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Epidemiologic data suggest that cancer survivors tend to develop a protuberant number
of adverse late effects, including second primary malignancies (SPM), as a result of
cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict
mutational burden on genomic DNA, the precise mechanisms contributing to SPM
development are poorly understood. Cancer is nowadays perceived as a complex
process that goes beyond the concept of genetic disease and includes tumor cell
interactions with complex stromal and immune cell microenvironments. The cancer
immunoediting theory offers an explanation for the development of nascent neoplastic
cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by
an effective tissue immunosurveillance, but certain tumor variants may occasionally
escape innate and adaptive mechanisms of immunological destruction, entering an
equilibrium phase, where immunologic tumor cell death “equals” new tumor cell birth.
Subsequent microenvironmental pressures and accumulation of helpful mutations in
certain variants may lead to escape from the equilibrium phase, and eventually cause
an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the
auspice of a highly competent immune system. This perspective offers the fresh insight
that chemotherapy-induced thymic involution, which is characterized by the extensive
obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term
defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and
peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive
immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and
lead to development of persistent and mortal infections, inflammatory disorders, organ-
specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced
thymic involution is a potential risk factor for the emergence of SPM demarcates new
avenues for the rationalized development of pharmacologic interventions to promote
thymic regeneration in patients receiving cytoreductive chemotherapies.
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INTRODUCTION

Despite the many advancements in the field of cancer
therapeutics, including an array of targeted therapies and
immunotherapies, chemotherapy still represents the frontier
and standard-of-care therapeutic approach for the clinical
management of the cancer patients (1). Today, a large number
of cytoablative/cytostatic chemotherapies are available for
clinical use in cancer patients, and are occasionally used alone,
or more frequently under a combinatorial treatment strategy (2).
These drugs are classified into five major classes (2), based on
their mechanism of action: (I) Alkylating agents have the ability
to covalently bind to and promote crosslinking of the two DNA
strands via their alkyl group, thus leading to DNA strand break
upon replication (i.e., during cell division) and triggering
apoptosis (3). (II) Antimetabolites hinder the biosynthetic
pathways of DNA/RNA, either because they inhibit enzymes
that regulate DNA synthesis like DNA polymerase, or because
they structurally resemble nucleobases/nucleosides lacking the
proper chemical groups, thus preventing mitosis after their
incorporation into the DNA (4). (III) Anti-microtubule agents
interfere with microtubule dynamics, thus preventing key
functions, such as the formation of the mitotic spindle during
cell division and causing mitotic arrest (5). (IV) Topoisomerase
inhibitors prevent the activity of topoisomerases, enzymes that
physiologically introduce single- or double-strand breaks into
the DNA to relieve strand tension and allow DNA to properly
unwind during replication (6). (V) Cytotoxic antibiotics
represent a large category of drugs with various modes of
action, most notably prevention of cell division (7–9).

Beyond doubt, the survival rates of cancer patients have
tremendously increased within the past decades due to more
optimized and personalized use of chemotherapeutics, albeit
with significant variations among different tumor types.
Chemotherapy has even been successful in the radical treatment
of certain tumor types, such as certain subtypes of testicular cancer
and leukemias, although its therapeutic efficiency in most tumors
of epithelial origin is rather limited, and at best suboptimal (10–
15). An in-depth analysis of reasons behind the lack of its
effectiveness is beyond the scope of this perspective. However,
systemic toxicities rising from the lack of specificity in exclusively
targeting neoplastic cells, drug resistance, and rapid drug
metabolism/clearance of certain chemotherapeutics, signify only
a few key reasons for their ineffectiveness against complete tumor
eradication (2, 16, 17). More recent findings in preclinical mouse
models of solid carcinomas suggest that chemotherapies may
additionally promote neuroendocrine and stress responses, and
elicit a proinflammatory cytokine surge, which together impede its
short-term clinical benefits, by supporting a proangiogenic and
prometastatic program in the tumor microenvironment,
eventually leading to local and/or distant recurrence (18–21).
Moreover, the long-term monitoring of cancer survivors (mostly
pediatric cancer survivors) after years of receiving genotoxic
treatments indicate a wide range of late adverse health effects,
occurring mostly in, but not limited to, highly proliferating tissues,
which include the hematopoietic, gastrointestinal, and
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reproductive systems. Such late adverse effects manifest as
critical health issues in these patients, and include severe and
long-term organ dysfunctions (including cardiotoxicity,
neurotoxicity, nephrotoxicity, and hepatotoxicity, among others),
infertility, cognitive impairment, and second primary
malignancies (SPMs) (22–26). A thorough analysis on the
occurrence and mechanisms behind all of the aforementioned
adverse effects is beyond the scope of the current perspective. Here,
we focus on the mechanistic origins of SPM, which represents one
of the relatively understudied but most devastating late adverse
effects in cancer survivors, as a paradigm for discussing the long-
term consequences of chemotherapy on the immune system.

An SPM is defined as an unrelated primary cancer in a person
who has experienced a different cancer sometime in their lifetime
(22). By definition, SPM should be fundamentally distinguished
from a secondary/metastatic cancer, especially if the latter occurs
as a result of distant recurrence from a primary tumor, months
or even years following treatment (27). The most prominent
working model behind the development of such secondary
cancers in the absence of a primary tumor relies on concrete,
experimental evidence, collectively suggesting that cancer cell
dissemination to distant metastatic sites, such as lungs, bone
marrow, liver and brain, has occurred before the surgical excision
or therapeutic management of the primary tumor (27). In this
case, the long-term remission interval followed by relapse could
be attributed to cancer dormancy, a stage of cancer progression,
in which disseminated cancer cells either cease dividing (but
survive in a quiescent state) or remain “locked” in a dynamic
state, in which cancer cell proliferation balances cancer cell death
(28, 29). Dormant cancers can remain clinically “silent” for
months or even years, until the proper (micro)environmental
conditions disrupt the dormancy program, and lead to a
clinically overt tumor at the metastatic site (28, 29). On the
contrary, SPMmay rise on the same or a different organ and may
either share a similar or different embryological origin with the
first tumor; for example large B-cell lymphoma survivors are
shown to be at high risk of developing colon, pancreas, breast
(among other) tumors as late adverse SPMs (30). SPM is
genetically distinct and independent from the first tumor that
was experienced earlier in the patient’s life, and typically harbors
mutations as a result of genotoxicity from the chemotherapies
used for the treatment of the first tumor (31–33).

Nowadays, revolutionary treatments and improvement in
patient care have allowed oncologists to face a constantly
increasing long-lived population of cancer survivors. As such,
the late adverse health effects of cytotoxic cancer treatments have
become a recent clinical issue, due to the better clinical outcomes
and favorable prognostic potential. Hence, there exists an unmet
clinical need to unravel risk factors for such late adverse, and
especially fatal, as in the case of SPMs, health effects. A
consequent unmet clinical need would thus be to establish new
prognostic biomarkers to stratify cancer survivors that are at
high risk of developing such late adverse effects, with an ultimate
vision of adapting their therapies, strengthening follow-up, and
identifying novel pharmacological targets for medical
interventions. The mission of the basic cancer scientist against
July 2022 | Volume 13 | Article 933547
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this backdrop would thus be to provide a mechanistic insight on
short- and long-term effects of cytotoxic cancer treatments on
the immune system, as this appears to be the missing link for the
development of devastating late adverse effects, such as SPMs.
The current perspective offers a fresh working model, suggesting
that acute thymic involution due to cytoreductive chemotherapy
could significantly compromise the immune system of cancer
survivors, thus leading to disturbed immune surveillance
mechanisms and SPM development.
CHEMOTHERAPY-INDUCED SECOND
PRIMARY MALIGNANCY –

EPIDEMIOLOGY

Although prominent risk factors for the development of SPMs
include predisposing genetic factors and the patient’s lifestyle (as
in the case of most primary cancers), it is important to mention
that cytotoxic drugs that have been received for the clinical
management of the first cancer and the patient’s age at the onset
of such treatments, represent two of the most well-established,
independent risk factors of SPM development (34–37). In the
United States, cancer survivors have a 14% higher risk of
developing SPM when compared to the general population
(22). Interestingly, the cumulative risk to develop an SPM
within 30 years following diagnosis of a primary pediatric
malignancy is ~6.8% (22). Along the same lines, effective
control of early-onset malignancies through radiation therapy
and multiagent chemotherapy, has on one hand achieved
significant increase in the 5-year survival of pediatric cancer
patients (up to 80%), but has detrimentally increased the relative
risk of developing SPM at 30 years after the diagnosis of the first
tumor, by approximately 6-fold (38). Hence, cancer survivors
receiving cytoreductive chemotherapy for the treatment of their
primary cancer are at high risk of developing an SPM, even years
after the completion of therapy.

Commonly observed SPMs following pediatric cancer
treatment with alkylating agents are of hematologic origin and
include among others acute lymphoid leukemia (ALL), acute
myeloid leukemia (AML), chronic myelogenous leukemia
(CML), and myelodysplastic syndrome (MDS) (39). Depending
on the dose and/or possible combination with doxorubicin,
alkylating agents may increase the risk of developing leukemias
as SPMs by at least 5-fold (22). Other chemotherapeutics, such as
cyclophosphamide can increase the risk of developing bladder
cancer as SPM (22). The combination of alkylating agents with
radiation therapy can also result in the manifestation of solid
carcinomas as SPMs, including breast (40), lung (41), stomach
(42), pancreas (43), thyroid (44), and colorectal cancer (45), as
well as bone or other sarcomas (46, 47). For more details, the
readers are encouraged to consult excellent reviews and surveys
for the most common pediatric first and second primary
malignancies in childhood cancer survivors, along with a
thorough analysis of the risk factors associated with those (22,
38, 48). Interestingly, there is vigorous epidemiologic evidence
suggesting that pediatric cancer survivors carry significant risk of
Frontiers in Immunology | www.frontiersin.org 3
mortality due to SPMs that present as adverse late health effects
(22, 49–52). This brief epidemiological synopsis of SPM
incidence, risk factors, and prognosis in cancer survivors is
intended to merely provide the readers with a fundamental
clinical basis, to better conceptualize the causative link between
chemotherapy and emergence of late adverse effects (e.g.,
SPM development).
CHEMOTHERAPY-INDUCED SECOND
PRIMARY MALIGNANCY – MECHANISTIC
ORIGINS

As described in the landmark review by Hanahan and Weinberg
(2011), cancer is now accepted as a multifaceted disease, organized
by the acquisition of certain biological capabilities, broadly known
as the “hallmarks of cancer”, and which can be summarized as the
following: (i) Sustaining proliferative signaling, (ii) Evading
growth suppressor mechanisms, (iii) Resisting cell death and
apoptosis, (iv) Enabling replicative immortality, (v) Inducing
angiogenesis, (vi) Activating invasion and metastasis, (vii)
Reprogramming energy metabolism, and (viii) Evading
immunological destruction (53). Underlying the acquisition of
these acquired hallmark capabilities are two dimensions of tumor
complexity. On one side is genome instability of transformed cells,
which generates an essential genetic diversity (e.g., genomic
mutations) that accelerates the acquisition of hallmark
capabilities, while on the other side is a wide repertoire of
recruited, seemingly normal cells that constitute the tumor
microenvironment, and function as unwitting participants of
cancer development and progression (53). Chemotherapy-based
cancer treatments are highly genotoxic and are documented to
increase the mutational burden of patients receiving them, thus
providing an attractive rationale for the development of second
independent malignancies as a late adverse effect. For instance,
certain second primary leukemias developed by cancer survivors,
including AML and MDS, present with deletion of 7q or
monosomy 7 with normal chromosome 5, and deletions of 5q
or monosomy 5, which are typical chromosomal aberrations due
to prior exposure to alkylating agents (54). In another study, it was
shown that topoisomerase II inhibitors, anthracyclines and
mitoxantrone cause chromosomal translocations and chimeric
rearrangements, leading to the manifestation of prolymphocytic
leukemia as SPM (55–57). Topoisomerase II inhibitors have also
been linked with translocations involving 11q23 or 21q22 in
pediatric patients, leading to manifestation of AML within 1-5
years (58). Interestingly, genetic and epigenetic changes associated
with cytotoxic treatments have also been reported for non-
hematologic malignancies, such as pediatric ependymomas
manifesting as SPMs, which depict hypermethylated phenotype
leading to loss of tumor suppressor genes, such as CDKN2A,
CDKN2B and p14ARF (59–61).

Although accumulation of such (epi)genetic defects due to
chemotherapy treatment could partially explain early onset of
SPMs, they cannot fully recapitulate the microenvironmental
prerequisites that are essential for the development and
July 2022 | Volume 13 | Article 933547
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progression of clinically overt tumors. Interestingly, the “immune
surveillance” theory, originally proposed by Burnet and Thomas
more than half a century ago, suggested that the immune system
functions as a sentry in identifying and eradicating newly-emerging
neoplastic cells. An extensive refining of this theory based on
experimental observations, culminated into the foundation of the
more concrete “cancer immunoediting” theory, consisting of 3
biologically distinct phases, to describe the many aspects of
immune-tumor cell interactions (62–67). In the first phase,
Elimination, newly risen neoplastic cells are eliminated by a
competent immune system, collectively described as the “immune
surveillance”. Intermittent tumor cells that manage to evade
immunological destruction enter the second phase, Equilibrium,
where immune-based elimination is balanced by the birth of new
neoplastic cells. In the third phase, Escape, immunological
“sculpting” allows tumors to progressively grow and lay the
foundations for an immunosuppressive tumor microenvironment
(62–67). As the primary site of T cell development and maturation,
any intrinsic/extrinsic factors that negatively affect thymic integrity
and functions could therefore affect the aforementioned
immunoediting mechanisms, by shifting the balance toward the
tumor-promoting end. Therefore, a critical question related to the
origin of SPMs in cancer survivors is: “Could chemotherapy
treatment have a long-lasting effect on the immune system,
capable of hijacking the cancer immunoediting mechanism, thus
facilitating SPM development in cancer survivors?”

To address this question, it is crucial to first recognize the key
mediators of anticancer immunity. CD8+ T lymphocytes and
natural killer (NK) cells encompass the backbone of anticancer
immune responses and cancer immunoediting (62–64, 67–71). T
cell-mediated responses in particular, are mediated by cytotoxic
CD8+ T cells, which specifically recognize via their unique T cell
receptor, one or more neoantigens on the cell surface of cancer
cells (72–76). T cell-mediated anticancer immunity is supported
bymultiple stromal and immune cells, including cancer-associated
endothelial cells and innate antigen-presenting cells (e.g.,
macrophages, dendritic cells), and leads to immunogenic cell
death of tumor cells (77–79). To be able to recognize tumor cell
neoantigens, a sufficient repertoire of T cell receptors and
peripheral T cell pool with ability to monitor and elicit
immunological attacks against neoplastic cells, must be
generated in, and emerge from the thymus (80–82). As such, the
thymus plays a critical role in the long-term establishment of
anticancer immune surveillance and anticancer immunity (83).
The thymus is a central lymphoid organ for T cell development,
and signals derived from the thymic stromal epithelium are key
determinants of thymocyte fate. The process of T cell development
in the thymus is rather complex, and not the focus of the current
perspective, but there are several checkpoints that determine
efficient immune surveillance and anticancer immunity, such as:
ab-TCR gene rearrangement to acquire various specificities of
neoantigen recognition, positive selection to achieve MHC
restriction, and negative selection to establish central tolerance
to self-antigens (84–87). Besides undergoing a natural decline
termed age-related involution, the thymus is particularly sensitive
to a variety of external stressors, as will be described in detail later,
Frontiers in Immunology | www.frontiersin.org 4
including cytoreductive chemotherapy, leading to its rapid
involution and the consequent impairment of thymopoiesis
(88–92).

Although thymic involution represents a logical mechanism
for long-term immunosuppression and the failure of the immune
system to control the emergence and survival of transformed
cells, the link between thymus function and cancer development
has been rather underrepresented in the “cancer immunology”
literature. For instance, thymic involution could contribute to the
long-term impairment of immune surveillance against tumor
cells, enhanced ability of neoplastic cells to conceal their
neoantigens and as such to evade immunological destruction,
as well as the deployment of augmented immunosuppressive
scaffolds in peripheral tissues (83). With regards to age-related
thymic involution in particular, it has been documented that
declined T cell-mediated immune surveillance is the outcome of
reduced T cell repertoire diversity due to reduced thymic output,
concurrent expansion of “immunosenescent” T cells expressing
high levels of inhibitory checkpoint receptors (e.g., PD1), and a
developmental shift towards immunosuppressive CD4+ T
regulatory (Treg) cells, capable of suppressing CD8+ T cell
functions in the periphery (83, 92–96). Therefore, the age-
involuted thymus promotes the accumulation of multiple
defects and the hijacking of the “cancer immunoediting
machinery”, which together promote the development of
clinically overt cancers. A critical question in the context of
SPM development is: “Would chemotherapy-induced involution
present similar defects in immune surveillance and the cancer
immunoediting process, as seen in the case of age-related
thymic involution?”

Although there is sufficient evidence of short-term
consequences of chemotherapy on the immune system, less is
known about how chemotherapy or other extrinsic stressors could
affect the cancer immunoediting process, and as a consequence,
the emergence of SPMs in cancer survivors. With regards to short-
term consequences of chemotherapy on the immune system,
detailed investigations have unraveled conflicting data. It has
been suggested that chemotherapy can exert desirable
immunological effects, by boosting tumor cell immunogenicity
and promoting immunologic cell death (ICD) of tumor cells,
which is characterized by the mobilization of innate immune
responses and tumor-specific adaptive immune responses (97–
99). For example, doxorubicin and cyclophosphamide are capable
of causing the translocation of calreticulin, an endoplasmic
reticulum chaperone, to the tumor cell surface, thus offering a
signal for phagocytosis by dendritic cells and as a consequence,
tumor antigen uptake and presentation (100, 101). Chemotherapy
is also capable of increasing expression of MHC-I molecules on
the tumor cell surface, thus turning them into attractive targets for
cytotoxic CD8+ T cells, as well as of promoting the expression of
NK stimulatory ligands, such as NKG2D, while suppressing NK
inhibitory ligands (102–106). Finally, certain chemotherapeutics,
including doxorubicin and cyclophosphamide, can enable type-I
interferon signaling responses, and trigger macrophage
recruitment, maturation, and NK cell proliferation (107, 108),
thus establishing an immunostimulatory microenvironment. On
July 2022 | Volume 13 | Article 933547
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the other side, chemotherapy has been documented to induce a
systemic cytokine surge, and the subsequent recruitment of bone
marrow progenitors, including proangiogenic/prometastatic
TIE2+ monocytes, and myeloid-derived suppressor cells
(MDSCs), which together promote a highly resilient and
immunosuppressive tumor microenvironment (19, 21, 109–115).
Moreover, certain chemotherapeutics, such as paclitaxel, can
structurally mimic bacterial lipopolysaccharide, thus functioning
as putative Toll-like receptor-4 (TLR4) agonists and leading to
chronic inflammation, capable of hijacking the immune response
against tumors (116–119). Besides the short-term effects, less has
been unraveled on the immunological effects of chemotherapy
over large periods of time.

However, indirect indications from epidemiologic data have
hinted that cancer survivors may indeed suffer from suboptimal
per iphera l immune surve i l lance , due to rece iv ing
chemotherapeutics. For example, cancer survivors remain at
elevated risk for developing infectious-related complications
with a higher risk of persistent infections, and infection-related
mortality, even years following chemotherapy (120–122), clearly
suggesting that chemotherapy may exert long-term
consequences to a patient’s immune system. In certain
hematological malignancies, it has been shown that the type
and dose of chemotherapy treatment can determine the rate and
magnitude of lymphocyte recovery following treatment, and as
such, the re-establishment of proper immune surveillance (123–
125). These observations do not only suggest that early
lymphocyte recovery may be a favorable prognostic indicator
in these patients, but also highlight the importance of developing
therapeutic strategies to support faster lymphocyte recovery to
avoid early or late adverse effects of chemotherapy-compromised
immune surveillance (123–125).

Valuable insights in this regard have been provided by many
groups studying long-term consequences of thymic involution in
peripheral immune surveillance. In general, thymic epithelial cells
(TECs) are necessary for T cell differentiation and maturation, by
providing key growth factors, chemokines, cytokines, and strictly
regulated selection processes within the thymic environments. The
phenotypic heterogeneity of cortical (cTEC) and medullary
(mTEC) thymic epithelial cells is critical for the precision and
coordination of intrathymic pathways leading to the development
of mature T cel ls (80, 126–132). Several common
immunosuppressants used to prevent allograft rejection such as
cyclosporine, corticosteroids such as dexamethasone, and
cytoreductive chemotherapies used for cancer treatment such as
cyclophosphamide, are all known to cause impaired thymopoiesis
and even autoimmunity, primarily by targeting cTEC and mTEC
populations (133–138). Acute thymic involution as a result of
cytoreductive chemotherapy leads to delayed recovery of T cells,
with imminent consequences in the peripheral T cell pool and
immune surveillance. In a non-pediatric setting, it has been
demonstrated that repopulation of certain subsets of CD4+ T
cells and B cells is delayed for almost a year following
chemotherapy treatment in breast cancer patients (139).
Although older studies have not looked into such extended
periods of time, they have consistently reported that T cell
Frontiers in Immunology | www.frontiersin.org 5
recovery cannot be achieved between chemotherapy cycles, as
opposed to the successful recovery of erythroid, myeloid and
thrombocytic lineages (140, 141). In hematopoietic cell
transplantation (HCT), cytoreductive chemotherapies are often
used to prevent the transplant rejection, and as opposed to the fast
recovery of non-lymphoid lineages post-chemotherapy,
reconstitution of T cell adaptive immunity is profoundly
delayed, often by a year or more (91, 142, 143). Post-
chemotherapy T-cell deficiency in HCT recipients is not only
associated with increased risk of infections and cancer relapse, but
also with the development of SPMs, again due to failures in the
cancer immunoediting mechanisms (141–147). Despite that all the
non-T cell lineages are dependent on the bone marrow
microenvironment for reconstitution following chemotherapy-
mediated depletion, T lymphocytes are exclusively dependent on
the thymus (148–150). The extensive delay in T cell reconstitution
and the establishment of the peripheral T cell pool is therefore not
attributed to impaired hematopoiesis, because the latter is restored
soon after the termination of chemotherapy. Although the
mentioned studies are quite indicative of the premise, the status
of anticancer immune surveillance months or years following
chemotherapy treatment has not been thoroughly assessed, and
relevant animal models for such experimental testing are not, to
our knowledge, standardized.

Besides impaired thymopoiesis leading to reduced peripheral
T cell pool, chemotherapy-induced thymic involution may skew
peripheral immune surveillance toward the development of
precursor lesions for organ-specific autoimmune disease. As
proof-of-concept, there is now clear epidemiologic evidence
that post-chemotherapy rheumatism and other autoimmune
syndromes may develop not only shortly, but even months or
years, after completion of cytoablative treatments in (childhood)
cancer survivors (151, 152). Mouse models of chemotherapy-
induced thymic involution have determined that chemotherapy
significantly obliterates the epithelial compartment of the
thymus, most prominently the AIRE+ MHC-IIhigh mTEC
subset, whose endogenous repair is a rather time-demanding
process (91, 126, 153–156). An elegant study by Fletcher and
colleagues (2009) has previously demonstrated that AIRE+

mTEC need approximately 7-10 days to be fully restored after
treatment with immunosuppressive drugs or chemotherapeutics.
Given that the restoration of AIRE+ mTEC is significantly
delayed compared to the other TEC subsets, the authors
concluded that a 7–10-day period of impaired or suboptimal
AIRE+ mTEC function could be sufficient in allowing
autoreactive T cells to escape the thymus and establish
autoimmune lesions in the future (133). In general, the
targeted deletion of the AIRE+ mTEC subset, or the targeting
of the optimal expansion of AIRE+ mTEC via genetically
engineered animals, both lead to organ-specific autoimmunity.
For example, one study demonstrated that targeted deletion of
the histone acetyltransferase KAT7 interferes with normal AIRE+

mTEC development in the thymic environment and causes
profound lymphocyte infiltration into a variety of peripheral
organs, such as the lung, liver, salivary glands, stomach, and
lacrimal glands (157). Although an increased release of
July 2022 | Volume 13 | Article 933547
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autoreactive T cells from the age-involuted thymus has been
more strongly associated with chronic inflammation and
autoimmunity (90, 158, 159), many investigators agree that the
kinetically slow recovery of an acutely-involuted thymus can also
provide a sufficient window to instigate the foundations of
organ-specific autoimmunity.

What lessons can be learned by studying thymic involution,
either age-induced or chemotherapy-induced, in the context of
impaired thymopoiesis and autoimmunity? First, these studies
collectively provide a proof-of-concept that damage/decline of
various TEC components, including the most sensitive AIRE+

mTEC subset, could potentially manifest as prolonged
“disturbance” of tissue immune surveillance, characterized by
profound deficiencies in T cell receptor repertoire, peripheral T
cell pool, and the presence of autoreactive cytotoxic CD8+ T cells.
All these consequences can hinder the ability of the immune
system to prevent nascent neoplastic cells via a competent
immune surveillance, and to maintain control of tumor cell
growth during the equilibrium phase of the cancer
immunoediting process (154). Second, the thymus reaches its
maximum relative size around birth and its maximum absolute
size at puberty. As such, a significant impairment of thymopoiesis
during this interval (i.e., the treatment of pediatric cancer patients
with cytoreductive chemotherapy) would have a tremendous effect
on the patient’s immune system. Because chemotherapy-
compromised cancer immunoediting mechanisms may persist
for a long period of time (e.g., years) in pediatric cancer
survivors, neoplastic cells can escape elimination and
equilibrium phases much earlier, thus manifesting as early onset
SPMs or other adverse health effects (22, 120). This newly
proposed working model of establishing a causative link
between chemotherapy-induced thymic involution and SPM
development, with the defective cancer immunoediting
mechanisms serving as an intermediary, is illustrated in Figure 1.
CHEMOTHERAPY-INDUCED THYMIC
INVOLUTION – MECHANISTIC INSIGHTS
AND REGENERATION STRATEGIES

The thymus is extremely sensitive to a wide array of external factors
and stressors, including, but not limited to, acute/chronic infections,
certain medications, glucocorticoids, cytoreductive chemotherapies,
and even certain physiological states, such as pregnancy. Although
these individual factors exert distinct effects on the thymic
environment, they can all cause, in principle, extensive
deterioration and/or complete elimination of the cTEC and
mTEC compartments, leading to impaired thymopoiesis and
escape of autoreactive T cells to the periphery (88, 91, 154, 155,
160, 161). In the case of cytoreductive treatments, the initial effect is
dependent on the chemotherapy's mechanism of function, which is
typically disruption of one or more steps associated with cell
division, and as such the proliferating thymic epithelial cell pool is
directly assaulted shortly after administration (88, 91, 161, 162).
In general, chemotherapies that function by perturbing cell division
will systemically suppress most of the actively proliferating niches,
Frontiers in Immunology | www.frontiersin.org 6
including the hematopoietic niche, which often leads to impaired
multi-lineage hematopoiesis (163–165). Impaired lymphopoiesis
leads to diminished mobilization of lymphocyte progenitors, and
as such, it also leads to reduced homing of early thymic progenitors
(ETPs) in the thymus environment (166, 167). Hence, the
devastating effects on thymic architecture and function observed
during chemotherapy are primarily related to its direct mechanism
of action on proliferating niches in the mammalian body, and
manifest as acute reduction of both thymocytes and
TECs (Figure 2A).

Several investigations have interestingly revealed that when
compared to cTEC subsets, AIRE+ mTEC are more sensitive to
stressor-mediated destruction, a feature that typically manifests as
disproportional reconstitution of corticomedullary ratio with
detrimental, long-term, organ-specific repercussions, such as
development of autoimmunity and leukemic transformation (156,
162, 168, 169). Underlying this biased inefficiency of mTEC to
repair from acute thymic involution may be indirect consequences
of cytoablative treatments. Although, chemotherapies lead to severe
reduction of thymocytes in the thymic environments as mentioned
above, it is now well known that thymocytes and TECs participate
in reciprocal signaling loops providing trophic and survival factors
to one another (129, 131). For example, AIRE+ mTEC are strongly
dependent on RANK ligands (RANKL) provided by the single
positive CD4+ thymocytes and type 3 innate lymphoid cells (ILC3)
for proliferation/differentiation and TEC regeneration (131, 170,
171). Therefore, chemotherapy-mediated disruption of
lymphopoiesis will result in the elimination of lymphocyte
homing and as such, the elimination of the TEC survival signals.
In conclusion, besides the well-reported and direct mechanisms for
chemotherapy-induced immunotoxicity, cytoablative treatments
may also lead to prolonged “attritional” death of mTEC subsets
due to the selective elimination of essential microenvironmental
factors, such as RANKL (Figure 2B).

Naturally, the thymus has the endogenous capacity to
regenerate from the loss of thymic epithelium (91, 172–174),
although the time interval necessary for the completion of
endogenous repair might be sufficient to cause critical failures
in the aforementioned cancer immunoediting mechanisms, as
already mentioned in the previous chapter. A recent, but active
area of research, relies on the development of pharmacological
interventions to facilitate thymic regeneration following
chemotherapeutic or other cytotoxic insults. From the
viewpoint of the current perspective, such strategies would be
rather beneficial by boosting thymic functions and enhancing
peripheral immune surveillance mechanisms in cancer survivors,
to prevent early onset of SPMs and other late adverse effects of
chemotherapy. In the following paragraphs, we briefly discuss
the underlying principles of well-established regeneration
strategies following acute thymic involution.

A significant number of regeneration strategies has focused on
targeting cells, essential for thymic architecture and function, most
notably cTEC and mTEC subsets (91), as thematically illustrated
in Figure 3A. For instance, favorable outcomes have been reported
from exposure to Fibroblast Growth Factor-7 (FGF7) (175, 176),
Insulin-like Growth Factor-1 (IGF1) (177), Wingless-related
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Integration site-4 (WNT4) (178), Bone Morphogenetic Protein-4
(BMP4) (174), and Interleukin-22 (IL22) (172). Most of these
endogenous pathways orchestrate complex intrathymic circuitries,
simultaneously involving multiple stromal epithelial, stromal non-
epithelial (e.g., endothelial cells, mesenchymal cells), and immune
cells (e.g., macrophages, dendritic cells, innate lymphoid cells),
which cooperate to support the reconstitution of the appropriate
thymic infrastructure for T cell development. For example,
following radiation-induced thymic involution, a subset of
dendritic cells secretes interleukin-23 (IL23) in the thymic
environment, which stimulates innate lymphoid cells to
subsequently secrete IL22, in turn promoting the survival and
Frontiers in Immunology | www.frontiersin.org 7
proliferation of radiation-affected TECs (172, 179). In another
study, BMP4 was shown to be primarily secreted by the
intrathymic endothelium and mesenchymal fibroblasts, and was
significantly overexpressed following acute thymic involution to
support the replenishment of BMPR2high cTEC populations,
eventually facilitating thymic repair (174). A thorough analysis
of all implicated studies in this category is beyond the scope of this
perspective, but suffice is to claim that a concrete understanding of
the paracrine/juxtacrine intrathymic milieu is paramount for the
successful design of therapeutic modalities.

Because thymus physiology is under constant neuroendocrine
control (180), a separate class of regeneration strategies has
FIGURE 1 | Proposed Link Between Acute Thymic Involution and Development of Second Primary Malignancy. In the absence of exposure to prior treatments with
cytoablative chemotherapies due to a first-primary tumor (upper half of illustration), the emergence of nascent transformed cells is subjected to a “competent” cancer
immunoediting process. At the beginning, the competent immune system can eliminate neoplastic cells via an efficient immune surveillance machinery. Then tumor
cell growth is balanced by immunogenic cell death, described as equilibrium phase. And finally, immunosculpting leads to the escape phase, during which anticancer
immunity fails to control tumor growth and creates a clinically overt tumor. The succession of these three phases is a long-lasting process with two main contributing
factors: First, genomic instability is increased over time, leading to accumulation of driver mutations and genetic diversity that allows immunoevasive and
immunosuppressive mechanisms to evolve (e.g. development of tumor cell clones with absent or low immunogenicity). At the same time, age-related thymic
involution causes a decreased T cell peripheral pool and T cell receptor repertoires, leading to failure of immune surveillance and equilibrium mechanisms. In contrast,
following exposure to a first-primary tumor and associated treatment with cytoreductive chemotherapy (lower half of illustration), the failure of the immune surveillance
and equilibrium mechanisms occurs at a much earlier timepoint, allowing for the onset of clinically overt second primary malignancies (SPMs) at a younger age,
compared to first-primary tumors (compare timelines between upper and lower half of illustration). Contributing factors for the SPM are the genotoxic nature of
cytotoxic chemotherapy (which grants genomic instability and mutational burden at a very early onset), and chemotherapy-induced acute thymic involution causing
impaired thymopoiesis, T cell receptor repertoires, and peripheral T cell pools, thus weakening immune surveillance mechanisms during elimination and equilibrium
phases. Relative thickness of gray bars underneath the timelines in each condition indicates the strength of thymopoiesis (upper bar), and genomic instability (lower
bar) over time (not drawn to scale). Illustration designed with Biorender.
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proposed the development of hormonal therapies to systemically
control thymus growth (91), as thematically summarized in
Figure 3B. Sex steroids have a negative impact on thymus
function, and experimental models of chemical or surgical
ablation of sex steroids have given positive results in thymic
regeneration following acute thymic involution (153, 181–183).
However, despite the beneficial effects of sex steroid inhibition in
lymphoid potential and hematopoietic stem cell function, more
studies need to be conducted in this direction, because animal
models of castration often lead to increased release of autoreactive
T cells (91, 155, 184). These findings raise the concern that
regeneration strategies should carefully balance lymphocyte
progenitor supply with the size of the thymic epithelial
compartment to avoid detrimental consequences, such
as autoimmunity.
Frontiers in Immunology | www.frontiersin.org 8
Less explored thymic regeneration strategies include
chemokine and cytokine therapy, to improve homing of bone
marrow lymphocyte progenitors and expansion of thymic T cell
precursors in the thymus (91), as exemplified in Figure 3C. The
mechanistic principles behind the elicitation of such strategies
rely on the fact that chemotherapy has a detrimental effect on
bone marrow hematopoiesis, and the restoration of
lymphopoiesis is rather restricted following the termination of
the cytotoxic result (185, 186). A prominent example of such an
approach includes pretreatment of bone marrow progenitors
with CCL25 and CCL21 before autologous transplantation, to
rescue their homing capacity in the thymus after exposure to the
cytoreductive insult (187). Another strategy that circumvents
hematopoietic cell transplantation involves the administration of
IL7, a cytokine, endogenously secreted by cTEC subsets to
B

A

FIGURE 2 | Modes of Thymic Epithelial Cell Death After Chemotherapy Treatment. (A) Cytoreductive chemotherapy non-specifically and unconditionally targets
proliferation niches in the entire organism, and as such, insults TEC subsets in the act of cell division. (B) Cytoreductive chemotherapy suppresses bone marrow
hematopoiesis and subsequent early thymocyte progenitor homing in the thymic microenvironment, thus disrupting thymocyte-derived prosurvival signals essential
for TEC homeostasis, and causing “attritional” cell death to sensitive TEC subsets (e.g., AIRE+ mTEC). Illustration designed with Biorender.
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promote T cell proliferation and expansion, innate lymphoid cell
development, and lymphoid tissue organization (188–190).

Other even less explored, but emerging strategies involve the
development of artificial thymic niches to circumvent the
reliance on the endogenous thymus upon cytoreductive insult
(191), and the transplantation of bipotent TEC progenitor
(TECP) cells to reconstruct the entire thymic environment
(192), both of which show great promise (Figure 3D). Taken
together, our goal in this section was not to provide an exhaustive
discussion of all available regenerative strategies that are
currently explored to boost thymic function following
cytotoxic insults. Instead, we hoped to offer a brief overview of
the most promising pharmacologic interventions that could help
restore the cancer immunoediting mechanisms in cancer
survivors receiving chemotherapy.
CRITICISMS OF THE PROPOSED MODEL
AND FUTURE REPERCUSSIONS

The cancer immunoediting process functions as a devoted
sentinel under the auspices of a highly competent immune
system to put a tissue barrier on tumor development and
Frontiers in Immunology | www.frontiersin.org 9
progression. In this hypothesis and theory article, we explored
the premise that cancer survivors who have received
cytoreductive chemotherapy may present with multiple defects
on the cancer immunoediting mechanisms, as a result of
chemotherapy-induced thymic involution. These observations
would further imply that the onset of late adverse effects of
chemotherapy is not exclusively attributed to the genotoxic
potential of these drugs, but also to their negative impact on
thymic functions and T cell development. At this point, our
proposed model is not intended to be a comprehensive and
exhaustive analysis of all genomic and contextual intricacies
governing the defects of the cancer immunoediting process
that could lead to SPMs after chemotherapy. Rather, we have
laid the groundwork for future expansions of the proposed
model. For instance, we focused primarily on CD8+ T cell-
mediated anticancer immunity and immune surveillance to
discuss the relevant defects on the cancer immunoediting
mechanisms. However, there is now compelling evidence that
both NK cells and NKT cells comprise a substantial component
of the anticancer immune response, and cancer immune
surveillance mechanisms (193–197), suggesting that the effects
of chemotherapy on conventional intrathymic pathways for T
cell development could be only one side of the coin. As such, it
B

C D

A

FIGURE 3 | Strategies for Enhancing Thymus Regeneration Following Chemotherapy. (A) Examples of thymus regeneration strategies targeting thymic stromal cell
networks activated in endogenous thymic repair. (B) Examples of thymus regeneration strategies targeting negative feedback loops on thymus size/function from sex
hormones. (C) Examples of thymus regeneration strategies involving the transplantation of (pre-conditioned) bone marrow-derived thymocyte progenitors. (D)
Examples of thymus regeneration strategies that are not dependent on the endogenous thymus, such as transplantation of bipotent thymic epithelial cell progenitors
to reconstitute thymus lobules and functions. Illustration designed with Biorender.
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would be important that future investigations focus on
systematic immunology studies to address the impact of
chemotherapy on the immune system.

The proposed model primarily focuses on the impact of
chemotherapy on cancer immunoediting mechanisms, from the
viewpoint of prolonged impaired thymopoiesis after
chemotherapy. Our model, however, did not discuss the impact
of chemotherapy on the quality of thymopoiesis upon
chemotherapy treatment. A large body of evidence now suggests
that age-related involution is related to immunosenescence, which
is translated not only in defects on numbers of peripheral T cells
during involution, but also in increased numbers of T regulatory
cells and markers of T cell exhaustion in the periphery (83, 94,
198–204). In our opinion, “immunosenescence” has not been
adequately addressed in the context of acute thymic involution,
but regardless, it should be taken into account during the
experimental design of future thymus regeneration strategies.

Our proposed model has not made clear distinctions between
types or schemes of chemotherapy and specific defects on cancer
immunoediting mechanisms and development of SPMs. In part,
this is due to the fact that not many such studies currently exist.
However, it would be an oversimplification to claim that all
chemotherapies exert similar effects or have the same capacity to
inflict SPMs, given that, for example, there are well-known
specific mutations tied to specific drug classes (22). In
addition, chemotherapies may potentially affect thymic
environments in a heterogeneous manner. As mentioned,
paclitaxel has been shown to function as a lipopolysaccharide
mimetic, thus promoting an acute proinflammatory milieu by
functioning directly as a TLR4 agonist, besides the traditional
mechanism of microtubule stabilization (116–119). Many groups
have compared neoadjuvant versus adjuvant chemotherapy
settings, either on the local tumor microenvironment or the
systemic tumor “macroenvironment”, and also reported
fundamental epidemiological differences in their response (19,
115, 205–212). Because the choice of cytoreductive treatments
could have a unique effect on thymopoiesis, such considerations
should be carefully taken into account as the scientific
community moves forward in the field, to properly enrich and
revisit our currently proposed model.

Our proposed model focuses on pediatric cancer patient
survivors, to propose a causative link between acute thymic
involution and defective cancer immunoediting mechanisms
Frontiers in Immunology | www.frontiersin.org 10
leading to SPMs. Nevertheless, SPM development also occurs
in non-pediatric patients, and similar mechanisms could also be
relevant in these populations (41, 213–221). The pediatric cancer
survivor paradigm was easier to discuss in our model, first
because there are long-term follow-up epidemiological data
that can be used as a better proof-of-concept (222–224), and
second, because thymic functions are relatively stronger in
childhood, as compared to other ages (201). However, due to
scientific advancements, oncologists are nowadays faced with an
increasing population of cancer survivors at all ages, and as such,
we anticipate that studies on acute thymic involution will
eventually become relevant for older cancer survivors.

To conclude, acknowledging that chemotherapy-induced
thymic involution is a risk factor for the emergence of SPMs
opens a new avenue for the rationalized development of
pharmacologic interventions to promote thymic regeneration
in patients receiving cytoreductive chemotherapies. Here, we
articulated that this research field is promising and exciting, and
we further anticipate that it will be at the frontier of personalized
medicine in the next decade.
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