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The search of antivirals against SARS-CoV-2 in available libraries
of compounds was initiated as soon as WHO announced that
the coronavirus outbreak became a pandemic. That pivotal task
has been conducted by both experimental groups in wet-labs
as well as by theoretical chemists in supercomputing centers.
The combination of biochemical and clinical intuitions yields
first to remdesivir, a broad-spectrum antiviral that remains as
the standard solution for the treatment of severe cases, while

paxlovid, molnupiravir and fluvoxamine have been recently
proposed as oral alternatives. Unfortunately, the intensive
publication of standard virtual screening (VS) simulations might
be not the best strategy to increase that short list of antivirals.
This contribution joins theory and biological assays to rescore
massive VS. Our goal is to critically assess pros and cons of
using molecular models for drug repurposing.

Introduction

There is no precedent for the collective effort for fighting
against the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). So far, two lines of research are on the top list for
the scientific community: the development of vaccines to stop
virus spread across healthy population, and the discover of
efficient antivirals to mitigate the effects of the associated
disease, COVID-19.[1] The progress of such strategies is rather
dissimilar. Novel vaccines have been rapidly designed by
adapting the messenger RNA (mRNA) technology to the SARS-
CoV-2 architecture.[2] Moderna and Pfizer/BioNTech were
granted with the first mRNA-vaccine licenses, while the viral-
vectored AstraZeneca and Janssen are now approved.[3] A wider
market is expected in next months as ca. 200 vaccine
candidates have entered different clinical stages.[4] On the
contrary, less successful is achieved for antivirals. Remdesivir, a
broad-spectrum antiviral (influenza, coronaviruses, alphaviruses
and flaviviruses) originally designed by the Antiviral Drug
Discovery and Development Center, was used at an early stage
of the pandemic to intravenously treat patients with COVID-
19.[5] However, remdesivir as well as other antivirals (i. e.
hydroxychloroquine, lopinavir, and interferon regimens) have
shown a moderate action during their clinical applications.[6]

Last Pfizer and Merck’s contenders – paxlovid and molnupiravir,

respectively – seem to offer benefits over that first list of drugs
as they are both oral antivirals that can be administrated out of
hospitals.[7] Fluvoxamine is also under investigation for its use at
the beginning of the infection.[8]

Despite such promising steps, the need of discovering
antivirals is still urgent, a challenge that might be addressed by
experimental assays in laboratories while being accelerated by
using computational methods. The characterization of the first
crystal structure of the main protease (Mpro) in April 2020, an
enzyme recruited by the virus to complete the replication and
transcription steps, was a cornerstone.[9] Indeed, the publication
of the crystal in the Protein Data Bank with code 6LU7 opened
the door for massive virtual screening (VS). The seminal work by
Jiang, Rao and Yang was also an initial attempt of using theory
for the search of antiviral drugs.[9] These authors implemented
an in-house database of potential binding compounds in the
virtual workflow scheme based on the Schrödinger suite of
programs,[10] which integrates Glide as docking engine.[11] Most
importantly, the best-ranked candidates were tested in bio-
logical assays, including qRT-PCR with Vero E6 cells at biosafety
level-3 (BSL-3) laboratories. Six of the selected compounds were
active against Mpro functionality, with half-maximal inhibitory
concentration (IC50) values in the range of 0.67 to 21.4 μM,[9]

though initial optimism was tempered down by their low
performance in hospitals. Since that work, many VS contribu-
tions have suggested other compounds for treating COVID-19.
Collacovid, a free web site that summarizes both peer-reviewed
publications and preprints with a focus on the advanced against
the new virus, includes more than 700 entries for works with
docking predictions.[12] However, VS without experimental
verification is a high-risk prediction that still carries a high false
positive rate.[13] We defined such flaws, e.g., best-ranked drugs
by computational methods but without biological activity, as
‘false theoretical-friends’. It is therefore critical to confirm VS
outcomes with experiments to reach clinical stages.
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Massive virtual screening of large chemical spaces

There are two excellent examples of ultra-large virtual screen-
ings with a focus on repurposing drug against the virus.
Gorgulla, Arthanari and co-workers developed what the authors
defined as a virtual campaign (VirtualFlow) to search for SARS-
CoV-2 inhibitors.[14] This was a huge computational effort; ca.
1 billion of molecules were docked into 17 different viral and
host targets, with a total of 45 VS simulations. Drug candidates
were retrieved from Enamine REAL database and the in-stock
subgroup of molecules deposited in the ZINC15 library of
compounds.[15,16] VirtualFlow web site allows for the access to
the top 1 million hits (~0.1% of the virtual hits),[17] which can be
downloaded in DataWarrior format.[18] Of course, the screening
of such large number of molecules required a cost-effective
computational method. Accordingly, data deposited in Virtual-
Flow is based on a rigid target protein while docking score is
computed with QuickVina W and QuickVina 2.[19–21] Both
versions use the score function of AutoDock Vina.[20,21] The
conducted calculations with the active and dimerization sites
for Mpro (labeled in VirtualFlow platform as VS16 and VS18,
respectively) yields to a docking score ranging from � 11.5 to
� 8.9 kcal/mol for the top 1 M, a narrow energetic window of
2.6 kcal/mol only. In a parallel contribution, Cherkasov and co-
workers at University of British Columbia screened the whole
ZINC15 library rather than a subset, which contains more than
1 billion of compounds.[22] Docked poses were generated by
Glide[10,11] within a deep learning platform. First 1000 hits were
provided in the supporting material of that work, with docking
score ranging from � 11.3 to � 9.0 kcal/mol. Both Gorgulla and
Cherkasov screens used the same target, namely, the PDB
structure with code 6LU7.[9]

Ranking hits

Theory reduces libraries from billions to thousands of mole-
cules. This is a critical step, though still not enough for deciding
the final candidates to be tested on a wet lab. A more recent
study by Halazonetis and co-workers further refines these
abovementioned ultra-large screens by imposing general requi-
sites such as drug-likeness and chemical diversity.[23] These
additional criteria lead to 207 compounds from Gorgulla
collection.[14] However, that screening results on a very weak
activity, and all of them were discarded as Mpro inhibitors. On
the contrary, the analysis of the 8 selected hits from Cherkasov
series reveals that ZINC636416501 and ZINC373659060 com-
pounds exhibit a moderate activity against the Mpro target, with
IC50 values of 47 mM and 29 mM, respectively. The limited
success of that first selection from massive screens motivated
the present contribution, which aims for retrieving novel hits
from these libraries.

Molecular Models and Experimental Methods

Computational details

From a theoretical point of view, there is a major dissimilarity
between Gorgulla[14] and Cherkasov[22] approaches compared to the
seminal work by Yang and co-workers.[9] Although all these
contributions performed docking calculations with the same X-ray
structure (PDB code 6LU7), only the contribution by Yang includes
a second level of theory by applying the Molecular Mechanics/
Generalized Born Surface Area (MMGBSA) method as implemented
in Prime module,[24] which was used as a refinement of the raw VS
outcomes. It is well-known that docking score functions allow for
an efficient cost/performance ratio when dealing with large
molecular database. However, top-ranked poses are usually close in
energy to provide a clean selection criterium. A subsequent
refinement (rescoring) is a required step if meaningful biological
activities are looked for.[25] MMGBSA combines molecular mechanics
calculations and continuum solvation models while allowing for
receptor (protein) relaxation upon ligand binding. Consequently,
MMGBSA has been proposed as a method to delivery more refined
binding free energies and might be included in the screening
workflow to increase the ‘ranking power’ of docking codes.[26]

This contribution aims to assess whether a rescoring strategy
recovers other compounds from earlier massive screenings. We first
compute the MMGBSA binding energies for the 1000 compounds
listed in the publication by Cherkasov.[22] For the sake of compar-
ison, we used the codes integrated in the Schrödinger suite as
Yang[9] and Cherkasov,[22] including the force field version
(OPLS3).[27] Accordingly, Protein Preparation Wizard module[28] was
implemented to cure the Mpro structure deposited in the PDB
entry 6LU7. The resulting model system were used to generate the
grid at the binding site, e.g., centered into the catalytic dyad
residues (His41 and Cys145). A similar procedure is implemented
for rescoring the series by Gorgulla.[14] However, structures (poses)
were not accessible at VirtualFlow portal. In that case, we used
these set to perform the whole virtual screening workflow,
including the generation of 3D structures with DataWarrior,
following by a sequence that includes high through virtual screen-
ing (HTVS) and docking steps with Glide. To enlarge the
conformation space of search, ligands are allowed to adopt up to
10 poses into the binding site. Best poses are picked up and used
for computing MMGBSA binding energies. For the records, a larger
selection was used herein. As discussed in Introduction, first 1 M of
the compounds posted on VirtualFlow lies very close in the Vina
score scale. If restricted to top-1000 hits, docking score ranges from
� 11.50 to � 10.30 kcal/mol. However, there are other hits with the
same score value. Aiming to provide a wider view, we decided to
set a Vina score threshold of � 10.30 kcal/mol; 6411 candidates
satisfy that requirement and are therefore incorporated into our
rescoring strategy.

Experimental methods

The binding to Mpro was determined by using the protocol for
protein expression, purification, and activity assay described
elsewhere.[23] In that approach, the interaction of the selected
molecules was assessed by using differential scanning fluorimetry.
Thermal shift assays were conducted in duplicate tests with a
LightCycler 480 multi-well plates 96 (volume=20 μL, Mpro concen-
tration=1 μM), which were subsequently preincubated at room
temperature for 20 minutes. An acoustic liquid dispenser (Gen5-
Acoustic Transfer System; EDC Biosystems) is used for dispensing
both selected molecules and SYPRO Orange binding dye (Sigma).
Fluorescence measures used 465 nm as excitation wavelengths and
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580 nm for emission in the temperature ranging from 20 up to
95 °C (step=0.05 °C/s; 11 measures/°C). After addition of the FRET
substrate, fluorescence was acquired at 10 minutes intervals over
60 min. Compounds were purchased from Enamine, Molport and
Vitas-M.

Results and Discussion

Contrary to the selection criteria used by Cherkasov and
Gorgulla, which were guided by docking score, we decided to
move the focus towards the MMGBSA binding energies. A novel
list of compounds is thus generated and tested in the lab. As
discussed, our goal is to show whether such refinement helps
to recover other active ligands from the massive screenings
available in the literature.

Rescoring Cherkasov’s series

The reported series of ligands by Cherkasov and co-workers was
first assessed.[22] Chemical structures and computed Glide scores
were retrieved from the provided supporting material in Ref.
[22] and subsequently used for rescoring. Figure 1 illustrates
the correlation between these two energetic parameters. It
should be noted that the final list of 1000 hits published by
Cherkasov only included best-ranked candidates, e.g., mole-
cules with a Glide score of at least � 9.00 kcal/mol, which
eventually limits the X-axis scale. A close inspection of Figure 1
reveals that it is not possible to establish a simple linear
dependence. First-ranked compounds in the docking scale
(with Glide in the range of � 11.00/� 10.50 kcal/mol, located on
the left of the graphics) do not systematically correspond with
the highest binding energies in the MMGBSA list. If the latter
value is used as a selection parameter, novel molecules might
be prioritized.

Table 1 lists top-compounds on the MMGBSA scale. Com-
puted docking score values by Cherkasov are also included as a
reference. It is remarkable that our selection, which is
exclusively based on the more refined MMGBSA energies,
mostly matches to Halazonetis choice. However, there are two
novel compounds in the MMGBSA list that were missing in the
earlier conducted experiments, e.g., ZINC1485985070 and
ZINC856751528, which correspond to PV-001017415655 and
Z2654860553 entries in Enamine catalogue, respectively. It is
worth stressing that these compounds were not at the top hit
of deep learning as they correlate with medium docking score
values (i. e., the associated Glide scores are less than
� 10.00 kcal/mol).
To further investigate the interaction of these two hits with

the Mpro target, Figure 2 shows the relaxed structures resulting
from MMGBSA. As displayed, the pyrrole motif in
ZINC1485985070 allows for a face-to-face π-π stacking (indi-
cated with a blue dashed line) with the catalytic His41 with
additional contacts in the binding site by hydrogen-bonds (H-
bonds, marked with yellow dashed lines). ZINC856751528 is
anchored by a π-cation interaction (green dashed line) with
His41 and several H-bond connections to the region of the
Cys145 residue (yellow dashed lines). As ligands seem to be
compatible with the Mpro catalytic pocket, both are retained
herein for further experimental tests.

Rescoring Gorgulla’s series

A similar procedure is next implemented for rescoring the series
by Gorgulla, which is freely available at the website
VirtualFlow.[14] As noted above, that alternative series used the
Enamine REAL library as the main source of compounds, though
also includes a subgroup from ZINC15, namely, the in-stock set.
However, one might expect a minimal overlap with Cherkasov’s
list as most of the top hits by deep screening (ca. 99%) are not
included in the ZINC15 in-stock library.[22] Since structural data
were not accessible in the VirtualFlow sever, the listed names of
compounds are used to generate all 3D structures in
DataWarrior.[18] The resulting model systems are subsequently
ported to the VS workflow implemented in the Schrödinger
suite of programs,[10] including an initial HTVS followed by

Figure 1. Computed MMGBSA energies vs. Glide score using results from
deep docking by Cherkasov Ref. [22]. All energies are given in kcal/mol.

Table 1. Comparison of the predicted energies in the Glide-based Deep
Docking screening as implemented by Cherkasov [a] and the refined
MMGBSA binding energies counterparts (both in kcal/mol).

Compound Glide [kcal/mol][a] MMGBSA [kcal/mol]

ZINC1485985070 � 9.59 � 79.45
ZINC636416501[b] � 10.85 � 78.24
ZINC67726685[b] � 10.52 � 78.06
ZINC544491491[b] � 10.50 � 76.55
ZINC543523837[c] � 10.43 � 75.97
ZINC856751528 � 9.87 � 75.15
ZINC544491494[d] � 10.65 � 75.04

[a] Energies reported by Cherkasov and co-workers, Ref. [22]. [b] Included
in the experimental assays by Halazonetis, Ref. [23]. [c] Same scaffold than
ZINC544491491. [d] ZINC544491491 enantiomeric form.
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docking with Glide, and a MMGBSA calculation for the final
refinement.
To draw parallels between massive screens, Figure 3

compares MMGBSA energies vs. Glide after rescoring the
selected compounds by Gorgulla.[14] We identify several poses
with large negative MMGBSA binding energies, e.g., located in
the � 80.00/� 100.00 kcal/mol window, a region that was clean
in Cherkasov series (Figure 1). That qualitative picture is
completed with the numeric outputs provided in Table 2, which
ranks molecules according to MMGBSA values. Original Vina

scores are also included. One may note that Glide scores are
now more disperse. Indeed, Vina function yields to very similar
scores (in the range of � 10.00/� 10.60 kcal/mol), while that
homogeneity disappears with Glide (� 4.69/� 9.13 kcal/mol). We
select molecules with the higher (more negative) MMGBSA
energies up to reach the first compound tested by Halazonetis
(PV-0019557066).[23]

Figure 2. Representation of the ZINC001485985070 and ZINC000856751528
binding modes resolved by MMGBSA. Ligands and Mpro are displayed as balls
& sticks and grey cartoons, respectively. Non-covalent interactions are
represented with dashed lines. Color code: blue, π-π stacking; green, π-
cation stacking; yellow, H-bonds; purple, halogen-bonds.

Figure 3. Computed MMGBSA energies vs. Glide score (both in kcal/mol)
using results from Gorgulla Ref. [14].

Table 2. Comparison of the predicted Vina scores as implemented in the
VirtualFlow by Gorgulla,[a] computed Glide scores and the refinement at the
MMGBSA level of theory (all energies in kcal/mol).

Compound[a] Vina [kcal/
mol][b]

Glide [kcal/
mol]

MMGBSA [kcal/
mol]

Z1081913254 � 10.00 � 5.59 � 99.93
Z299581070 � 10.00 � 6.39 � 93.07
Z1884544179 � 10.00 � 4.69 � 93.04
ZINC408533192 � 10.10 � 6.50 � 90.64
ZINC13598149 � 10.00 � 7.17 � 89.81
PV-001803361903 � 10.10 � 6.23 � 87.43
ZINC408526152 � 10.60 � 6.57 � 86.00
ZINC408528197 � 10.00 � 6.48 � 85.90
Z1158074909 � 10.00 � 6.38 � 85.88
ZINC6500491 � 10.30 � 6.97 � 85.22
ZINC13756054 � 10.50 � 7.14 � 85.05
ZINC31829105 � 10.40 � 5.80 � 84.52
ZINC32609526 � 10.60 � 7.42 � 83.98
PV-001839244402 � 10.10 � 5.03 � 83.87
ZINC408529658 � 10.40 � 6.70 � 83.44
ZINC13509896 � 10.60 � 7.57 � 83.15
PV-001863000372 � 10.00 � 5.63 � 82.93
ZINC32609522 � 10.30 � 7.92 � 82.89
ZINC13756065 � 10.30 � 6.10 � 81.95
PV-001803361903 � 10.10 � 9.13 � 82.70
Z2232450399 � 10.20 � 5.11 � 81.79
ZINC101470498 � 10.00 � 6.26 � 81.37
ZINC64790056 � 10.00 � 5.58 � 81.18
ZINC4725799 � 10.20 � 6.11 � 80.89
PV-
001955706661[c]

� 10.00 � 8.40 � 80.09

[a] Compounds with Z and PV codes are from Enamine library. [b] Energies
reported by Gorgulla and co-workers, Ref. [14]. [c] Included in the
experimental assays by Halazonetis, Ref. [23].
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In vitro assays

As described, duplicated experiments are performed for all
compounds listed in Tables 1 and 2. DMSO and blank were
used as controls. GC376, which was used as a positive Mpro

inhibitor control by Halazonetis and co-workers,[23] was also
tested. Only ZINC6500491 (MolPort-000-706-737), which ranks
10th in the rescored VirtualFlow list (Table 2) is found to have a
measurable inhibition, with a main protease activity of 62% at
40 μM [all other in vitro activities at a final concentration of
40 μM for their ability to inhibit Mpro are provided in the
Supporting Information]. Dose-response curve for compound
ZINC6500491 was assessed at 0.4, 1.2, 5, 20 and 40 μM as final
concentration. Unfortunately, Figure 4 illustrates that this com-
pound inhibits Mpro with a IC50 value of about 0.8 mM, which is
far from the expected activity for a drug with applicability in
the treatments of COVID-19. Our finding contrasts with the
measured IC50 for GC376 (positive control), which is about 1 μM,
with a Mpro activity of 3% at 40 μM.

Conclusions

Virtual screening (VS) of ultra-large libraries of compounds must
use methods light enough to deal with a huge number of
possible candidates. This is the logical prerequisite to deliver

quick results at an affordable computational cost. However,
docking codes (the core engine of VS approaches) are based on
a series of simplifications that prevent a direct extrapolation to
biological scenarios. In addition, there are other physical-
chemical properties that might affect to the route that the
ligand must overcome prior reaching its target, including
solubility, pKa, and logP, to cite a few. All in all, it becomes
essential to increase both accuracy and criticism of the
produced outputs.
One can envisage several alternatives to further enhance VS

predictions if experiments are not accessible/available. More
than one score function might be combined to produce a
consensus top-ranked list,[29,30] while X-ray screening have
recently identified allosteric sites that might provide a wider
description of virus target.[31,32] In addition, pockets are not static
but prone to modifications in in vivo conditions, and a
preliminary molecular dynamics (MD) stage could be imple-
mented to produce trajectories of the targets.[33] A series of
representative structures (or clusters) can be subsequently used
for conducting VS simulations. MD might be also used to
confirm the stability of the binding pose.[34,35] Finally, the
simulation of a reduced number of drugs allows to use of more
advanced levels of theory, e.g., ab initio or multiscale QM/
MM.[36,37] Such refinements, which are extensive to other viral
proteins,[38] pave the way for improving predictions, though all
are concomitant with the raise of the computational cost.

Figure 4. (A) Chemical structure of the only active drug, ZINC6500491. (B) Inhibitory activity of the top hits tested at a concentration of 40 μM in an in vitro
protease-activity assay. The increase in fluorescence intensity was normalized to the DMSO control, where RFU states for relative fluorescence units. (C)
Predicted binding mode of ZINC6500491 in the active site. Dashed blue lines represent the π-π interaction with the catalytic His41 residue. (D) Dose-response
curves for ZINC6500491 at 0.4, 1.2, 5, 20 and 40 μM. DMSO, blank and the positive Mpro inhibitor GC376 are used as controls.
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Of course, VS methods are still welcomed to help into the
design of the missing antivirals, including COVID-19. Our
purpose is to advise that the overproduction of VS works that
simulate a single crystal and a few randomly selected molecules
should be reduced. Otherwise, standard VS works risks
repurposing most of approved drugs as plausible treatments
for COVID-19. The increasing number of ‘false theoretical-
friends’ in the literature will not help to rationalize the search of
an efficient antiviral. Indeed, our work is a clear example.
Without the performed in vitro assays, we might have presented
ZINC6500491 as a promising Mpro inhibitor as it is predicted to
bind the catalytic site by anchoring His41. However, our
experiments revealed that it fails to block the enzymatic
activity. VS is a valuable tool, but post-refinement and/or
experimental data should be always reported if a real clinical
impact is sought. That conclusion is equally valid for the current
pandemic as well as for the next one.
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