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ABSTRACT: The novel tin(II) oxychloride [BMIm][Sn5O2Cl7] (BMIm = 1-butyl-3-
methylimidazolium) is obtained by the room-temperature reaction (25 °C) of black
SnO and SnCl2 in [BMIm]Cl/SnCl2 as an ionic liquid. The title compound can be
described as composed of noncharged, infinite ∞

1(Sn2OCl2) strands that are
embedded in a saline matrix of [BMIm]+ and [SnCl3]

−. The ∞
1(Sn2OCl2) strands

consist of a backbone of edge-sharing OSn4/2 tetrahedra, which represent one-
dimensional (1D) strands cut out of the layer-type structure of SnO. In
[BMIm][Sn5O2Cl7], the ∞

1(Sn2OCl2) strands, which mimic a 1D semiconductor,
are terminated by chlorine atoms, whereas they are interconnected by oxygen atoms in
the 2D semiconductor SnO. The view of the noncharged ∞

1(Sn2OCl2) strands in a
saline [BMIm][SnCl3] matrix is validated by dissolution experiments. Thus, electron
microscopy and Raman spectroscopy show a deconstruction of [BMIm][Sn5O2Cl7]
single crystals after treatment with chloroform with a dissolution of [BMIm][SnCl3],
the formation of SnCl2 needles, and tin oxide as a solid remain.

■ INTRODUCTION
Metal oxides with certain ionic bonding and lattice energy
typically require high-temperature solid-state reactions (>400
°C) or polar coordinating solvents to initiate chemical
reactions.1 Thus, either sufficient diffusion in the solid state
or the formation of coordination complexes needs to be
guaranteed. Synthesis at high temperatures, however, is
counterproductive in regard to novel metastable compounds
and favors formation of the thermodynamically most stable
compounds.2,3 In liquid-phase reactions, the dissolution of
metal oxides requires the formation of coordination complexes
with ligands that, thereafter, may significantly influence the
composition, bonding, and properties of the obtained
compounds. For these reasons, reactions of metal oxides
near room temperature (≤100 °C) and in the absence of
coordinating solvents/ligands are rare.
Ionic liquids have significantly advanced the synthesis of

inorganic compounds near room temperature (≤100 °C),
leading to spectacular metastable compounds that would have
been impossible to prepare in conventional solvents.4,5

Selected examples include the polychloride [Et4N]2[(Cl3)2·
Cl2],

6 the intermetalloid [CuBi8]
3+ cluster cation in [CuBi8]-

[AlCl4]2[Al2Cl7],
7 the heavy-metal porphyrin analogue

[Hg4Te8(Te2)4]
8− in [DMIm]8[Hg4Te8(Te2)4] ([DMIm]+ =

1-decyl-3-methylimidazolium),8 the ligand-stabilized [Ga5]
5+

pentagon,9 or the linear uranyl-type [NUN] cluster
core.10 As part of our studies, we could add the three-
dimensional (3D) polybromide [C4MPyr]2[Br20]

11 or the
highly coordinated SnIII8 subunit in the carbonyl [SnI8{Fe-
(CO)4}4][Al2Cl7]2.

12 Key advantages of ionic liquids comprise

their special solvent properties, such as their high thermal and
chemical stability and weakly coordinating properties.4,5,13 The
synthesis of metastable compounds in ionic liquids has so far
predominately involved metal halides, selenides/tellurides, or
metal clusters.4−12 In comparison, the synthesis of new metal
oxides in ionic liquids has been rare until now, which can be
ascribed to their aforementioned high lattice energy and their,
in comparison to metal halides or metal compounds of the
heavier chalcogenides, low solubility in ionic liquids. Mean-
while, several studies have already evaluated the conditions for
how to dissolve metal oxides in ionic liquids.14−16 Syntheses of
novel metal oxide compounds are, nevertheless, rare.
Aiming at the synthesis of novel metal oxide compounds via

an ionic-liquid-based synthesis, we here describe the novel tin
oxychloride [BMIm][Sn5O2Cl7] (BMIm = 1-butyl-3-methyl-
imidazolium), which was obtained by the reaction of black
SnO and SnCl2 at room temperature (25 °C) in [BMIm]Cl/
SnCl2. The title compound is composed of noncharged,
infinite ∞

1(Sn2OCl2) strands that are embedded in a saline
matrix of [BMIm]+ cations and [SnCl3]

− anions. The crystal
structure of the title compound and dissolution experiments to
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probe the view of ∞
1(Sn2OCl2) strands in a saline matrix are

described.

■ EXPERIMENTAL METHODS
General Considerations. All reactions were performed using

standard Schlenk techniques or argon-filled gloveboxes (H2O, O2 <
0.1 ppm, MBraun Unilab). Commercially available tetragonal, black
SnO (99%, ABCR) and SnCl2 (anhydrous, 97%, Acros) were used as
supplied. 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl, 99%,
Iolitec) was dried at 130 °C for 3 days in a vacuum (10−3 mbar) prior
to use.
[BMIm][Sn5O2Cl7] was prepared by mixing [BMIm]Cl (600.0

mg, 3.4 mmol, 1 equiv) and SnCl2 (1300.8 mg, 6.9 mmol, 2 equiv) in
a Schlenk tube at room temperature. The mixture was stirred for a few
minutes, which resulted in a yellowish solution. SnO (924.0 mg, 6.9
mmol, 2 equiv) was added to the solution and stirred for 6 h at room
temperature. The insoluble black SnO precipitates slowly to the
bottom of the Schlenk tube. Within 3 weeks, the growth of colorless,
needle-shaped crystals was observed at the interface of the SnO slurry
and ionic liquid with an estimated yield of about 20%. This limited
yield can be predominately related to the slow reaction.
As an alternative, the synthesis of [BMIm][Sn5O2Cl7] can also be

performed with slight heating to 40 °C for 3 weeks. In comparison to
the aforementioned room-temperature reaction, this results in large
transparent single crystals with a size of up to 1 mm. However,
colorless plates of [BMIm][Sn3Cl7] were also obtained, which was not
observed for the room-temperature reaction.
Analytical Techniques. Details of the analytical methods can be

obtained from the Supporting Information. Further details of the
crystal structure are listed in Table S1 and can also be obtained from
the joint CCDC/FIZ Karlsruhe deposition service upon quoting the
depository number 2123506.

■ RESULTS AND DISCUSSION
Synthesis. The novel tin oxychloride [BMIm][Sn5O2Cl7]

was prepared by the reaction of SnO and SnCl2 in [BMIm]Cl/
SnCl2 (1:2 ratio) at room temperature (25 °C) according to
the following equation:

+ + [ ] + [ ]

→ [ ][ ]

+ −2SnO 2SnCl BMIm SnCl

BMIm Sn O Cl
2 3

5 2 7

At first glance, the reaction can be rationalized as a Lewis
acid−base reaction with SnCl2 as the acid and SnO as the base.
When considering the low oxidation state and the lone pair of
SnII, however, the reaction and product are actually surprising
because SnCl2 is only a weak Lewis acid. Moreover, SnO is also
only a weak Lewis base and hardly soluble in the ionic liquid
(Figure 1a). Nevertheless, colorless needle-shaped crystals of

[BMIm][Sn5O2Cl7] grow within 3 weeks at the interface of the
black bottom slurry of SnO and the yellowish ionic liquid as
the top phase (Figure 1b). Optical spectroscopy confirms the
presence of a wide-band-gap material with an absorption below
350 nm (Eg ∼ 3.5 eV; Figure S1). The crystals are highly stable
in the mother liquor and under inert conditions, but they
rapidly deliquesce in the presence of moisture.

Structural Characterization. According to single-crystal
structure analysis, [BMIm][Sn5O2Cl7] crystallizes in the space
group P1̅ and consists of noncharged, infinite ∞

1(Sn2OCl2)
strands as well as [BMIm]+ cations and [SnCl3]

− anions
(Figure 2 and Table S1). The chemical composition was

validated by energy-dispersive X-ray spectroscopy (EDXS) of
single crystals, resulting in a Sn/Cl ratio of 41(1):59(1), which
is in accordance with expectations (calculated Sn/Cl ratio of
42:58).
The noncharged ∞

1(Sn2OCl2) strands are established by a
backbone of edge-sharing OSn4 tetrahedra along the crystallo-
graphic a axis (Figures 2a and S2). All four crystallographically

Figure 1. Room-temperature synthesis of [BMIm][Sn5O2Cl7]: (a)
Dark slurry of SnO with a [BMIm]Cl/SnCl2 (1:2) top phase prior to
the reaction. (b) Crystal growth at the interface after 3 weeks.

Figure 2. Crystal structure of [BMIm][Sn5O2Cl7]: (a) Unit cell in the
bc plane. (b) ∞

1(Sn2OCl2) strand with edge-sharing OSn4 tetrahedra
along the a axis. (c) [SnCl3]

− anion (selected distances are in
picometers and selected angles in degrees; anisotropic displacement
parameters with 50% probability).
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independent tin atoms are coordinated by two bridging oxygen
atoms and a terminal chlorine atom. Together with the lone
pair at the tin(II) atoms, a distorted trigonal (SnO2/4Cl)
pyramid is formed as the coordination polyhedron (Figure 2b).
The Sn−O distances of 219.6(3)−228.7(3) pm are well
comparable to those in SnO (221 pm).17 The Sn−Cl distances
are widely spread and range from 245.9(2) to 270.7(2) pm,
which is shorter than those in SnCl2 (266.4−305.8 pm;Tables
S2 and S3).18

The strands of edge-sharing OSn4 tetrahedra can be
considered to be a one-dimensional (1D) cutout of the two-
dimensional (2D) layer-type structure of the tetragonal, black
modification of SnO (Figure 3).17 Thus, the ∞

1(Sn2OCl2)

strands can also be considered to be 1D semiconducting units
cut out of the 2D semiconductor SnO. In comparison to SnO,
the Sn−O bonds leading to the 2D arrangement of edge-
sharing OSn4 tetrahedra are terminated by chlorine atoms in
[BMIm][Sn5O2Cl7]. In contrast, tin oxyhalides such as
Sn2OF2

19 or Sn4OF6
20 exhibit a 3-fold almost planar

coordination of the oxygen atoms. A tetrahedral OSn4
coordination was observed for two of four oxygen atoms in
Sn7O4Cl6

21 or in the oxyhydroxide Sn21Cl16(OH)14O6.
22

Comparable tetrahedral OPb4 chains are rather known from
lead(II) oxyhalides, such as Pb2OF2

23 and Pb17Cl18O8
24 (both

with single tetrahedral OPb4 chains) or Pb3O2Cl2.
25 Here, it

must be noticed that these compounds are usually prepared by
solid-state reactions at elevated temperature (≥200 °C).
Besides the closest Sn−O and Sn−Cl distances in the

∞
1(Sn2OCl2) strand and the [SnCl3]

− anion, further secondary
Sn···Cl interactions (309.3(1)−382.7(2) pm) occur that are
shorter than the sum of the van der Waals radii (Sn−Cl = 395
pm)26 and, thus, contribute to the overall bonding situation
(Tables S2 and S3). Together with these secondary
interactions, a 3 + 4 (Sn1 and Sn4), 3 + 5 (Sn2 and Sn3),
and 3 + 3 (Sn5) coordination is obtained (Figure S3).
Secondary Sn···Cl interactions also lead to an interconnection
of the ∞

1(Sn2OCl2) strands and [SnCl3]
− anions (Figure S4),

resulting in ∞
2[Sn5O2Cl7]

− layers, which are separated by the
[BMIm]+ cations. These Sn···Cl distances are in good

agreement with secondary Sn···Cl interactions in SnCl2
(321.9−330.2 pm),18 which are typically considered to be up
to a limit of 360 pm (Tables S2 and S3).27

The [BMIm]+ cations and [SnCl3]
− anions exhibit as-

expected distances. Similar to the ∞
1(Sn2OCl2) strands, the

[SnCl3]
− anions have a distorted pyramidal coordination

including the stereochemically active lone pair (Figure 2c).
The Sn−Cl distances (246.5(2)−265.0(2) pm) are again in
good agreement with the literature (e.g., Cs[SnCl3] with 250−
255 pm; Tables S2 and S3).28 The Cl−Sn−Cl angles
(90.0(1)−91.4(1)°) are as well in accordance with the
literature (e.g., Cs[SnCl3] with 86.9−92.3°)28 and indicate
the sterical influence of the aforementioned secondary Sn···Cl
interactions. Furthermore, hydrogen bridging is observed
between [SnCl3]

− and [BMIm]+ with Sn−Cl···H−C distances
of 274(1)−299(1) pm, which are partly below the sum of the
van der Waals radii (295 pm).26 Finally, it needs to be noticed
that the Sn···Sn distances in the ∞

1(Sn2OCl2) strands (339−
343 pm) are even shorter than those in SnO (351 pm)17 and
not far from the Sn−Sn distances in the metal (302−318
pm).29

Dissolution Studies. To verify the view of the
∞
1(Sn2OCl2) strands in a saline [BMIm][SnCl3] matrix,

dissolution experiments were performed in order to probe an
optional separation of the weakly bound voluminous
[BMIm]+/[SnCl3]

− ions and the stronger bound
∞
1(Sn2OCl2) strands (Figure 4a). To this concern, single

crystals of [BMIm][Sn5O2Cl7] were rinsed with small portions
of dry chloroform (CHCl3) at room temperature (25 °C).
Already optical, the crystals changed as they became smaller
and turned from colorless to light yellowish-brown (Figure
4a,c,d). Scanning electron microscopy (SEM) already confirms
disintegration of the single crystals (Figure 4b,e). After the
evaporation of all CHCl3, moreover, transmission electron
microscopy (TEM) indicates the formation of tiny needles
covering the crystal surfaces as well as the formation of a
spongy precipitate around the single-crystal remains (Figure
4f).

Figure 3. Comparison of the 1D strands ∞
1(Sn2OCl2) in [BMIm]-

[Sn5O2Cl7] with the 2D-layer structure of the tetragonal, black
modification of SnO: (a) ∞

1(Sn2OCl2) strand with edge-sharing OSn4
tetrahedra. (b) SnO layer with one row of edge-sharing OSn4
tetrahedra highlighted.

Figure 4. Treatment of single crystals of [BMIm][Sn5O2Cl7]. (a−c)
Light microscopy and SEM images of the as-prepared single crystals.
(d−f) Light microscopy and SEM/TEM images of the single-crystal
remains after CHCl3 treatment at different levels of magnification.
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To elucidate the underlying dissolution process and to
identify the different products, EDXS and Raman microscopy
were applied (Figures 5 and 6). Here, it must be noticed that

EDXS line scans were not successful because of complete
destruction under the conditions of high-energy electron
bombardment. EDXS area scans, however, reveal the
composition of the tiny needles and of the spongy precipitate.
Accordingly, EDXS of the tiny crystals resulted in a Sn/Cl ratio
of 1:2.2 with only low quantities of oxygen (Table 1 and Figure
5a,b), which points to the formation of SnCl2. For the spongy
precipitate around the single crystal, EDXS area scans show N/
Sn/Cl with a ratio of 1.8:1:2.9 and again only low quantities of
oxygen (Table 1 and Figure 5a,c). This is in agreement with
the presence of [BMIm][SnCl3] (N:Sn:Cl = 2:1:3). As a result,
CHCl3 obviously dissolves the saline [BMIm][SnCl3] matrix
out of the [BMIm][Sn5O2Cl7] single crystals. The dissolved
[BMIm][SnCl3] is deposited in the area around the single
crystals after the evaporation of CHCl3. Moreover, SnCl2 is
formed, which is insoluble in CHCl3 and, thus, crystallizes in
the form of tiny needles on the surface of the single-crystal
remains.

In regard to the solid remaining after the CHCl3 treatment,
it must be noticed that EDXS was again not successful because
the single-crystal remains were completely destroyed under the
conditions of high-energy electron bombardment. This was
also caused by the thickness of the insulating sample, which is
significantly thicker at the position of the disintegrated single
crystal than that for the tiny SnCl2 crystals or the [BMIm]-
[SnCl3] sponge. Therefore, [BMIm][Sn5O2Cl7] single crystals
as well as the single-crystal remains after the CHCl3 treatment
were analyzed by Raman spectroscopy (Figures 6 and S5−S7).
In addition, Raman spectra were calculated by means of
quantum-chemical density functional theory methods (see the
Supporting Information for details) based on a [SnCl3]

− unit
as well as an almost linear [Sn18O10Cl18]

2− model subunit
(with Cs symmetry) of the noncharged ∞

1(Sn2OCl2) strands
(Tables S4 and S5 and Figures S8 and S9). On the basis of the
calculated spectra (Tables S6 and S7 and Figures S9 and S10),
the Raman intensities at 265 and 130 cm−1 can be attributed to
Sn−Cl stretching and deformation vibrations,30 whereas the
Raman intensities at 210−160 cm−1 are related to the Sn−O
deformation modes.31 On the basis of the calculated data, the
most intense vibrations of the experimentally observed Raman
spectrum of the [BMIm][Sn5O2Cl7] single crystals at 285, 263,
and 134 cm−1 can be attributed to the formal A1g and Eg
stretching motions and the A1g deformation modes of the
[SnCl3]

− unit (with local C3v symmetry).30 They coincide with
the Sn−Cl motions of the ∞

1(Sn2OCl2) strands, whereas the
Sn−O vibrations are peaking at 208 cm−1 (Figure 6c).

Figure 5. Treatment of a [BMIm][Sn5O2Cl7] single crystal with
CHCl3: (a) Scheme of single-crystal remains with tiny needles and a
spongy precipitate. (b) TEM image of tiny needles on the surface of
single-crystal remains (EDXS performed in the area of the red box;
Table 1). (c) TEM image and EDXS area scans of a spongy
precipitate around the single-crystal remains (EDXS data shown in
Table 1).

Figure 6. [BMIm][Sn5O2Cl7] single crystal before and after treatment with CHCl3: (a and b) Scheme of a single crystal. (c) Raman spectra of a
single crystal (Figures S5−S7).

Table 1. EDXS Data (atom %) of [BMIm][Sn5O2Cl7].
Products after CHCl3 Treatment

elements (atom %)

Sn Cl Ca N O Cub

tiny needles 13.0 28.8 51.9a 1.2 4.2 0.9b

spongy precipitate 4.1 12.1 74.8a 7.2 1.1 0.7b

element ratioc

Sn Cl C N O

tiny needles 1 2.2 a 0.1 0.3
spongy precipitate 1 3.0 a 1.8 0.2
[BMIm][SnCl3](Sn2OCl2) 5 7 8 2 2
[BMIm][SnCl3] 1 3 8 2
SnCl2 1 2

aC cannot be determined because of amorphous carbon (lacey-)film-
coated copper grids. bCu originating from amorphous carbon (lacey-
)film-coated copper grids. cElement ratios calculated based the above
EDXS data.
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After the CHCl3 treatment, Raman signals of the Sn−Cl
vibrations as well as those originating from [BMIm]+ vanish
almost completely for the single-crystal remains, whereas those
of the Sn−O vibrations are still present and now appear with
higher intensity (Figures 6c and S5−S7). For the Sn−O
vibrations, moreover, a significant broadening and a certain
shift to lower wavenumbers (maxima at 194 and 163 cm−1) are
indicative. These findings point to the formation of a binary tin
oxide with a stoichiometry between SnO (Raman bands
expected at 210 and 115 cm−1)32 and SnO2 (Raman bands
expected at 480, 639, and 782 cm−1)33 and, thus, to Sn2O3

33 or
Sn3O4.

34 After removal of the saline matrix from [BMIm]-
[Sn5O2Cl7], such decomposition can be ascribed to the
structural instability of the remaining tin(II) oxide strands,
which triggers a disproportionation to tin(0) and tin(IV)
rather than to tin(III).35,36 Furthermore, experimental
indication for the appearance of tin(0) is given by the
Raman band at 194 cm−1, which is in accordance with not only
a Sn−O vibration but also the Raman spectrum of α-Sn.37 In
summary, EDXS and Raman spectroscopy point to dissolution
of the saline [BMIm][SnCl3] matrix of [BMIm][Sn5O2Cl7],
the formation of SnCl2, and tin oxide as a solid remain. The
latter further disproportionates to Sn3O4 and Sn.

■ CONCLUSIONS

[BMIm][Sn5O2Cl7] (BMIm = 1-butyl-3-methylimidazolium)
was obtained as a novel tin(II) oxychloride by the room-
temperature reaction (25 °C) of SnO and SnCl2 in
[BMIm]Cl/SnCl2 as an ionic liquid. Besides the low
temperature as such, this Lewis acid−base reaction of SnCl2
and SnO is surprising because both SnCl2 and SnO are only a
weak Lewis acid and base. SnO as a barely soluble solid,
nevertheless, reacts to [BMIm][Sn5O2Cl7] with colorless
needle-shaped crystals that grow within 3 weeks at the
interface between the black bottom slurry of SnO and the
yellowish ionic liquid as the top phase. According to single-
crystal structure analysis, the composition of the title
compound can be described to consist of noncharged, infinite
∞
1(Sn2OCl2) strands, which are embedded in a saline matrix of

[BMIm]+ and [SnCl3]
−. The ∞

1(Sn2OCl2) backbone of edge-
sharing OSn4/2 tetrahedra is unusual for tin oxides and tin
oxyhalides. It represents a 1D cutout of the layer-type structure
of the 2D semiconductor SnO and can be considered to mimic
a 1D semiconductor. The view of the noncharged
∞
1(Sn2OCl2) strands in a saline [BMIm][SnCl3] matrix is

validated by dissolution experiments. Accordingly, electron
microscopy (SEM and TEM), electron spectroscopy (EDXS),
and Raman spectroscopy point to a deconstruction of
[BMIm][Sn5O2Cl7] single crystals upon treatment with
CHCl3 with a dissolution of [BMIm][SnCl3], the formation
of SnCl2 needles, and tin oxide as a solid remain. The room-
temperature reaction and novel compound point to the
advantage of ionic liquids and exemplarily show the option
to prepare novel metal oxide compounds near room temper-
ature (≤100 °C) and in the absence of coordinating solvents/
ligands. In principle, such a synthesis strategy could allow one
to realize much more metastable metal oxides, which are not
accessible by high-temperature syntheses or conventional
solvent-based reactions.
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