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This work describes a first population pharmacokinetic (PK)model for free and total cefazolin during pregnancy, which can be used
for dose regimen optimization. Secondly, analysis of PK studies in pregnant patients is challenging due to study design limitations.
We therefore developed a semiphysiologicalmodeling approach, which leveraged gestation-induced changes in creatinine clearance
(CrCL) into a population PK model. This model was then compared to the conventional empirical covariate model. First, a base
two-compartmental PK model with a linear protein binding was developed. The empirical covariate model for gestational changes
consisted of a linear relationship between CL and gestational age. The semiphysiological model was based on the base population
PK model and a separately developed mixed-effect model for gestation-induced change in CrCL. Estimates for baseline clearance
(CL) were 0.119 L/min (RSE 58%) and 0.142 L/min (RSE 44%) for the empirical and semiphysiological models, respectively. Both
models described the available PK data comparably well. However, as the semiphysiological model was based on prior knowledge
of gestation-induced changes in renal function, this model may have improved predictive performance. This work demonstrates
how a hybrid semiphysiological population PK approach may be of relevance in order to derive more informative inferences.

1. Introduction

Cefazolin is a cephalosporin antibiotic which is highly
bound to serum albumin (75–85%) [1] but with substantial
interindividual variability (IIV) [2, 3]. Cefazolin is effective
against Gram-positive bacteria and is used as prophylaxis
during surgical interventions [4] which may also be required
during pregnancy or delivery [5]. Characterization of the
pharmacokinetics (PK) of free (unbound) cefazolin and the
associated IIV is of clinical relevance to further optimize

dosing regimens, firstly because the free drug concentration
is ultimately responsible for the pharmacological effect, and
secondly because the free cefazolin plasma concentration
has been shown to correlate better with the effect-site tis-
sue concentrations compared to the total cefazolin plasma
concentration [6]. However, a population PK model for free
cefazolin, which could be used to rationally derive efficacious
dose regimens for various infections, is not yet available.

During pregnancy, PK can be altered due to various
gestation-induced physiological changes [7] and therefore
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can potentially require the conduct of PK studies in pregnant
patients. However, frequently, the conduct of such studies
is associated with practical limitations such as difficulties
in obtaining blood samples at different occasions during
pregnancy and the recruitment of sufficient numbers of eli-
gible patients. As a result, the quantification of time-varying
changes in PK based on such potentially subinformative
studies can be challenging [8]. Yet this challenge emphasizes
the need for analysis strategies that improve the quality of
inferences derived from such studies.

In this analysis we aimed to address the aforementioned
two challenges. The need for adequate characterization of
unbound cefazolin PK was addressed by development of
an empirical population PK model for both free and total
cefazolin during pregnancy. Gestation-induced changes on
PK parameters were also investigated.

Since cefazolin is mainly excreted in unchanged form
via glomerular filtration and because the GFR increases
during pregnancy, it is expected that the PK of cefazolin will
change during pregnancy accordingly. The second objective
of this work was to propose a new hybrid approach in
which previously established time-varying and gestation-
induced changes in the glomerular filtration rate (GFR)
were leveraged into a population PK model for cefazolin,
which may lead to a model with increased predictive value
compared to an empirical model based only on the actual PK
dataset.

2. Methods

2.1. Study Data. The analysis is based on one prospective
clinical study and two previously published studies that
contained individual-level PK data [3, 9].

In the prospective clinical study, cefazolin plasma obser-
vations (𝑛 = 153) were collected from pregnant women (𝑛 =
41) during a variety of in utero surgical interventions. The
median gestational age (GA) at intervention was 25 (range
17–34) weeks. In 84% of cefazolin observations, free cefa-
zolin concentrations were simultaneously available. Patients
received intravenously (i.v.) administered cefazolin (2 g every
8 hours for 2 days), which is part of the routine clinical care for
scheduled in utero surgeries. This study was approved by the
ethical board of the University Hospitals Leuven, Belgium.
Patients were included after providing written informed
consent. Further details of the study including bioanalytical
methods have been described elsewhere [3, 9].

The first literature study included in this analysis was
based on a report by Fiore Mitchell et al. investigating
cefazolin PK in term pregnancies at caesarean delivery [10].
Patients received 1 g cefazolin (i.v. bolus) shortly before
elective cesarean. Plasma samples (𝑛 = 24) were collected at
a mean time of 1.85 h after dose. A fixed GA of 40 gestational
weeks was assumed for all patients in this study.

The second literature study included observations col-
lected during 10 fetal interventions (in utero survival treat-
ment of the fetus) in 7 women as described by Brown et al.
[11], where mothers with a mean GA of 27 weeks received

Table 1: Patient demographics and study characteristics.

Characteristic Value
Number of patients 94
Gestational age (weeks) (median, range) 33 (17–40)
Age (years) (median, range) 31 (20–42)
Body weight (kg) (median, range) 72 (54–99)
Serum creatinine (mg/dL) (median, range) 0.64 (0.33–0.88)

a single cefazolin dose of 2 g i.v. bolus, with a mean plasma
sampling time of 0.5 h after dose.

Throughout the analysis we computed creatinine clear-
ance with the Cockroft-Gault equation [12] as metric for
glomerular filtration rate (GFR) using body weight as weight
descriptor. A summary of patients demographics and dataset
characteristics of the pooled dataset is depicted in Table 1.

2.2. Base Pharmacokinetic Model. A base population phar-
macokinetic model was developed which was subsequently
used as a starting point for the empirical and semiphysiolog-
ical model development.

Mono-, bi-, and triexponential models with first-order
and nonlinear elimination were considered. Nonlinear and
linear protein bindingmodels were considered for describing
the relationship between free and total cefazolin plasma con-
centrations. Inclusion of IIV was considered for all structural
model parameters as follows:

𝑃
𝑖
= 𝑃 ⋅ exp (𝜂

𝑖
) , (1)

where 𝑃
𝑖
is the individual parameter estimate for individual

𝑖, 𝑃 is the typical population parameter estimate, and 𝜂
𝑖
was

assumed to be distributed 𝑁(0, 𝜔2). Residual unexplained
variability was implemented as either a proportional or
combined error model:

𝐶observed,𝑖𝑗 = 𝐶pred,𝑖𝑗 × (1 + 𝜀𝑝,𝑖𝑗) + 𝜀𝑎,𝑖𝑗, (2)

where 𝐶total,𝑖𝑗 represents the observed concentration for
individual 𝑖 and observation 𝑗, 𝐶pred,𝑖𝑗 represents the indi-
vidual predicted concentration, and 𝜀

𝑝,𝑖𝑗
and 𝜀
𝑎,𝑖𝑗

represent
the proportional and additive errors distributed following
𝑁(0, 𝜎

2
).

2.3. Empirical Gestational Effect Model. We considered the
following covariate relationships: gestational age (weeks)
related to clearance (CL), central volume, peripheral volume,
and the free fraction of cefazolin.The rationale for evaluating
distribution volume relationships was related to potential
changes in body composition. We evaluated the relationship
between the free fraction parameter because of potential
changes in protein binding. Furthermore we evaluated the
relationship betweenCL and creatinine clearance (CrCL).We
considered both linear and power relationships:

𝑃 = 𝜃
𝑃0
+ 𝜃
𝑃preg × (1 + (

COV
𝑁COV
)) ,

𝑃 = 𝜃
𝑃0
× (

COV
𝑁COV
)

𝜃𝑃preg

,

(3)
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where𝑃 represents the covariate-adjusted population param-
eter, 𝜃

𝑃0
represents the baseline population parameter esti-

mate for parameter𝑃, 𝜃
𝑃preg represents the gestational covari-

ate effect estimate for parameter 𝑃, and 𝑁COV represents a
normalization factor for each covariate. For linearGAmodels
this was the maximum GA of 40, for CrCL this was set to
125mL/min, and for albumin this was set to 30 g/L.

2.4. Semiphysiological Gestational Effect Model. The semi-
physiological model consisted of two parts. First a mixed
effect model was developed to describe the individual pre-
dicted changes in CrCL based on the previously described
mean change in CrCL and the individual observed CrCL val-
ues, as a surrogate for the change in GFR during pregnancy.
Then, the mixed effect CrCL model was associated with the
cefazolin clearance in the base pharmacokinetic model, as
cefazolin is primarily renally eliminated.

2.4.1. Creatinine Clearance Mixed Effect Model. The typical
change in CrCL during pregnancy as described previously
[13] was parameterized as follows:

CrCL (𝑡) = CrCL0 +
CrCLMAX × 𝑡

CrCL
50
+ 𝑡

, (4)

where CrCL
0
represented baseline (nonpregnant CrCL),

CrCLMAX represented maximum typical increase in CrCL,
and CrCL

50
represented the time of half-maximum change

in CrCL. The typical parameter estimates for these three
parameters were fixed to the previously estimated values
(Table 3), which were based on a meta-analysis of the lit-
erature reporting gestational changes in CrCL [13]. Briefly,
this was derived using a sample-size weighted regression
analysis of two studies reporting the dynamics of CrCL
during pregnancy [14, 15]. Random effects for IIV were
considered for all three parameters. Residual variability was
described using a proportional error model for individual 𝑖
and observation 𝑗 as follows:

CrCLobs,𝑖𝑗 (𝑡) = CrCLpred,𝑖𝑗 (𝑡) × (1 + 𝜀CRCL,𝑖𝑗) , (5)

where CrCL
𝑖𝑗
represents the observed CrCL value, CrCL

𝑖

represents the predicted individual change in CrCL over
time, and 𝜀CrCL,𝑖𝑗 represents the residual error distributed
𝑁(0, 𝜎CrCL).

Subsequently, using the observed CrCL values in the cur-
rent study, we estimated individual empirical Bayes estimates
describing the individual predicted changes in CrCL during
gestation.

2.4.2. Semiphysiological Model. The individual predicted
changes in CrCL derived from the mixed effect model for
CrCL were related to the cefazolin CL as follows:

CL
𝑖
= 𝜃CL0 + 𝜃CL preg × (

CrCL
𝑖 (
𝑡)

CrCL
𝑖0

) , (6)

where CL
𝑖
is the individual estimate for CL, 𝜃CL0 represents

non-CrCL-related clearance, and 𝜃CL preg represents GFR-
related clearance, which is multiplied by the normalized

change in CrCL, obtained by the ratio between the individual
predicted CrCL

𝑖
at time 𝑡 and the baseline CrCL

𝑖0
prior to

start of pregnancy. Finally, we also evaluated if additional
gestational effects could be identified after inclusion of the
predicted change in CrCL.

2.5. Handling of Missing Data. For some patients, demo-
graphic valuesweremissing. For 46%of patients, bodyweight
was not available. For 55% of patients, age was not available.
These were imputed by taking the median age and weight
from the pooled dataset. In 58% of patients, not all serum
creatinine values were available. These were either imputed
based on themedian value, or in case of the semiphysiological
approach, associatedCrCL valueswere imputed by the typical
change in CrCL.

2.6. Simulations. Stochastic simulations (𝑛 = 1000) of
dose regimens were performed to compare the predicted
concentration-time profiles for the empirical and the semi-
physiological model. We performed simulations for different
periods of pregnancy. We assumed infection with coagulase
negative Staphylococcus [9], which has a reported 90% min-
imum inhibitory concentration (MIC90) between 0.5 and
4mg/L. Simulations were first conducted using the default
dosing regimen of 2 g every 8 hours infused over 30 minutes,
which was the general practice dosing regimen used in this
study, applying bothmodelling approaches. Subsequently, we
evaluated alternative clinically feasible adaptations to current
dosing guidelines used that result in improved time above a
MIC90 of 4mg/L. For this simulation exercise it was explicitly
not our aim to derive definitive dose regimens for this
infection, but only to provide a motivating proof of concept
example.

2.7. Software and Estimation Methods. Model development
and simulation studies were performed with the software
package NONMEM version 7.1 [16] using the first-order
conditional estimation method with 𝜂-𝜎 interaction.

2.8. Model Selection and Evaluation. Model development of
the base and covariate models was guided by the change
in objective function value (OFV), plausible parameter
estimates, adequate parameter precision, and inspection of
goodness-of-fit plots. For development of the basemodel and
the inclusion of covariates in the empirical model, a statistical
significance criterion of 𝑃 < 0.05 (decrease in OFV >
3.84) was used. Final models were evaluated using a visual
predictive check (VPC) and goodness-of-fit plots.We did not
use bootstrapping because of the diversity of subjects in the
dataset (e.g., heterogeneous and sparse data) and the time-
varying nature of the gestational effect, which would result in
bootstrap datasets not representative for the original dataset.

3. Results

3.1. Base Pharmacokinetic Model. A two-compartmental
model best described the data, in line with previous publi-
cation [9]. Nonlinear protein-binding models could not be



4 BioMed Research International

Table 2: Parameter estimates of the base and final population PK models (empirical and semiphysiological) for cefazolin.

Description Parameter Unit
Estimates (RSE%)

Base model Empirical model
CL∼GAa

Semiphysiological
Model CL∼CrCLb

Structural model
Clearance 𝜃CL0 L/min 0.49 (7) 0.119 (58) 0.142 (44)
Central volume 𝑉

𝐶
L 32.5 (16) 33.1 (17) 14.1 (25)

Peripheral volume 𝑉
𝑃

L 12.8 (25) 12.8 (27) 17.1 (7)
Intercompartmental clearance 𝑄 L/min 0.335 (21) 0.326 (25) 0.436 (10)
Free fraction 𝐹

𝑈
— 0.289 (5) 0.286 (5) 0.291 (9)

Gestation effect on clearance 𝜃CLPreg — 0.217 (16) 0.212 (38)
Between subject variability

Clearance 𝜔CL CV% 22.1 (25) 19.9 (24) 10.4 (70)
Central volume 𝜔

𝑉1
CV% 49.1 (22) 47.6 (21) 101.5 (21)

Peripheral volume 𝜔
𝑉2

CV% 32.7 (41) 34.2 (41) 68 (26)
Free fraction 𝜔

𝐹𝑈
CV% 18.9 (36) 17.5 (37) 19.1 (38)

Residual unexplained variability variances
Proportional, free concentration 𝜎FP 0.0162 (8) 0.0158 (11) 0.0153 (8)
Additive, free concentration 𝜎FA 0.176 (34) 0.229 (42) 0.217 (36)
Proportional, total concentration 𝜎TP 0.0348 (8) 0.0328 (10) 0.0328 (9)
Additive, total concentration 𝜎TA 0.662 (48) 0.842 (46) 0.681 (25)

RSE: relative standard error; GA: gestational age (weeks). aEmpirical model: CL = 𝜃CL0 + 𝜃CLPreg ∗ (CrCL𝑖(𝑡)/CRCL𝑖0);
bsemiphysiological model: CL =

𝜃CL0 + 𝜃CLPreg ∗ (1 + (GA/40)).

Table 3: Parameter estimates of the nonlinear mixed effect model for change in creatinine clearance (CrCL).

Description Parameter Unit Estimates (RSE%)
Structural model estimates as reported in a previous meta-analysis (13)

Baseline CrCL CrCL0 mL/min 97.83 (3.91)∗

Maximum CrCL CrCLMAX — 83.83 (12.48)∗

Time of half-maximum CrCL CrCL50 weeks 13.3 (37.59)∗

Between subject variability (CV%)
Baseline CrCL 𝜔CrCL0 CV% 31.4 (16)
Maximum CrCL 𝜔CrCLMAX

CV% 35.1 (17)
Time of half-maximum CrCL 𝜔CrCL50 CV% 111.8 (121)

Residual unexplained variability variance
Proportional error 𝜎CrCL 0.0291 (43)
CrCL: creatinine clearance; RSE: relative standard error. ∗These values were fixed during estimation of the mixed effect model; that is, only random effects
were estimated.

identified based on the available data and were visually not
observable. The relationship between free and total cefazolin
concentrations was best described using a constant binding
model as follows:

𝐶total =
𝐶free
𝑓
𝑢

, (7)

where 𝐶total represents the total drug concentration and
𝑓
𝑢
represents the (estimated) fraction of free drug. The

parameter estimates of the base structural model without
gestational effects are provided in Table 2. All fixed effect
parameters were estimated with good precision (RSE < 25%).

3.2. Empirical Gestational Effect Model. During model build-
ing of the empirical model only a linear relationship between
CL and GA was found to be significant (dOFV = −9.6, 𝑃 <
0.0025). Relating CL to CrCL did not result in a statistically
significant change (dOFV = −0.9) with a highly imprecise
covariate slope estimate (RSE 130%), indicating that the
available range of renal function did not allow estimation of
this (expected) covariate relationship.

Finally, relationships between GA and the central and
peripheral volumes of distribution and between free and
albumin levels were not statistically significant. Power-type
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Figure 1: Simulated (areas) and observed (solid circles, lines) free and total cefazolin concentrations versus time as predicted by the empirical
model (a) and semiphysiological model (b) for trimesters 2 and 3 of pregnancy. Simulations are represented as the parametric 95% confidence
intervals of the simulated 50th (red), 5th, and 95th (blue) percentiles. For the observed values, the 50th (continuous line), 5th, and 95th (dashed
lines) percentiles are depicted in red.

covariate relationships did not describe the observed data
better compared to the linear slope-intercept models.

The parameter estimates of final covariate model with
a linear relationship between CL and GA are provided in
Table 2. The precision of the fixed effect parameters was
good (RSE < 27%) except for clearance (RSE 58%). We
consider this to be related to the simultaneous estimation of
two clearance components based on the limited amount of
data available. The visual predictive (VPC) check describes
(Figure 1(a)) the percentiles (5th, 50th, and 95th) of the
model simulated concentration-time curves based on the
original study design with the areas representing the 95%
confidence intervals around the simulation percentiles. The
observed data is included as solid points together with the
associated percentiles. Based on this figure we concluded
that the typical time course and variability were adequately
described, because the simulated and observed percentiles
were in good agreement with each other. No trends were
observed in the goodness-of-fit plots depicting the observed
versus the individual and population predicted free and total
cefazolin concentrations (Figure 2).

3.3. Semiphysiological Gestational Effect Model

3.3.1. Creatinine Clearance Mixed Effect Model. The param-
eter estimates for the mixed effect model for CrCL are
provided in Table 3. Here, only the random effect parameters
were estimated, whereas population parameter estimates
were based on previously estimated values in a meta-analysis

of the literature report changes in CrCL during pregnancy
[13]. Estimates for baseline CrCL and the maximum CrCL
were estimated at moderate magnitudes <35.1 CV% with
good precision (RSE < 17%). The magnitude of IIV for half-
maximumCrCLwas high (111.8 CV%) butwas also associated
with a high RSE (121%). Nonetheless we chose to retain
this random effect as it provided a substantially improved
description of the CrCL observations, which was the primary
aim of this model. An illustration of the individual pre-
dicted CrCL dynamics for the available CrCL observations
is provided in Figure 3. These predictions are driven by
the variability observed for the observations combined with
previously established dynamical changes in CrCL during
pregnancy. This figure is merely intended as an illustration
of how predictions of CrCL were generated and specifically
not as a goodness-of-fit plot.

3.3.2. Semiphysiological PK Model. Subsequently, we
included the individual predicted changes in CrCL in the
base PK model. Estimation of additional effects of GA on
PK parameters (i.e., not related to change in GFR) did not
further improve model fit, indicating that the pregnancy-
related effects could be fully explained by inclusion of
the CrCL mixed effect model predictions. The parameter
estimates of the resulting model are provided in Table 2.
Similar to the empirical covariate model the precision of
clearance was relatively high (RSE 44%), whereas other fixed
effects had better precision, which was considered to be
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Figure 2: Observed versus individual (IPRED) and population (PRED) predicted free and total cefazolin concentrations (mg/L), for both
the empirical approach (open circles) and the semiphysiological approach (open triangles).

related to the sparseness of the data. The visual predicted
check (Figure 1(b)) and goodness-of-fit plots (Figure 2)
indicated adequate description of the data, which were also
in agreement with the predictions generated by the empirical
PK model.

3.3.3. Simulations. The empirical and semiphysiological
models were used for simulations to assess the differences
in model prediction across the full duration of gestation
(Figure 4). When comparing the magnitude of change in
concentration-time profiles across gestation, a difference
was observed between the empirical and semiphysiological
approaches, especially in early pregnancy. As the semiphys-
iological model is based on the expected time course of
renal function across pregnancy, we may assume that these
predictions will be closer to the true change in cefazolin

PK, compared to the linearly interpolated change for the
empirical model. By simulation of alternative dose regimens
we demonstrated that an increased dosing interval of 2 g
cefazolin every 6 hours (instead of 8 hours) yielded prolonged
therapeutic concentrations, based on the expected MIC90
value of 4mg/L, yet remained feasible for implementation in
daily clinical practice.

4. Discussion

Thiswork described the first population PKmodel describing
free and total cefazolin in pregnant patients, which can
be used to rationally inform informative dose regimens in
pregnant patients using a model-based approach [17, 18].
In addition we demonstrated a novel hybrid approach of
leveraging prior knowledge on physiological changes in
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Figure 3: Individual predictions (gray lines) and observed values
(solid circles) for the change in CrCL (mL/min) versus time in
gestational weeks as predicted by the developed mixed effect model
for creatinine clearance.

a population PK model, which may help to derive more
informative and potentially more clinically relevant models
in situations with sparse data.

Although bothmodeling approaches showed comparable
description of the observed data, a number of advantages
of the semiphysiological approach can be recognized. The
semiphysiological model included a more realistic change
in CrCL compared to the linear pregnancy effect in the
empirical model. The difference between these two strategies
becomes clear when extrapolating outside the observed range
of GAs (17–40 weeks). For the purpose of extrapolation, we
expect that the semiphysiological approach may be closer
to the true change in clearance. As pregnancy is not a
dichotomous variable, the time-varying change should be
considered for potential dose regimen adjustments. However,
when PK studies aiming to derive dose regimens only
recruit patients in specific parts of pregnancy, required dose
regimens in other periods of pregnancy may still be different.
When appropriate PKdata ismissing, the proposedmodeling
approachmay be considered. Secondly the semiphysiological
modeling approach may also be of relevance to generate
informative PK study designs in pregnant patients based on
available knowledge, as has been demonstrated previously
[13].

Although it is known that CrCL will be a key covariate
for prediction of cefazolin clearance, we did not find such
an effect for the empirical model, whereas the gestational
age, with no missing data, was a strong covariate in the
empirical model. We consider this finding to be related to
the relatively high number of missing CrCL values and the
crude method for imputation of such values. As such the GA
resulted in a much more informative covariate. In contrast,

for the semiphysiological approach the impact of CrCL could
be incorporated and resulted in a model with a comparable
description of the data.

Thepredictions of the semiphysiologicalmodel are driven
by the previously developed structural model describing the
mean gestational dynamics of CrCL. This previous analysis
had some limitations as it was based on relatively old studies
with potentially different methods [14]. Nonetheless, this
analysis describes in a reasonably good way what is known
about changes in CrCL. Although the predicted changes
in CrCL are inherently associated with some uncertainty,
the mean population predictions did not show any trend
indicating limited impact of any bias in CrCL predictions that
may be present.

Age and weight values used for the computation of CrCL
weremissing for a substantial number of patients, whichwere
imputed based on median values. This imputation approach
can result in some shrinkage of the individual CrCL values
towards the population mean, which may lead to potentially
biased effects of CrCL on CL. The impact of missing age val-
ues might be limited as pregnant females can be expected to
reside in a relatively narrow age range.Duringmodel building
we observed the potential impact of CrCL imputation, as GA
was a far superior covariate compared to CrCL in contrast
to what was expected. The semiphysiological model on the
other hand was able to derive a comparable description of
the data using CrCL values, potentially because the CrCL
mixed effect model improves the imputation of gestational
changes in CrCL. An alternative and potentially improved
imputation approach would be joint modeling of CrCL based
on GA (which is available in all patients). Ultimately we did
not evaluate a joint modeling approach as it was considered
potentially challenging to develop such a model based on the
limited data available and it would still remain doubtful to
what extent this imputation method would lead to a decrease
in bias. We, however, expect that regardless of the choice
of imputation method this remained a sparse dataset with
substantial limitations which should be acknowledged and
carefully considered when applying this model for future
simulation purposes.

Studies in pregnant patients often have substantial design
limitations, as was also the case in the current analysis. This
leads to limitations in any inference to be derived but likewise
also demonstrates the importance of using efficient analysis
strategies that utilize prior knowledge when available. In our
case the developed semiphysiological model for cefazolin
showed comparable description of the observed data, yet it
allowed for more realistic extrapolation of expected cefazolin
concentrations outside the range of gestational ages available.

This semiphysiological approach can be considered for
leveraging known physiological changes from the literature
into a population PK analysis in order to support and
inform PK models that are based on a limited amount of
data, such as is frequently the case for PK studies during
pregnancy. This approach might also be applicable to other
drugs in situations involving sparse data situations involving
previously established and relevant physiological knowledge.
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Figure 4: Simulations of typical free and total cefazolin concentration-time profiles using the empirical and the semiphysiological approach
at different periods of pregnancy (gestational weeks) based on a dose regimen of 2 g cefazolin every 6 or 8 hours administered over 30minutes.
The expected 90% minimum inhibitory concentration is depicted as horizontal black line. GW: gestational weeks.

However ultimately, the conduct ofwell-designed prospective
PK studies will remain the golden standard to evaluate PK
and optimize dose regimens.
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