to be the boundary
for overfitting. In this algorithm, the model with oversam-
pling is used because mAP increased from 49.3% without
oversampling to 57.1% with oversampling. For ResNeSt,
we used accuracy instead of mAP for the evaluation of
the learning process (Figure S1C). Similarly, training was
terminated when the training loss became flat and an in-
crease in accuracy was no longer observed. We chose the
model at 300 batches as the final model for ResNeSt.

Because the progression of cervical cancer from a
healthy cervix is a continuous process, atypical cells at
the boundary of Bethesda classifications are often visually
similar. Therefore, when classifying crowded images of
multiple cells, it is not suitable to make a single absolute
classification. In this study, we used a “label smoothing”
algorithm®® for the ResNeSt training data to achieve a
smooth classification. The Cross Entropy function, used
as the loss function of ResNeSt, is defined as

c
Loss = — Zyilogfi,
i=1

where c is the number of classes, y € R® is the one-hot-
encoded label data, and y € R is the output vector of the
model. This loss function allows the output of unreasonable
predictions for classes that are not the correct answer class
and does not consider the co-occurrence between each class.

When considering a sample for which the correct an-
swer is ke[1,c],

c
Loss= — Z y;logy;
i=1
= —(0-logy; +0-logy, + -+ +1-logy + -+ +0-logy, )

= —logyy.

This means that only the prediction y, for the correct
answer class is evaluated independently. In general object
detection, the co-occurrence between objects is unknown,
so this is not a problem. However, there is room for im-
provement in the case in which obvious co-occurrence
could be inferred, such as in this study, where HSIL and
SCC are likely to co-occur, but NILM and SCC are not.
Therefore, we performed co-occurrence-based learning
by smoothing the correct label y with y; = n~*=i where
n is an arbitrary positive integer and a hyperparameter.
From this definition, we can see that

Cc
Loss= — Zyilog)’z\i = — (7% logy +n~ %2 . logp; + - + n K=K . logy + -+ +n7=I - logy) .

i=1
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FIGURE 1 Oversampling methods applied to training data. (A) An example of data augmentation with nine patterns of filtering. The

datasets were further increased by 36x by adding patterns to horizontal and vertical reverse images. (B, C) Scale Augmentation (B) and

Random Erasing (C) applied for ResNeSt training

and all the terms are evaluated. Here, n~'*~il behaves as
a weight, with n=*=kl = 1 for the correct class; the further
the class is from the index of the correct class, the smaller
the weight. This makes it easier for the output probabilities
of neighboring classes to co-occur. This label smoothing
assumes that the correct class is assigned in the following
order: NILM, ASC-US, LSIL, ASC-H, HSIL, and SCC. This
approach was chosen based on the definition of the Bethesda
classification system, such that classes with similar progres-
sion levels are visually similar. After training the algorithm,
the contribution of each oversampling method to the im-
provement in diagnostic ability was checked, and then, the
model that showed the highest F-measure in the validation
was used for testing. As system performance indicators, we
used the following statistically calculated parameters: accu-
racy = (TP + TN)/(TP + FP + FN + TN); precision = TP/
(TP + FP); recall = TP/(TP + FN); and F-measure = 2 * pre-
cision * recall/(precision + recall). In the equations used for
calculating these parameters, TN, TP, FN, and FP represent
the numbers of true-negative, true-positive, false-negative,
and false-positive images, respectively. Recall is synonymous
with sensitivity, and precision is the positive predictive value.

3 | RESULTS

Table 2 summarizes the results of the system performance
evaluation of each step of YOLOv4-based cell detection
and ResNeSt-based classification.

3.1 | Atypical cell detection by the
YOLOV4 algorithm

For NILM, ASC-US, HSIL, and SCC, recall was higher
than precision, whereas for LSIL and ASC-H, recall was
lower than precision. Because there is a trade-off between
precision and recall, a comparison among these six classes
should be based on the F-measure. The F-measure of
NILM, HSIL, and SCC detection was about 65%, while
the F-measure of ASC-US, LSIL, and ASC-H was approxi-
mately 40%. The average detection speed was 47.8 ms per
image. The average recall, which is an important measure
of performance in the first step of atypical cell screening,
was 72.5%. Although this average recall value seemed to
be low, this may not be the case when considering the
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FIGURE 2 Algorithm of the two-step CNN diagnostic system. (A) Framework of the two-step cytological diagnosis by YOLOv4 and
ResNeSt. B-D. Images of atypical cells identified by the YOLOv4 algorithm. The atypical cell clusters are properly identified regardless of the

background cell density

TABLE 2 System performance of each step of CNN-based cell classification

YOLOV4 performance (first step)

ResNeSt performance (second step)

Bethesda

classification Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure
NILM 77.0% 100.0% 49.0% 65.8% 98.0% 92.3% 92.3% 92.3%
ASC-US 76.6% 27.9% 86.4% 42.2% 87.2% 60.0% 41.4% 49.0%

LSIL 90.1% 64.3% 34.6% 45.0% 92.0% 76.2% 59.3% 66.7%
ASC-H 89.6% 75.0% 31.0% 43.9% 92.1% 66.7% 90.3% 76.7%

HSIL 89.2% 52.3% 88.5% 65.7% 85.5% 57.9% 61.1% 59.5%

SCC 91.9% 51.4% 94.7% 66.7% 88.4% 77.6% 80.4% 78.9%
Average 85.7% 54.2% 67.0% 54.9% 90.5% 71.8% 70.8% 70.5%

sensitivity of detection of all atypical cells. Table 3 shows
the confusion matrix of the results.

YOLOV4 had a particularly difficult time with the clas-
sification of ASC-US, exhibiting a precision of only 27.9%.
This result is elucidated by inspection of the confusion
matrix because many of the other classes were classified

as ASC-US. However, the positive predictive rates for HSIL
and SCC were extremely high in the first step conducted
with YOLOvA4. In addition, there were no cases of atypi-
cal cells over ASC-US that were underestimated as NILM.
Therefore, when the cutoff was set as atypical cells above
ASC-US, the recall of the algorithm was 100%. Therefore,
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TABLE 3 Confusion matrix of atypical cell detection in each step

Predicted class in YOLOvV4 (first step)

Predicted class in ResNeSt (second step)

NILM ASC-US LSIL ASC-H HSIL
True class NILM 49 13 5 1 15
ASC-US 0 19 0 1 2
LSIL 0 16 9 0 1
ASC-H 0 18 0 9 2
HSIL 0 2 0 1 23
SCC 0 0 0 0 1

we consider that the system exhibits the necessary perfor-
mance to function as a detector of atypical cells.

3.2 | Precise classification by the
ResNeSt algorithm

The second step, classification using the ResNeSt algo-
rithm, was performed for the atypical cells detected in
the first step. In the second step, we examined the con-
tribution of each oversampling method on the valida-
tion results. Overall, the highest diagnostic performance
was obtained when all oversampling methods and label
smoothing were used. Compared with the model without
oversampling (average F-measure, 44.0 + 3.3%), a com-
bination of oversampling methods improved the average
F-measure by 10.0%. Furthermore, a combination of label
smoothing improved the F-measure by 7.1%, and the av-
erage F-measure reached 61.1 + 3.6% in the validation
phase. Following this result, we tested the model trained
with all oversampling methods; the results are summa-
rized on the right side of Table 2, and the corresponding
confusion matrix is shown in Table 3.

NILM showed the highest F-measure of 92.3%, fol-
lowed by SCC, with 78.9%. Because the sensitivity for
atypical cells of the YOLOv4 was tuned higher to avoid
missing atypical classes, there were many cases for which
NILM was classified to be atypical. Therefore, the highest
F-measure for NILM was essential for the classification
step of ResNeSt. The average of F-measures for all classes
was 70.5%, showing a marked improvement in diagnostic
performance compared with the first step, YOLOv4. The
differences between precision and recall were small for
NILM and SCC and larger for ASC-US, LSIL, and ASC-H.
The average classification speed was 77.6 ms per image in
the developer's environment for the second step. In other
words, a total of 122.2 ms per image was required for this
two-step cell diagnosis algorithm. Assuming that the sys-
tem is applied to a whole slide image (WSI) that has al-
ready been captured, we calculated the time required. If
the WSI of a slide is captured at 400x magnification using

SCC  NILM ASC-US LSIL ASC-H HSIL SCC
17 24 1 0 0 0 1

0 0 12 4 6 4 3

0 2 4 16 3 1 1

0 0 1 0 28 2 0

0 0 2 1 3 22 8
18 0 0 0 2 9 45

Nanozoomer (Hamamatsu Photonics K.K.), the total
number of images is 224 given the input image size as-
sumed in this method, which means that the method can
be executed in 27.4 s. However, we expect that this result
can easily be improved by using a faster GPU.

4 | DISCUSSION

In developing our system, we placed the greatest empha-
sis on the accurate determination of multiple crowded
cells. Previous assessments of classification algorithms
have often used the Herlev dataset’ as a unified dataset
for method comparison. One feature of this dataset is that
the images are well suited for mechanical classification
because they have been carefully captured and sorted and
adjusted in order to reduce noise. However, comparisons
of classification algorithms for single cells based on the
Herlev dataset are not applicable to real clinical speci-
mens. This is because not only are actual specimens of
cervical cytology often captured as multi-cell images but
also background noise cannot be completely removed,
even by LBC processing. To solve these problems, we
used a combination of two CNN algorithms in this study,
namely, YOLOv4? and ResNeSt.* We selected YOLOv4
as the detector for several key reasons. First, object detec-
tion methods based on deep learning can directly detect
objects in an image, thus eliminating the need for pre-
processing, such as noise removal and single-cell segmen-
tation. Additionally, among object detection methods,
YOLOv4 achieves a good balance between detection speed
and detection accuracy and is suitable as the first step in a
multi-step system. However, the most important reason is
that the architecture of YOLOV4 is able to identify atypical
cells among many other normal cells.

From the perspective of screening, it is important to be
able to not only detect abnormal cells but also correctly rec-
ognize normal cells and ignore them in an algorithm. The
architecture of YOLOvV4 meets this performance require-
ment. YOLOv4 divides the entire target image into grids
and then calculates the probability of belonging to one
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of the classification classes for each grid. In other words,
YOLOV4 learns to set the probability to zero for regions in
which there are no objects to be detected. Therefore, if the
number of detected cells is zero for a model that has only
been trained on atypical cells, the result is interpreted as
the absence of atypical cells, and the cytological image is
thus classified as NILM. This exclusive detection of nor-
mal cells eliminates the need to include normal cells in
the training dataset. This is a great advantage because cer-
vical cytology is highly variable, even for normal cells, and
annotation of cells is a very time-consuming process. This
advantage is difficult to obtain with R-CNNs,* SPPnet,?®
and Faster R-CNNs,?’ among other methods, in which the
region extraction and classification algorithms are split.
These machine learning methods do not have a way to re-
duce their sensitivity to normal cells.

We chose ResNeSt*! as the classifier for the second stage
because of its high accuracy in analyzing the ImageNet
dataset.?® There are six types of ResNeSt algorithms, which
differ in their number of layers: ResNeSt14, ResNeSt26,
ResNeSt50, ResNeSt101, ResNeSt200, and ResNeSt269.
ImageNet is customarily used as a benchmark for image
classification methods, and ResNeSt269 shows the high-
est accuracy in analyzing the ImageNet dataset (https://
cv.gluon.ai/model_zoo/classification.html). However, as
the number of layers increases, it has the disadvantages of
slow detection speed and high memory usage. Therefore,
we decided to use ResNeSt50 to achieve a balance among
accuracy, detection speed, and machine memory usage.
Our objective is to develop a system that can detect atypical
cancer cells in real-time and assist in the decision-making
process immediately, motivating our selection of an al-
gorithm that balances the trade-off between speed and
accuracy. The average accuracy of 90.5% and F-measure
of 70.5% for our algorithm are relatively high compared
with those for previously reported methods, but further
improvement in diagnosis performance is needed for clin-
ical use. In a systematic review, the sensitivity of Pap test
screening by human cytoscreeners in detecting cervical
dysplasia was 30% to 87%, and the specificity was 86% to
100%.%° Therefore, we consider it is necessary to aim for
a value close to 100% accuracy in automated diagnostic
algorithms.

To improve the accuracy, flexible assignment of
data labels and increasing the amount of training data
may be beneficial. Flexible assignment of correct labels
means that label smoothing should be conducted to
more closely resemble real images.”* In this study, we
made the label smoothing criterion mountainous. A vi-
sualization of our label smoothing of n=*~ for ¢ = 6 and
n = 2, 3 is shown in Figure S2. For example, if HSIL is
the most suspicious diagnosis (k = 4), we have imple-
mented gentle labeling throughout such that the next
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highest probability is associated with the neighboring
classes, ASC-H (i = 3) and SCC (i = 5). This is only a hy-
pothetical model, and the distribution of the Bethesda
classification is not necessarily mountainous when con-
sidering the actual cell clusters. The label smoothing
method alone contributed to a 7.1% F-measure improve-
ment, but further parameter adjustments specific to
cell diagnosis may be necessary. It is possible that some
improvement could be made in the implementation of
label smoothing, such as considering the distribution of
the cytodiagnostic classifications according to their ap-
proximation and frequency.

There are several limitations to our study. The first is
the small size of the dataset used for training. Generally,
more training datasets improve accuracy because they in-
crease the coverage for the population in machine learn-
ing. The number of images analyzed in our study was
about one-hundredth of the number utilized in a previous
study using Faster R-CNN." This is because we created a
high-quality training dataset by taking pictures of cervical
cell clusters with characteristic findings, determining the
boundary region, and discussing the annotation with mul-
tiple experts. Thus, in this study, we used oversampling.
Because oversampling can improve accuracy in machine
learning, it is a method that is actively used in medical re-
search, where training data tends to be scarce. In the sense
that it can handle various imaging conditions, oversam-
pling is a useful method because it is expected to improve
robustness. However, oversampling can occasionally pro-
duce images that are very dissimilar from the original
image, which may reduce accuracy. Consequently, there
are some areas in which the achieved accuracy is not suf-
ficient. In using this system for cervical screening, we are
most concerned about false negatives. Although the first
step by YOLOvV4 successfully detects atypical cells, there
are some classes that are underestimated by ResNeSt. It is
important to note that there are cases of underestimation
below ASC-H classes, where surgical treatment is actively
considered, such as HSIL and SCC (Table 3). An addi-
tional algorithm may need to be constructed to identify
these cases individually if no improvement is achieved by
increasing the number of dataset images. Furthermore,
there are still difficulties in classifying borderline classes
such as ASC-US and ASC-H. Clinically, the diagnosis of
these classes is the basis for HPV testing or biopsy, and
we need to consider how to classify them correctly. We
assume that the difficulty is specific to each ASC class be-
cause we used almost the same amount of training data for
all classes. Because these classes are not likely to consist of
large cell clusters, it may be effective to use an ordinary
machine learning algorithm established for single cells. In
addition, atypical glandular cells were not included in the
dataset analyzed. The main reason for this exclusion was
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that the number of cases of atypical glandular cells was
small compared with atypical squamous cells, making it
difficult to obtain an adequate dataset. Furthermore, be-
cause cell clusters of glandular cells have a more obvious
three-dimensional structure compared with squamous
cell clusters, we are investigating other approaches that
can classify three-dimensional structures correctly.

As a second important limitation, the evaluation of
learning accuracy may be insufficient. In this study, we
captured images of the ideal field of view and annotated
them with characteristic cell clusters. When evaluat-
ing these datasets, YOLOv4 can detect characteristic cell
populations, and the classification by ResNeSt must ulti-
mately produce the final accuracy. However, YOLOv4 may
detect some extraneous objects as suspected atypical cells
when the system is applied to suboptimal images. If end-
to-end evaluation is to be done properly, all these potential
false positives must be annotated. As mentioned above,
we took great care in creating this dataset, and it was diffi-
cult to create additional datasets for further evaluation of
suboptimal cytological images.

To pursue clinical use of this system, we propose con-
tinued research and development in the form of an aug-
mented reality microscope (ARM). The ARM reported
by Google in 2019* enabled detection of breast cancer
metastasis sites and prostate cancer in real time during
speculum examination by using a system based on deep
learning. We believe that our YOLO-based assistance sys-
tem with high detection rate and real-time performance
will be a good match for the ARM concept. We hope that
its combined use with ARM in cytological screening will
reduce the risk of missing atypical cells and reduce the
workloads of cytoscreeners.

5 | CONCLUSION

This two-step algorithm was determined to provide highly
sensitive classification results with clear potential to sup-
port near real-time diagnosis in clinical cervical cytology.
In future research, we will focus on the continued devel-
opment of this system in conjunction with an augmented
reality microscope for cytological screening assistance.

ACKNOWLEDGMENTS
We thank ThinkSCIENCE Inc. (Tokyo, Japan) for editing
a draft of this manuscript.

CONFLICT OF INTEREST

T.M. received research funding from the Akiyama Life
Science Foundation and the Noastec Research Foundation
and reports no other conflict of interest. All the other au-
thors report no conflicts of interest.

AUTHOR CONTRIBUTIONS

Tasuku Mariya: Conceptualization, Methodology. Yuta
Nambu: Visualization, Investigation, Software, Writing —
Original draft preparation. Shota Shinkai, Hiroko Asanuma,
and Mina Umemoto: Data curation. Yoshihiko Hirohashi,
Toshihiko Torigoe, and Tsuyoshi Saito: Supervision. Ikuma
Sato and Yuichi Fujino: Software, Validation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

ORCID

Tasuku Mariya @ https://orcid.org/0000-0002-7110-980X

REFERENCES

1. Spencer CC, Bostrom RC. Performance of the cytoanalyzer in
recent clinical trials. J Natl Cancer Inst. 1962;29:267-276.

2. Spriggs AI, Diamond RA, Meyer EW. Automated screening for
cervical smears? Lancet. 1968;1(7538):359-360.

3. Watanabe S. An automated apparatus for cancer prescreening:
CYBEST. Comput Graph Image Process. 1974;3:350-358.

4. Hutchinson ML, Cassin CM, Ball HG 3rd. The efficacy of an
automated preparation device for cervical cytology. Am J Clin
Pathol. 1991;96(3):300-305.

5. Howell LP, Davis RL, Belk TI, Agdigos R, Lowe J. The AutoCyte
preparation system for gynecologic cytology. Acta Cytol.
1998;42(1):171-177.

6. Cibas ES, Ducatman BS. Cytology: Diagnostic Principles and
Clinical Correlates. ELSEVIER; 2021. https://www.elsevier.
com/books/cytology/cibas/978-0-323-63636-0

7. Chen Y-F, Huang P-C, Lin K-C, et al. Semi-automatic segmen-
tation and classification of Pap smear cells. IEEE J Biomed
Health Inform. 2014;18(1):94-108.

8. Gautam S, Harinarayan KK, Jith N, Sao AK,Bhavsar A, Natarajan
A. Considerations for a PAP Smear Image Analysis System
with CNN Features. 2018, June 01, 2018:[arXiv:1806.09025 p.].
Available from: https://ui.adsabs.harvard.edu/abs/2018arXiv1
80609025G

9. Jantzen J, Norup J, Dounias G, Bjerregaard B. Pap-smear
Benchmark Data for Pattern Classification. Nature inspired
Smart Information Systems: EU co-ordination action. NiSIS;
2005:1-9.

10. William W, Ware A, Basaza-Ejiri AH, Obungoloch J. A pap-
smear analysis tool (PAT) for detection of cervical cancer from
pap-smear images. Biomed Eng Online. 2019;18(1):16.

11. Nirmal Jith OU, Harinarayanan KK, Gautam S, Bhavsar A,
DeepCerv SAK. DeepCerv: deep neural network for segmenta-
tion free robust cervical cell classification. Computational pa-
thology and ophthalmic medical image analysis. Lecture Notes
in Computer Science; Springer; 2018:86-94. https://link.sprin
ger.com/chapter/10.1007%2F978-3-030-00949-6_11

12. Chankong T, Theera-Umpon N, Auephanwiriyakul S.
Automatic cervical cell segmentation and classifica-
tion in Pap smears. Comput Methods Programs Biomed.
2014;113(2):539-556.


https://orcid.org/0000-0002-7110-980X
https://orcid.org/0000-0002-7110-980X
https://www.elsevier.com/books/cytology/cibas/978-0-323-63636-0
https://www.elsevier.com/books/cytology/cibas/978-0-323-63636-0
https://ui.adsabs.harvard.edu/abs/2018arXiv180609025G
https://ui.adsabs.harvard.edu/abs/2018arXiv180609025G
https://link.springer.com/chapter/10.1007%2F978-3-030-00949-6_11
https://link.springer.com/chapter/10.1007%2F978-3-030-00949-6_11

NAMBU ET AL. ) 529
Cancer Medicine W1 LEYJ—

13. Zhang L, Le L, Nogues I, Summers RM, Liu S, Yao J. DeepPap: 25. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hi-
deep convolutional networks for cervical cell classification. erarchies for accurate object detection and semantic seg-
IEEE J Biomed Health Inform. 2017;21(6):1633-1643. mentation. 2013 November 01, 2013:[arXiv:1311.2524 p.].

14. Guanglu Sun SL, CaoY, Lang F. Cervical cancer diagnosis based Available from: https://ui.adsabs.harvard.edu/abs/2013a
on random forest. Int J Performability Eng. 2017;13(4):446-457. rXiv1311.2524G

15. Mariarputham EJ, Stephen A. Nominated texture based 26. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep
cervical cancer classification. Comput Math Methods Med. Convolutional Networks for Visual Recognition. 2014 June 01,
2015;2015:586928. 2014:[arXiv:1406.4729 p.]. Available from: https://ui.adsabs.

16. Bora K, Chowdhury M, Mahanta LB, Kundu MK, Das AK. Pap harvard.edu/abs/2014arXiv1406.4729H
smear image classification using convolutional neural network. 27. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-
Proceedings of the Tenth Indian Conference on Computer Time Object Detection with Region Proposal Networks. 2015
Vision, Graphics and Image Processing - ICVGIP ‘162016. p. 1-8. June 01, 2015:[arXiv:1506.01497 p.]. Available from: https://

17. Zhang]J, LiuY. Cervical cancer detection using SVM based fea- ui.adsabs.harvard.edu/abs/2015arXiv150601497R
ture screening. Lecture Notes in Computer Science. 2004;3217(1 28. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification
PART 2):873-880. with deep convolutional neural networks. Proceedings of the

18. Zhao M, Wu A, Song J, Sun X, Dong N. Automatic screening of 25th International Conference on Neural Information Processing
cervical cells using block image processing. Biomed Eng Online. Systems - Volume 1. Curran Associates Inc.; 2012. 1097-1105.
2016;15:14. 29. Nanda K, McCrory DC, Myers ER, et al. Accuracy of the

19. Meiquan X, Weixiu Z, Yanhua S, et al., Cervical Cytology Papanicolaou test in screening for and follow-up of cervical
Intelligent Diagnosis Based On Object Detection Technology. cytologic abnormalities: a systematic review. Ann Intern Med.
2018. https://openreview.net/forum?id=r14Qkwsif 2000;132(10):810-819.

20. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look 30. Chen P-H, Gadepalli K, MacDonald R, et al. An augmented
Once: Unified, Real-Time Object Detection. 2015 June 01, reality microscope with real-time artificial intelligence integra-
2015:[arXiv:1506.02640 p.]. Available from: https://ui.adsabs. tion for cancer diagnosis. Nat Med. 2019;25(9):1453-1457.
harvard.edu/abs/2015arXiv150602640R

21. Zhang H, Wu C, Zhar.lg Z, et al. ResNe.St: Split-Attention SUPPORTING INFORMATION
Networks. 2020 April 01, 2020:[arXiv:2004.08955 p.]. .. .. . .
Available from: https://ui.adsabs.harvard.edu/abs/2020a Additional supporting information may be found in the
Xiv200408955Z online version of the article at the publisher’s website.

22. Shorten C, Khoshgoftaar TM. A survey on image data augmen-
tation for deep learning. Journal of Big Data. 2019;6(1):60.

23. Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random Erasing Data How to cite this article: Nambu Y, Mariya T,
Augmentation. 2017 August 01, 2017:[arXiv:1708.04896 p.]. Shinkai S, et al. A screening assistance system for
Available from: https://ui.adsabs.harvard.edu/abs/2017arXivl cervical cytology of squamous cell atypia based on a
708048967 two-step combined CNN algorithm with label

24. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z.

Rethinking the Inception Architecture for Computer Vision.
2015 December 01, 2015:[arXiv:1512.00567 p.]. Available from:
https://ui.adsabs.harvard.edu/abs/2015arXiv151200567S

smoothing. Cancer Med. 2022;11:520-529.
doi:10.1002/cam4.4460



https://openreview.net/forum?id=r14Qkwsif
https://ui.adsabs.harvard.edu/abs/2015arXiv150602640R
https://ui.adsabs.harvard.edu/abs/2015arXiv150602640R
https://ui.adsabs.harvard.edu/abs/2020arXiv200408955Z
https://ui.adsabs.harvard.edu/abs/2020arXiv200408955Z
https://ui.adsabs.harvard.edu/abs/2017arXiv170804896Z
https://ui.adsabs.harvard.edu/abs/2017arXiv170804896Z
https://ui.adsabs.harvard.edu/abs/2015arXiv151200567S
https://ui.adsabs.harvard.edu/abs/2013arXiv1311.2524G
https://ui.adsabs.harvard.edu/abs/2013arXiv1311.2524G
https://ui.adsabs.harvard.edu/abs/2014arXiv1406.4729H
https://ui.adsabs.harvard.edu/abs/2014arXiv1406.4729H
https://ui.adsabs.harvard.edu/abs/2015arXiv150601497R
https://ui.adsabs.harvard.edu/abs/2015arXiv150601497R
https://doi.org/10.1002/cam4.4460

