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Abstract: In gliomas, expression of certain marker genes is strongly associated with survival and
tumor type and often exceeds histological assessments. Using a human interactome model, we
algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an
individual protein. Each single-gene expression and gene-centric pathway activation was tested as
a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or
wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated),
including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical).
We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which
in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene
and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We
then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7
identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two
times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we
conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent
class of new-generation diagnostic and prognostic biomarkers for gliomas.

Keywords: human gliomas; glioblastoma; low grade gliomas; survival and prognosis biomarkers;
RNA sequencing; gene expression; molecular pathway analysis; systems biology; interactome-
assisted algorithms

1. Introduction

In gliomas, the expression of certain marker genes is strongly associated with survival,
and in many studies, marker gene expression levels were better predictors of survival than
histological assessments [1–3]. Moreover, expression-based models are widely used to
classify gliomas into molecular subtypes, e.g., for a group of genes involved in angiogen-
esis [4]. Microarray gene expression clustering analysis revealed a diagnostic group of
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170 genes that could classify gliomas into glioblastomas (GBM), lower grade astrocytomas,
and oligodendrogliomas [5]. Furthermore, different expression-based models were built
to predict survival of patients with gliomas: 21- [6], 44- [3], and 58-gene signatures [7].
Moreover, a 35-gene signature was created to classify high-grade gliomas into mesenchy-
mal, proneural, and proliferative phenotypes—named by the similarities with the stages of
neurogenesis [8].

Completion of large collections of RNA sequencing (RNA-seq) tumor profiles has
strongly impacted the analysis of transcriptomic portraits of the gliomas. For example,
the analysis of The Cancer Genome Atlas (TCGA) project database resulted in a new
classification of GBM for proneural, neural, classical and mesenchymal subtypes [9]. Later
on, validation of this classification model on 225 RNA-seq profiles obtained from another
large data collection, the Chinese Glioma Genome Atlas (CGGA) project database, clearly
confirmed signatures for proneural, neural, and mesenchymal subtypes, but not for the
“classical” subtype [10]. However, later on, another study confirmed three subtypes of
GBM: classical, pro-neural, and mesenchymal, where gene signatures were also correlated
with the immune microenvironment [11]. The “missing” neural subtype might represent
an artifact resulting from significant admixtures of non-tumor cells in the whole-tissue
tumor specimens used for sequencing. Furthermore, an alternative transcriptome-based
classification of GBM was proposed that had three different molecular subtypes called
invasive, mitotic, and intermediate [12].

Besides protein-coding mRNAs, in many systematic transcriptomic studies of gliomas,
attention was paid to non-coding RNAs, including long non-coding (lnc) RNAs. Expression
of lncRNAs was found to correlate with malignancy grade and histological subtypes of
gliomas in microarray datasets [13]. Later on, using Rembrandt and GSE16011, datasets
three molecular glioma subtypes (LncR1-3) were revealed by distinct lncRNA signatures
associated with patient survival [14]. The TCGA RNA-seq dataset then established a
new standard for the analysis of lncRNAs for gliomas and normal brain tissues. For
example, expressions of specific lncRNAs were specifically associated with the lower grade
glioma (LGG) diagnostic genetic groups (classified by mutation in IDH1/2 genes and by
1p19q codeletion), and also with the classical, mesenchymal, neural, and proneural GBMs
molecular subtypes. In total, 584 and 282 lncRNAs were associated with negative and
positive survival prognosis, respectively [15]. The prognostic 8-lncRNA signature was
created using TCGA and CGGA datasets to predict grade II and III glioma patients with
poor outcomes [16].

Apart from genome-wide analyses of transcriptomic signatures, the relationships
between single genes’ expression levels and clinical parameters have also been intensively
investigated in gliomas. For example, expression of non-coding RNA CRNDE was found
to be a robust negative predictor of survival and at the same time a strong diagnostic
biomarker in gliomas [17].

Upregulated expression of gene for membrane type 1 metalloprotease (MT1-MMP)
was associated with glioma invasion [18]. Expression of HLA-DR genes was associated
with a more aggressive glioma tumor grade and shorter progression free survival (PFS)
and overall survival (OS) times [19]. Deregulated expression of genes controlling circadian
rhythms was specific for the high grade gliomas [20]. The meta-analysis of 21 studies,
including 1322 glioma patients, showed that TP53 expression was associated with survival
in gliomas [21].

On the other hand, the expression of CD44 was associated with the histological grade
but not with survival [22]. Some members of cancer/testis antigens (CTCFL and ACTL8)
have been associated with the poorer prognosis in glioma patients [23]. High expression of
ABCC8 mRNA is associated with longer overall survival [24]. The overexpression of CRM1
negatively correlated with glioma grade and was associated with poor prognosis [25].

Both single-gene-centered and genome-wide profiling have generated a wealth of
information on glioma-associated transcriptomic landscapes and enabled the development
of computational models for glioma progression basing on gene expression data. Appli-
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cation of integrative bioinformatics to analyze the data from transcriptomic analyses of
glioblastoma tissues and glioblastoma stem cells have revealed that profound changes in
the activity of clinically relevant signaling pathways can result from the cumulative impacts
of multiple genes that may show only modest changes in their expression (Kim et al. Can-
cers 2020). Further underscoring this notion are our recent findings related to FREM2 and
SPRY1 genes: they are associated with negative prognosis and more aggressive histological
types of IDH-WT glioblastomas [26]. We have established that an algorithmically recon-
structed molecular pathway centered around FREM2 predicts negative associations with
survival and molecular and histological subtypes of gliomas considerably more strongly
than the paternal gene FREM2 alone (Zolotovskaia et al., 2021). These findings merited
in-depth further validation in a larger study that would sufficiently cover the spectrum of
glioma-associated genes.

In this study, we used a human interactome model containing 64,095 participants and
361,654 molecular interactions. We algorithmically reconstructed 7494 new-type molecular
pathways that are centered each on an individual specific protein. We then compared
biomarker capacities of single-gene expression profiles with activation levels of these al-
gorithmically deduced gene-centric pathways in human gliomas. To this end, we took
RNA sequencing profiles annotated with survival data from the glioma databases of The
Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) projects,
including, in total, 527 glioblastoma (GBM) and 1097 low grade glioma (LGG) profiles.
Each gene or pathway was tested as a survival and tumor grade biomarker in the gliomas
and in their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q
co-deletion, MGMT promoter methylated or unmethylated), and also in the three specific
GBM molecular subtypes (proneural, mesenchymal, classical). With adjusted p-value 0.05
as the threshold, we identified 2724 such gene and 2418 pathway survival biomarkers out
of total 17,717 genes and 7494 pathways investigated. Thus, the pathway approach was
about two times more effective than the assessment of single genes as survival biomarkers.
We then assessed tumor grade and molecular subtype biomarkers, and with the threshold
of AUC > 0.7 identified 1322/982 and 472/537 gene/pathway biomarkers, respectively.
This suggested about 1.9 and 2.6 times, respectively, greater relative efficacy of the recon-
structed pathway approach. Thus, we conclude that activation levels of algorithmically
reconstructed gene-centric pathways are a potent class of new-generation diagnostic and
prognostic biomarkers for gliomas.

2. Results
2.1. Generation of Gene-Centric Molecular Pathways

We used the human interactome model [27] to algorithmically generate gene-centric
molecular pathways. Overall, the interactome model is a directed graph, where nodes are
genes or metabolites, and edges are known pairwise molecular interactions. It incorporates
molecular participants and interactions extracted from 51,672 source molecular pathways,
in total. To build the model, each pathway graph was processed as follows: pathway nodes
containing n molecular participants were divided into n nodes with only one participant,
and the corresponding interactions were assigned between such single nodes. Biochemical
reactions and transport processes were processed as auxiliary nodes, when involving more
than two participants. We then combined together, all pathway graphs were based on the
coinciding unique gene products and/or metabolites.

Molecular participants which were not connected with the overall network were
excluded (excluding less than 1% of the initial molecular participants). The remaining
interactors formed a connected graph including 122,929 vertices and 600,137 edges. In total,
it incorporated products of 7496 protein coding genes, 56,599 other molecular participants,
and 361,654 interactions between them (excluding auxiliary nodes and interactions). The
graph density was 8.08× 10−5, and average vertex degree (the number of edges connecting
the vertex) was 4.9.
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A neighborhood of each gene product was selected as a gene-centric molecular path-
way. A neighbor was considered an interactome vertex which was directly connected with
the gene product by one edge. If neighbor was a “process” node (biochemical reaction or
transport process), then all participants of this process would become neighbors to preserve
integrity of the reaction or transport process. Thus, each gene-centric pathway contained a
central node gene product, and its direct interactants and fellow participants in biochemical
reactions or transport processes in which central gene products are involved, as exemplified
in Figure 1.

In this way, we obtained 7496 gene-centric molecular pathways. Then, the pathways
were algorithmically functionally annotated as described previously [28], and we assigned
activator/repressor role coefficients (ARRs) to each pathway node. An ARR value char-
acterizes functional role of a gene product in the pathway and takes value of −1 when
a gene product inhibits the pathway; 1 when it activates the pathway; 0 when it has an
neutral or unclear role in the pathway; 0.5 or−0.5, when it activates or inhibits the pathway,
respectively.

In terms of gene products, the sizes of such pathways varied from 1 to 777, and mean
pathway size was 22 (Figure 2). Two pathways were excluded from further analysis because
all assigned ARR coefficients for their members were equal to zero.

2.2. Single-Gene-Expression Biomarkers as Overall Survival Predictors in Gliomas

RNA-seq profiles from one TCGA and two CGGA datasets have different numbers
of genes characterized by expression levels. There are only 17,717 genes common to all
databases. We used univariate Cox analysis and the log-rank test to analyze the expression
of each gene in relation to the available overall survival (OS) data. To this end, the patients
were categorized relatively to the median value of each gene expression level. Hazard ratio
(HR) and FDR-adjusted (Benjamini–Hochberg) p-value for Kaplan–Meyer analysis (log-
rank test) were obtained for each gene product. A particular gene product was considered
a significant survival biomarker if it had an FDR-adjusted p-value < 0.05 in all three
datasets under analysis, and a consistent direction of expressional change (either up- or
downregulation linked with survival in all three datasets).

In both GBM and LGG, we also separately analyzed the genetically characterized
subgroups with IDH mutation, with IDH mutation and 1p/19q codeletion, with wild type
(wt) IDH, and with methylated or unmethylated MGMT promoter.

We did not detect any genes meeting the above OS prognosis biomarker criteria in
GBM and in GBM molecular subgroups. No biomarkers were found for the LGG subgroup
with 1p/19q codeletion or for the wt IDH subgroup. However, for the whole LGG cohort,
we found as many as 2724 biomarker genes that were statistically significantly associated
with OS (permutation test p < 10−5 for intersection of biomarkers from three datasets:
TCGA, CGGA_325, CGGA_693); see Supplementary Table S1. We also detected a number
of OS biomarkers in the three molecular subgroups of LGG: 454 genes in MGMT-methylated
(p < 10−5), 299 in MGMT-unmethylated (p < 10−5), and 25 in IDH mutant LGGs (p < 10−5)
(Figure 3, Supplementary Table S1). Among them, there were comparable numbers of
positive and negative prognosis biomarkers (Figure 3). Of note, many marker genes
intersected with all LGG subgroups, and most of these intersections were non-random
according to permutation testing (Figure 3).

Examples of two such LGG positive and negative OS biomarker genes are shown in
Figure 4.

We then performed Gene Ontology (GO) analysis for the discovered OS biomarker
genes of MGMT-methylated, MGMT-unmethylated, IDH mutant, and total LGGs, sepa-
rately for the positive and negative prognosis gene expression biomarkers. Significantly
enriched terms (adjusted p < 0.05) for the first to third levels of GO tree were visualized on
Figure 5 and Figure S1. GO terms enriched for all levels of the GO tree (adjusted p < 0.05)
are listed in Supplementary Table S2.
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Figure 1. (A) Integrated human interactome model (adapted from [27]) combining gene products and
metabolites. Edges inherit color of the corresponding nodes. (B) Example of gene-centric pathway
for gene CYCS, which serves as the central node (enlarged blue dot), and its direct interactors are the
pathway participants (violet dots). Edges between the central node and its interactors are shown in
violet. (C) Detailed scheme of CYCS gene-centric pathway, where CYCS is the central node, and its
direct interactors are the pathway participants. Colors of edges denote types of interaction (inhibition,
activation, other).
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F)) overall survival gene expression biomarkers identified using a systematic statistical approach on 
LGG data from TCGA (A,D), CGGA_325 (B,E), and CGGA_693 (C,F) datasets. “High” and “low” 
levels were defined relative to a median gene expression value. Hazard ratio (HR) and its confidence 
interval (CI) is shown for every analysis. 

In the total LGG group, we observed the trend that the biological processes (BPs) 
linked with specific aspects of neuronal functioning and neuronal cell differentiation pre-
vailed for the genes associated with the favorable prognosis. In contrast, BPs related to 
embryonal development, cell cycle progression, remodeling of the immune system, regu-
lation of cell death, and integrin-mediated adhesion were specific for the gene biomarkers 
associated with poor prognosis (Figure 5). 

Figure 4. Examples of the negative (TGIF1 gene, panels (A–C)) and positive (CRY2 gene, panels
(D–F)) overall survival gene expression biomarkers identified using a systematic statistical approach
on LGG data from TCGA (A,D), CGGA_325 (B,E), and CGGA_693 (C,F) datasets. “High” and “low”
levels were defined relative to a median gene expression value. Hazard ratio (HR) and its confidence
interval (CI) is shown for every analysis.

In the total LGG group, we observed the trend that the biological processes (BPs) linked
with specific aspects of neuronal functioning and neuronal cell differentiation prevailed for
the genes associated with the favorable prognosis. In contrast, BPs related to embryonal
development, cell cycle progression, remodeling of the immune system, regulation of cell
death, and integrin-mediated adhesion were specific for the gene biomarkers associated
with poor prognosis (Figure 5).
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Figure 5. Gene Ontology tree (from null to third level) for genes linked with negative (A) and positive
(B) prognoses in LGG. Bold red arrow shows a root node (null level of GO tree). Small grey nodes are
parental nodes connecting the root node with significant terms of the third level. The size of the node
reflects its adjusted p-value. Each group of terms is marked by a specific color; if a term belongs to
several groups, it has several colors, accordingly.
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2.3. Gene-Centric Molecular Pathways as Overall Survival Predictors for Gliomas

Analogously, we then tested all gene-centric pathways as the OS biomarkers in glioma
patients. For every pathway, we investigated whether its pathway activation level (PAL)
values were associated with OS in the three datasets under analysis. The same statistical
thresholds and settings were applied as for the individual genes in the above section.
Similarly to the individual gene assay, no survival biomarkers were found for GBM and
all of its subgroups. However, we detected 2418 gene-centric pathways in total, whose
PAL values served as the robust OS biomarkers for LGG. In addition, we found biomarker
pathways for all four LGG subgroups (in contrast to the single-gene biomarker assay,
where only three LGG subgroups had biomarker genes). Among them, 903 biomarker
pathways were found for MGMT-methylated (p < 10−5), 52 for MGMT-unmethylated
(p < 10−5), 129 for IDH-mutant (p < 10−5), and 280 for wt IDH (p < 10−5) LGGs (Figure 6,
Supplementary Table S3).
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Figure 6. Numbers of gene-centric pathway biomarkers significantly associated with (A) shorter OS
and (B) longer OS in the different LGG groups. Asterisks show significance levels of permutation
testing for the respective intersections: *** for p < 0.001.

Examples of such negative (RAD51C-pathway) and positive (CHRNA4-pathway) OS
biomarkers for total LGG cohort are shown in Figure 7. The pathway activation chart is
shown in Figure 8, where activation of each node corresponds to the ratio of the geometric
mean of expression in LGG patients with negative prognoses to the geometric mean of
expression in LGG patients with positive prognoses.

We then attempted to functionally characterize the biomarker gene-centric pathways
by GO analysis. Each gene-centric pathway was considered as a set of gene products, and
enrichment values were calculated for those sets against the control of all protein-coding
human genes in the GO database. Significantly enriched GO terms (adjusted p < 0.05) were
interrogated for every pathway under study. We considered that a “functional group” is
the set of pathways with the same GO tag, e.g., “cytokinesis.” A pathway may be included
in several functional groups if it has several enriched GO tags. For the negative prognosis
biomarker pathways, we identified 6158 such GO groups for all LGGs, 3533 for IDH-
mutated, 3841 for wt IDH, 5818 for MGMT methylated, and 2598 for MGMT unmethylated
LGGs.
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Figure 7. Examples of the negative (RAD51C pathway, panels (A–C)) and positive (CHRNA4
pathway, panels (D–F)) OS gene-centric pathway biomarkers of LGG identified for TCGA (A,D),
CGGA_325 (B,E), and CGGA_693 (C,F) datasets. “High” and “low” levels were defined relative to a
median pathway activation level. Hazard ratio (HR) and its confidence interval (CI) are shown for
every analysis.

For the positive prognosis biomarker pathways, there were 5263 GO groups for all
LGGs, 447 for IDH-mutated, 788 for wt IDH, 2917 for MGMT methylated, and 416 for
MGMT unmethylated LGGs; see Supplementary Table S4. We then explored the biggest
functional groups (containing 25% of pathways or more) by grouping them into a GO-tree
using Cytoscape + CluePedia, and then visualized the first three levels of the tree obtained
(Figure 9 and Figures S1–S8).
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Figure 8. Pathway activation charts of the gene-centric molecular pathways taken as examples. of
negative and positive OS biomarkers in LGG. The RAD51C-centric pathway that is linked with
negative prognosis shown for averaged (A) TCGA, (B) CGGA_325, and (C) CGGA_693 LGG ex-
pression datasets. Nodes on panel A correspond to nodes on panels B and C. The CHRNA4-centric
pathway that is linked with positive prognosis is shown for averaged (D) TCGA, € CGGA_325, and
(F) CGGA_693 LGG expression datasets. Nodes on panel (D) correspond to nodes on panels (E,F).
Node activation is a logarithmic ratio of the geometric mean of expression in patients with negative
prognoses to the geometric mean of expression in patients with positive prognoses.
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Figure 9. Gene Ontology tree (from null to third level) for gene-centric pathways linked with negative
(A) and positive (B) prognoses in LGG. Bold red arrow shows a root node (null level of GO tree).
Small grey nodes are parental nodes connecting a root node with significant terms of the third level.
The size of a node reflects its adjusted p-value. Each group of terms is marked by a specific color.

Overall, we observed a largely similar landscape of GO terms associated with the
negative/positive OS as for the above biomarker gene assay (Figures 5 and 9). For the posi-
tive prognosis biomarkers, we detected the biological processes (BPs) linked with specific
neuronal functions, whereas for the negative prognosis they were related to embryonal
tissue development, cell cycle progression, immune remodeling, cell adhesion, protein
transport, and membrane localization.
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2.4. Performances of Single Gene and Gene-Centric Pathway Biomarkers

We then compared the performances of single-gene biomarkers and of gene-centric
pathway biomarkers. For the total of 6467 gene-centric pathways, in the previous test
we identified 3782 biomarker cases. For the total of 17,717 individual genes, we found
3505 biomarker cases. Thus, the relative biomarker capacity in such test was about three
times higher for the gene-centric pathways.

We also compared the biomarker capacities in a different way. For these estimates,
we considered that “case” is OS analysis for one potential biomarker (gene or pathway) in
only one dataset (TCGA, CGGA_325, or CGGA_693). “Significant” cases were defined as
those having log-rank test adjusted p-values < 0.05. In total, we identified 20,507 significant
cases on the gene level (Figure 10A) and 32,995 cases on the pathway level (Figure 10B).
Considering identical sizes for starting sets on the gene and pathway “teams” (6467 each),
we concluded that the gene-centric pathways were overall more effective as biomarkers
because they gave ~61% more biomarker cases than the single genes.
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Figure 10. Adjusted log-rank test p-values for (A) 6467 individual genes as OS biomarkers in
LGG and its subtypes; (B) 6467 gene-centric pathways as OS biomarkers in LGG and its subtypes.
(C) Comparison of log rank test adjusted p-values when comparing a gene as the OS biomarker
and the corresponding gene-centric pathway as the OS biomarker; here red bands mean better
performance of pathways, and blue bands mean better performance of single-gene biomarkers.
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In pairwise comparisons, we also compared biomarker capacities of the genes and
of the respective gene-centric pathways. For example, PTCH1 was significant in one
comparison, and the PTCH1-centric pathway was significant in 14 comparisons. In total,
3856 gene-centric pathways showed better biomarker capacities than the corresponding
single genes, versus only 1803 single genes which appeared as better biomarkers than the
gene-centric pathways; 673 genes and the corresponding pathways demonstrated identical
performance. Thus, the overall biomarker performance of gene-centric pathways in the
latter test was ≈2.1 times greater than that of the single genes.

Thus, in all the comparisons performed we detected better OS biomarker capacity for
the gene-centric pathways than for individual genes.

2.5. Individual-Gene and Gene-Centric Pathways as the Histological and Molecular
Type Biomarkers

We then investigated how gene and pathway biomarkers can distinguish between
histological and molecular types of the gliomas.

Using AUC > 0.7, a t-test adjusted p-value < 0.05 and the same directions of change in
each dataset as statistical settings, the logarithmic expression levels of 17,717 genes and
PAL values for 7494 gene-centric pathways were tested for their capacities to discriminate
samples between LGG and GBM. First, 740 and 582 (p < 10−5) up- and downregulated
differential genes were detected in GBM in comparison to LGG, respectively. In parallel,
using the same statistical settings as for the above test, we detected 794 and 188 (p < 10−5)
up- and downregulated pathway biomarkers, respectively (Supplementary Table S5).

We identified 26 genes and 21 pathways which had AUC >0.8 in all three datasets
under study and were the best biomarkers in this GBM–LGG comparison (Table 1). Remark-
ably, among the best biomarkers, there was the gene ANXA2 and also the corresponding
gene-centric pathway, both upregulated in GBM compared to LGG (Figure 11). At the time
of writing this manuscript, there were in total 17 scientific publications in PubMed crosslink-
ing ANXA2 with GBM (https://pubmed.ncbi.nlm.nih.gov/?term=anxa2+glioblastoma,
date of access 28 May 2022). We hypothesize here that its gene-centric pathway is an
important addition to reconstituting the overall GBM-specific interactome network.

Table 1. Best individual gene and gene-centric pathway expression biomarkers identified in the
GBM–LGG comparisons.

Gene Biomarkers 1 Gene-Centric Pathway Biomarkers 1,2

Up-regulated in GBM:
ANXA2, CHI3L1, EMP3, ESM1, FN1, GPX8, HSPA6, IGFBP2,

ITGA5, LDHA, MMP9, PLAT, PLAUR, PLEK2, SERPINH1,
SRPX2, STC1, TAGLN2, TNFRSF12A.

Up-regulated in LGG:
ALDH5A1, GABBR1, GLUD1, MMD2, NDRG2,

SLC25A21-AS1, ZDHHC22.

Up-regulated in GBM:
ANXA2-pw, CD44-pw, HRG-pw, ITGB3BP-pw, KLK4-pw,
ME2-pw, MFAP2-pw, MFAP5-pw, PAK2-pw, PCOLCE-pw,
PLG-pw, PRSS1-pw, PRSS2-pw, SDC4-pw, SERPINB8-pw,

SERPINE2-pw, TACC3-pw.
Up-regulated in LGG:

gdhA-pw, KCND2-pw, KCNIP2-pw, PTPRJ-pw.
1 Case when there was both the best marker gene and the corresponding gene-centric pathway are underlined.
2 “pw” stands for “pathway.”

We then attempted to identify gene- and pathway biomarkers which can differentiate
the three GBM molecular subtypes (mesenchymal, classical, proneural) according to [11].
We performed pairwise comparisons between these classes and found comparable sets of
biomarkers for both genes and gene-centric pathways, using AUC > 0.7, t-test adjusted
p-value < 0.05, and the same directions of change in each dataset (Table 2 and Table S5).
The best of these biomarkers (AUC > 0.8 in each dataset) are shown on Table 3. Notably,
an outstandingly low number of biomarkers (four at the gene level and nothing at the
pathway level) were detected in the comparison of the classical and proneural phenotypes
(Table 2). This is in line with the unclear status of “proneural” group, which is frequently

https://pubmed.ncbi.nlm.nih.gov/?term=anxa2+glioblastoma
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considered to arise from a mixture of a “classical” tumor with adjacent normal tissues in a
sequenced biosample.
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Table 2. Statistics of gene and pathway expression biomarkers distinguishing GBM molecular
subtypes.

Mesenchymal vs. Proneural Classical vs. Proneural Mesenchymal vs. Classical

Gene biomarkers 32 4 440

Gene-centric pathway
biomarkers 283 0 254

Table 3. Best individual gene and gene-centric pathway biomarkers identified for the comparisons of
GBM molecular subtypes.

Mesenchymal vs.
Proneural

Classical vs.
Proneural Mesenchymal vs. Classical

Gene biomarkers - -

Upregulated in mesenchymal:
CD14, EVA1A, FAM20A, MMP19, PLAUR.

Upregulated in classical:
ACSBG1, C2orf72, ELOVL2, ELOVL2-AS1, FGFR3,

HEPACAM, MYO10, NPAS3, PTPRA, SLC24A3

Gene-centric pathway
biomarkers 1 - - Upregulated in mesenchymal:

CD180-pw, CD300E-pw, MIR100-pw, MIR99A-pw
1 “pw” stands for “pathway.”

For the comparison of mesenchymal and proneural phenotypes, 32 genes and 283 gene-
centric pathways were detected as the biomarkers (Tables 2 and S5). Among them were
five genes and their corresponding marker gene-centric pathways—COL5A1, IL1R1, IL7R,
LAMB1, and PLAUR—which were up-regulated in the mesenchymal phenotype. The
pathway activation chart for one of these pathways (LAMB1-centric pathway) is shown as
an example in Figure 12. Mean AUC was slightly lower for COL5A1, IL1R1, and LAMB1
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gene expression than for the corresponding gene-centric pathways (0.8 vs. 0.81, 0.77 vs. 0.78,
0.75 vs. 0.78, respectively). The inverse picture was found for IL7R and PLAUR and their
corresponding pathways (mean AUC 0.79 vs. 0.78, 0.8 vs. 0.77, respectively).
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Figure 12. Pathway activation charts for marker pathways in mesenchymal vs. proneural GBM
molecular subtypes. LAMB1-centric pathway: TCGA (A), CGGA_325 (B), and CGGA_693 (C)
expression datasets. Nodes on panel A correspond to nodes on panels B and C. CD300E-centric
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calculated as a logarithmic ratio of geometric mean of expression levels in the GBM subgroups under
analysis.



Int. J. Mol. Sci. 2022, 23, 7330 17 of 23

At the time of writing this manuscript, LAMB1 was claimed as a key survival biomarker
in mesenchymal glioblastoma [29]. COL5A1 was described as biomarker of poor progno-
sis, promoting glioblastoma progression via the PPRC1-ESM1 axis, and a mesenchymal-
subtype-related gene [30–32]. IL1R1 was shown to be linked with brain edema and tumor
progression in mice [33,34]. While IL7R was not described as associated with glioblas-
toma pathogenesis or molecular subtype, there are 51 PubMed articles linking PLAUR
and glioblastoma (https://pubmed.ncbi.nlm.nih.gov/?term=plaur+glioblastoma, date
of access 28 May 2022). We suggest that the corresponding gene-centric pathways for
these five genes may be important additions in understanding mesenchymal glioblastoma
pathogenesis.

For the comparison of mesenchymal and classical GBM phenotypes, 440 genes and
254 gene-centric pathways met statistical criteria of AUC > 0.7, t-test adjusted p-value < 0.05,
and the same directions of change in each dataset (Tables 2 and S5). However, only 15 genes
and four gene-centric pathways showed AUC > 0.8 in all datasets (Table 3). Interestingly,
for CD300E-centric pathway (Figure 12), the central gene of a pathway was also a significant
biomarker yet having lower AUC (0.76 for gene vs. 0.83 for pathway). Both such biomarkers
were upregulated in mesenchymal compared to classical phenotype. Previously, CD300E
was detected as the receptor stimulating monocyte activity and was even suggested as a
potential antigen for an RNA vaccine against GBM [35,36].

Finally, we compared the total distributions of AUC values for the gene- and gene-
centric pathway biomarkers. To this end, the maximal AUC was assigned for each gene or
pathway among those obtained in all of the above comparisons (LGG vs. GBM, mesenchy-
mal vs. proneural GMB, classical vs. proneural GBM, mesenchymal vs. classical GBM).
We found that the overall median of AUCs for the gene-centric pathways was higher than
for the individual gene expression biomarkers: 0.771 vs. 0.748, respectively (Figure 13).
Thus, in the molecular phenotype comparisons, the gene-centric pathways also showed
themselves as the superior class of gene expression glioma biomarkers.
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3. Discussion

We report here 7494 algorithmically generated molecular pathways centered each
around a specific gene in a human interactome model. We tested the transcriptional
activation levels of such next-generation pathways as survival and grade biomarkers in
human gliomas. In parallel, we similarly tested the expression levels of 17,717 individual
genes as biomarkers.

We used to our knowledge the largest clinically annotated public glioma RNA-seq
collections as the testing dataset. We set relatively strict criteria for the survival biomarkers
in all three expression datasets under analysis, which appeared challenging for some
previously published glioma biomarkers, such as CRNDE [17] and FREM2 [26,37] genes,
which did not pass these conditions.

In both classes of genes and gene-centric pathways, we found no high-quality biomark-
ers for overall survival in GBM. The absence of clear genes and pathway biomarkers
observed here may point to compromised biomarker capacity for previous expression
biomarkers (such as EGFR and PD-L1), which may explain the controversial results for
them in previous studies [38]. This may reflect outstandingly high heterogeneity in this
group of tumors—at both the intra- and intertumoral levels [39,40]. Different sites within
one GBM tumor may have different active driver fusion oncogenes [41], which complicates
the molecular diagnosis and finding of effective long-standing treatment.

However, we identified a number of high-quality survival biomarkers for LGG and its
genetic subtypes: 2724 for the gene and 2418 for the pathway biomarkers. Although there
were a slightly larger number of gene-based survival biomarkers, their percentage share
was about half that of the gene-centric pathways: 15.4% vs. 32.3%, respectively.

Interestingly, although the numbers of gene and pathway biomarkers of survival were
comparable for both positive and negative prognoses in LGGs, we detected a much higher
number of enriched GO terms for the pool of negative prognostic biomarkers—on both
gene and pathway levels. While a positive OS prognosis in LGG was predominantly linked
with the GO terms dealing with the normal CNS functioning and neural cell differentiation,
a negative prognosis was characterized by a more numerous and diverse group of processes.
These included cell cycle progression, proliferation, cell adhesion, embryonal development,
DNA repair and damage checkpoints, and modulation of the inflammatory and immune
responses.

In addition, we detected several cases when both single genes and their specific
pathways acted as robust biomarkers in our model investigation (e.g., for genes ANXA2,
CD300E, and LAMB1). We therefore hypothesize that considering such gene-centric path-
ways may be useful for building integrated gene networks involved in various aspects of
molecular pathogenesis of human gliomas.

We also compared the performances of gene and gene-centric pathways as the expres-
sion biomarkers for the comparisons of GBM vs. LGG, and for the different GBM molecular
types. In all the comparisons, we detected better capacity for the gene-centric pathways.
This was also reflected by overall higher median maximal AUC for the biomarker assess-
ment: 0.771 for the pathways vs. 0.748 for the individual genes. This evidently superior
performance of the pathways as expression biomarkers may be a projection of a more
general figure of the greater stability and robustness of pathway-level data compared
to the gene-level data, as reported for the analysis of both transcriptomic [42,43] and
proteomic [44] high-throughput expression profiles.

Finally, we conclude that activation levels of algorithmically deduced gene-centric
molecular pathways are a potent class of next-generation diagnostic and prognostic
biomarkers for human gliomas. Their applicability to other diseases, non-pathological
conditions, and biological processes will be a matter of further study.
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4. Materials and Methods
4.1. The Cancer Genome Atlas (TCGA) Dataset

Overall survival data were extracted from clinical annotations on gdc portal for
591 GBM and 510 LGG samples [45]. RNA-seq data (HTseq counts) were downloaded
from gdc portal [45]. Only primary tumor samples with RNA data were selected (153 and
505 samples, respectively). MGMT methylation statuses were taken for GBM and LGG
samples, respectively, from the reports [46] and [47]. IDH mutation statuses were extracted
for GBM and LGG samples from SNV data (vcf files) from the gdc portal.

4.2. The Chinese Glioma Genome Atlas Dataset CGGA_325

Overall survival data, IDH mutation status, MGMT methylation status, and patient
age information were extracted from clinical description for 137 GBM and 172 LGG samples
from CGGA database; dataset id: mRNA-seq_325 [48,49]. RNA-seq data (RSEM counts)
were downloaded for the corresponding biosamples.

4.3. The Chinese Glioma Genome Atlas Dataset CGGA_693

Overall survival data, IDH mutation status, MGMT methylation status, and patient age
information were extracted from clinical description for 237 GBM and 420 LGG samples
included in CGGA database; dataset id: mRNA-seq_693 [50,51]. RNA-seq data were
downloaded for the corresponding biosamples.

4.4. Glioma Classification and Diagnosis

We used histological and WHO grade classifications that were available at the date of
sample publication and annotation, and that were available in the corresponding original
research papers. GBM molecular subtype classification results were obtained from GlioVis
portal for TCGA and CGGA datasets [52]; see Table 4.

Table 4. Number of included GBM samples of different molecular subtypes according to [52].

Database/Subtype Mesenchymal Proneural Classical

TCGA 50 46 57

CGGA_325 34 15 49

CGGA_693 55 78 57

4.5. Source Molecular Pathways

The gene composition and molecular architectures of 51,672 intracellular pathways
were extracted from the publicly available databases Reactome [53], NCI Pathway Interac-
tion Database [54], Biocarta [55], HumanCyc [56], Qiagen [57], PathBank [58], and Oncobox
database [28]; and processed as described in [28].

4.6. Pathway Activation Level Calculation

Pathway activation level (PAL) is an integral quantitative and qualitative character-
istic of changes in the expression levels for genes participating in a certain molecular
pathway [28,59,60]. PALs were calculated as follows:

PALp = ∑n ARRnp ∗ lg(CNRn)/ ∑n |ARRnp| ∗ 100,

where PALp is PAL for pathway p; CNRn is case-to-normal ratio, the ratio of gene n expression
in a sample under study to an average level in the control group; ARR (activator/repressor
role) is a Boolean value that depends on the function of this gene product in pathway p.
ARRs are Boolean values defined as follows: −1 when product of gene n inhibits p; 1
when product of n activates p; 0 when product of n has an ambiguous or unclear role
in the pathway; 0.5 or −0.5, when the product of n is an activator or an inhibitor of p,
respectively. As the reference gene expression profile, we used the artificial gene expression
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profile obtained by gene-by-gene averaging of all gene expression data in the cohort under
investigation.

4.7. Statistical Analysis

ROC AUC value and t-test p-value were used as the measures of biomarker quality in
comparisons of LGG vs. GBM, and for discriminating GBM molecular subtypes. p-values
were adjusted according to Benjamini–Hochberg false discovery rate (FDR) method.

Overall survival was assessed by Kaplan–Meyer analysis; the statistical significance
of differences was measured by log-rank test p-value after Benjamini–Hochberg FDR
correction. Since only one of the three datasets has progression free survival (PFS) data,
PFS was not investigated in this study.

Hazard ratios (HR) were calculated in univariate Cox model to assess differences in
survival among the groups under comparison. The following simultaneous significance
thresholds were used for high-quality biomarkers: FDR-adjusted p-value < 0.05, AUC > 0.7,
HR confidence interval not including 1.

4.8. Gene Ontology Analysis

Gene Ontology (GO) classification of algorithmically deduced molecular pathways
was performed with R package clusterProfiler [61]. To this end, each pathway was consid-
ered as a specific gene set, and statistically significantly enriched GO terms were detected
(adjusted p < 0.05). Thus, each pathway obtained relevant GO terms (tags). Pathways could
form functional groups by the similarities of the corresponding GO tags. For example,
pathways with tag “cytokinesis” formed functional group “cytokinesis.” Since there were
usually several GO tags identified per pathway, a pathway could be included in all relevant
functional groups.

GO trees were built and visualized with Cytoscape and ClueGo [62,63]. For gene-
based biomarkers, the obtained gene sets were used as the input data with the selected
option “Functional analysis.” To characterize a set of pathway-based biomarkers in GO
tree, we combined lists of GO tags (GO terms), which were previously obtained with
ClusterProfiler for classification of the selected pathways. The combined list was used as
input data for ClueGo, and the option “Preselected functions” was selected. We used the
following GO tree visualization settings: network specificity = “global,” min level = 1, max
level = 3, GO term grouping = TRUE, p-adjusted < 0.05.

4.9. Intersection Significance Tests

To test whether a given number of common items between the n (in this study n could
be 2, 3, and 5) intersecting sets is significant, 10,000 random perturbations were performed
according to [17,64]. In every comparison, n random subsets were taken and intersected.
These random subsets were then intersected for each of 10,000 perturbations, and the
p-value of intersection significance was calculated as a fraction of random perturbation
cases giving an equal or higher number of common items compared to the experimentally
observed samplings.
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