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Invasive surgical cerebrum biopsy results in delayed treatment for the definitive diagnosis of primary central nervous system
lymphoma (PCNSL). The existent research was aimed at confirming the underlying diagnostic miRNAs of distinguishing
PCNSL from glioma. A publicly available miRNA expression profiles (GSE139031) from adult PCNSL as well as glioma
specimens were provided by GEO datasets. Differentially expressed miRNAs (DEMs) were filtered between 42 PCNSL patients
and 170 glioma patients. Candidate miRNAs were identified through SVM-RFE analysis and LASSO model. ROC assays were
operated to determine the diagnostic value of serum miRNAs in distinguishing PCNSL from glioma. StarBase v2.0 was applied
to screen the targeting genes of miRNAs, and KEGG analysis was applied using the targeting genes of miRNAs. In this study,
we identified 12 dysregulated miRNAs between PCNSL and glioma samples. The ten critical miRNAs (miR-6820-3p, miR-
6803-3p, miR-30a-3p, miR-4751, miR-3918, miR-146a-3p, miR-548am-3p, miR-371a-3p, miR-487a-3p, and miR-4756-5p)
between these two algorithms were ultimately identified. The results of KEGG revealed that the targeting genes of hsa-miR-
3918 were primarily related to MAPK signal pathway, PI3K-Akt signal pathway, and human papillomavirus infection. Overall,
bioinformatics analysis revealed that ten miRNAs are potential biomarker for distinguishing PCNSL from glioma.

1. Introduction

Primary central nervous system lymphoma (PCNSL) and
glioma are both highly malignant tumors of the central ner-
vous system; however, different treatment procedures were
applied for the above two tumors [1, 2]. In individuals with
gliomas, surgery is suggested in order to improve symptoms
and avoid recurrence, but it has little effect on survivals of
PCNSL [3]. Glioma and PCNSL are rapidly progressing dis-
eases associated with poor prognosis [4, 5]. As these tumors
share similar clinical and radiological characteristics, it
might be difficult to distinguish them from one another [6,
7]. Diagnostic and therapeutic techniques involving surgery
are necessary in some situations. Thus, it is critical to iden-

tify fresh sensitive biomarkers for distinguishing PCNSL
from glioma in order to provide patients with appropriate
treatment.

MicroRNAs (miRNAs), which is a kind of small, highly
conserved, and noncoding RNAs, can straightway bind to
certain sequence-specific positions of target genes’ 3′-UTRs
(3′ untranslated regions) to inhibit the expression of these
genes [8, 9]. They widely take part in many biological pro-
cesses such as cell communication, development, and differ-
entiations [10, 11]. During the past decades, miRNAs have
been implicated in the growth and metastasis of tumors in
the past by functioning as tumor oncogenes or tumor sup-
pressors, according to the recent research [12, 13]. miRNAs
that are present in the blood or tumors can be useful
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Figure 1: Volcano plot (a) and heat map (b) showed the differentially expressed miRNAs between PCNSL and glioma specimens.
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Figure 2: Filtering course of diagnostic candidates of distinguishing PCNSL from glioma. (a) Tuning characteristic option in LASSO model.
(b) A plot of biomarkers option through SVM-RFE algorithm. (c) Venn diagram illustrating 4 diagnostic markers shared by LASSO and
SVM-RFE algorithms.
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biomarkers and tumor suppressors in the case of brain can-
cers [14, 15]. However, the underlying miRNAs as new diag-
nostic biomarkers of distinguishing PCNSL from glioma
have not been investigated.

In the paper, we downloaded two microarray datasets of
PCNSL and glioma from the GEO datasets. Differentially
expressed miRNA (DEM) assays were performed between
the PCNSL and glioma. Machine learning algorithms were
applied to screen and confirm diagnostic biomarkers in
PCNSL and glioma. From this study, we suspect that serum
miRNAs can be required to precise distinct lots of PCNSL
patients from glioma patients.

2. Materials and Methods

2.1. Data Resource and Preprocessing. miRNA expression
profiles of glioma and PCNSL were found out in publicly get-
table GEO in NCBI (http://www.ncbi.nlm.nih.gov/geo/).
Inclusion standards were human miRNA expression data, gli-
oma samples and PCNSL samples, and total count of
samples ≥ 50. At last, GSE139031 was downloaded fromNCBI
GEO, including 42 PCNSL patients and 170 glioma patients.

2.2. Identification of DEMs. Statistical software R (version
3.3.2, https://www.r-project.org/) and packages of Biocon-
ductor (http://www.bioconductor.org/) were used for signif-
icance analysis of DEMs between PCNSL specimens and
glioma specimens. The limma package of R (http://www
.bioconductor.org/) was applied to count the P value and
FDR, separately. The DEMs were filtered out on the basis
of adjusted P value < 0.05 as well as ∣ logFC ∣ ≥1:2.

2.3. Candidate Diagnostic Biomarker Screening. Two
machine learning algorithms were applied to forecast disease
situation in order to identify important prognostic variables.
The least absolute shrinkage and selection operator (LASSO)
can increase prediction accuracy using regularization [16].
LASSO regression algorithm was implemented with the
“glmnet” package in R to confirm the miRNAs remarkably
related to the difference of PCNSL and glioma specimens.
Support vector machine (SVM) can be widely used in classi-
fication and regression as a supervised machine learning
technology [17]. RFE algorithm was applied to choose the
best miRNAs of the cohort in order to avoid overfitting.
SVM-RFE was used to choose proper characteristics in order
to find out the miRNAs of the highest discriminating power.
Overlapping miRNAs between the above two algorithms
were identified as critical diagnostic biomarkers.

2.4. Diagnostic Values of Serum miRNAs in Distinguishing
PCNSL from Glioma. To examine the predicted values of
the confirmed markers, we produced an ROC curve with
miRNA expression data of PCNSL as well as glioma speci-
mens. The region under the ROC curve (AUC) value was
used to find out the diagnostic effectiveness in screening
PCNSL from glioma specimens.

2.5. GO and KEGG Pathway Enrichment Analyses of the
Targeting Genes of miRNAs. StarBase v2.0 was applied to
screen the targeting genes of miRNAs [18]. GO analysis con-
tains three types: molecular function, biological process, and
cellular component. GO analysis was operated using gseGO
function in clusterProfiler package. The adjusted P value <
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Figure 3: The expression pattern of miR-6820-3p, miR-6803-3p, miR-30a-3p, miR-4751, miR-3918, miR-146a-3p, miR-548am-3p, miR-
371a-3p, hsa-miR-487a-3p, and hsa-miR-4756-5p in PCNSL and glioma samples.
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0.05 was as the cutoff standard. The GOenrich software
used a network diagram to show the relationships between
the most important GO terms and the genes involved.
Besides, KEGG pathway enrichment analysis was per-
formed using gseKEGG functions in clusterProfiler pack-
age. Accordingly, the cutoff level for the adjusted P value
was set at 0.05.

2.6. Statistical Analysis. All statistical analyses were con-
ducted using R software 3.5.3. Statistical significance was
given at a possible value of P < 0:05. ROC curves were
applied to determine the predicted accuracy of dysregulated
miRNAs. Differences between groups were compared by the
Wilcox test through R software. “Glmnet” was used to con-
duct LASSO regression analysis, while the e1071 package
was used to run the SVM algorithm in R.

3. Results

3.1. Identification of DEMs between Glioma and PCNSL
Samples. We used limma package to screen DEMs between
glioma and PCNSL samples. As shown in Figures 1(a) and
1(b), we identified 12 upregulated miRNAs in PCNSL sam-
ples, including miR-6820-3p, miR-6803-3p, miR-30a-3p,

miR-4751, miR-3918, miR-2277-5p, miR-146a-3p, miR-
548a-3p, miR-371a-3p, miR-487a-3p, miR-3183, and miR-
4756-5p.

3.2. Identification of the Diagnostic miRNAs. Two distinct
algorithms were applied to filter underlying markers. The
DEMs were decreased with LASSO regression algorithm,
leading to the confirmation of 10 miRNAs as diagnostic bio-
markers for distinguishing PCNSL from glioma
(Figure 2(a)). A series of 5 characteristics among the DEMs
were decided with the SVM-RFE algorithm (Figure 2(b)). 10
overlapping miRNAs (miR-6820-3p, miR-6803-3p, miR-
30a-3p, miR-4751, miR-3918, miR-146a-3p, miR-548am-
3p, miR-371a-3p, miR-487a-3p, and miR-4756-5p) between
the 2 algorithms were chosen finally (Figure 2(c)).

3.3. The Expression and Diagnostic Value of Ten miRNAs in
Distinguishing PCNSL from Glioma. The expression pattern
of the above ten miRNAs is shown in Figure 3. In addi-
tion, we performed ROC assays to determine the diagnos-
tic value of ten miRNAs using GSE139031. As shown in
Figure 4, all ten miRNAs showed a powerful discrimina-
tion ability.
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Figure 4: The ROC curve of diagnostic effectiveness of then diagnostic markers, including miR-6820-3p, miR-6803-3p, miR-30a-3p, hsa-
miR-4751, miR-3918, miR-146a-3p, miR-548am-3p, miR-371a-3p, miR-487a-3p, and miR-4756-5p.
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3.4. GO and KEGG Assays Based on the Targeting Genes of
hsa-miR-3918. StarBase v2.0 was applied to screen the tar-
geting genes of miRNAs, and 3787 genes were identified.
GO assays revealed that the targeting genes of hsa-miR-
3918 were mainly enriched in skeletal system development,
positive regulation of catabolic process, cell-cell junction,
cell-substrate junction, transcription coregulator activity,
and protein serine/threonine kinase activity(Figure 5(a)).
The results of KEGG revealed that the targeting genes of
hsa-miR-3918 were primarily related to MAPK signal path-
way, PI3K-Akt signal pathway, and human papillomavirus
infection (Figure 5(b)).

4. Discussion

PCNSL is a rare, aggressive brain neoplasm that accounts for
roughly 2-6% of primary brain tumors [19]. In comparison,
GBM is the most common and serious glioma subtype, in
the proportion of almost 50% of dispersed gliomas [20].
The strategies on how to treat glioma and PCNSL is different
substantially [21, 22]. As to glioma, the present therapeutic
is maximum tumor resection and radiation therapy and che-
motherapy with temozolomide afterwards [23]. However,
for PCNSL, methotrexate-based chemotherapy is a common
method after stereotactic intracranial biopsy. So, preopera-
tive distinction of glioma and PCNSL is of high clinical rela-
tion. In present days, more and more researches have
illustrated the dysregulation of miRNAs in various tumors
[24, 25]. In addition, the prognostic and diagnostic values
of miRNAs in many types of tumors have been frequently
reported [26, 27]. However, whether miRNAs can be used
as novel biomarkers for distinguishing PCNSL from glioma
has not been investigated.

In this study, we analyzed GEO datasets and screened 12
dysregulated serum miRNAs between PCNSL patients and
glioma patients. Interestingly, the 12 miRNAs are all upreg-
ulated miRNAs in PCNSL patients. According to 2 machine
learning algorithms, ten diagnostic markers were confirmed,
including miR-6820-3p, miR-6803-3p, miR-30a-3p, miR-
4751, hsa-miR-3918, miR-146a-3p, miR-548am-3p, miR-
371a-3p, miR-487a-3p, and miR-4756-5p. Previously, the
function of the above miRNAs in tumor progression has
been reported. For instance, Wang et al. indicated that
miR-30a-5p was highly expressed in glioma and its silence
inhibited the transformation of glioma cells via regulating
NCAM [28]. Han and Wang found that miR-3918 expres-
sions were distinctly downregulated in glioma and its over-
expression suppressed the proliferation and invasion of
glioma cells via decreasing EGFR to modulate PI3K/AKT
signal [29]. However, the effects of miRNAs in PCNSL were
rarely reported. Our findings may provide a new clue for
other researchers to further explore whether the above ten
biomarkers may influence the progression of PCNSL.

Numerous studies have suggested that some miRNAs are
aberrantly expressed in tumors and involved in the develop-
ment and progression of various tumors via targeting
tumor-related proteins, such as P53 and ROCK1 [30, 31].
To further explore the possible function of miR-3918, we
screened the possible targeting genes of miR-3918 by the
use of StarBase 2.0. Finally, 3787 genes were identified.
Then, we performed KEGG assays and found that the above
genes were mainly enriched in several tumor-related path-
ways, such as MAPK signal pathway, PI3K-Akt signal path-
way, and Ras signal pathway, suggesting that miR-3918 may
be involved in the regulation of these pathways. Importantly,
miR-3918 has been reported to modulate ERK and PI3K/
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Figure 5: Functional analysis based on the targeting genes of hsa-miR-3918. (a) GO enrichment was shown on a bubble graph. (b) KEGG
assay was shown on a bubble graph.

5Journal of Immunology Research



AKT signals in glioma, which was consistent with our find-
ings [29]. However, its potential function in glioma
remained largely unclear. More experiments were needed.

In the present research, the quality of these data cannot
be ensured because the gene expression results applied for
complex analysis were from various institutions and
accessed from available databases in public. Then, our find-
ings should be further demonstrated by additional findings
from biological experiments and large-scale multicenter
clinical researches because our results were from the com-
prehensive in silico study.

5. Conclusions

We firstly reported that ten serum miRNAs can serve as
novel diagnostic biomarkers for distinguishing PCNSL from
glioma. Our findings may provide new insights for future
studies on the occurrence and progression of PCNSL and
glioma.
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