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Abstract

Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting com-

ponents of the pathway and analyzing observed effects of those interruptions can give insight into un-

known connections within the signaling pathway itself, as well as the link from the pathway to the ef-

fects. Different pathway components may have different individual contributions to the measured

perturbation effects, such as gene expression changes. Those effects will be observed in combination

when the pathway components are perturbed. Extant approaches focus either on the reconstruction of

pathway structure or on resolving how the pathway components control the downstream effects.

Results: Here, we propose a linear effects model, which can be applied to solve both these prob-

lems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of

learning the pathway structure as well as estimation of the individual contributions of pathway

components to the perturbation effects. The practical utility of our approach is illustrated by an ap-

plication to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces

cerevisiae.

Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/

�szczurek/lem.

Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Signaling pathways convey stimuli from the outside or inside of the

cell to generate required cellular response. For example, under os-

motic stress, the high osmolarity glycerol (HOG) mitogen-activated

protein kinase (MAPK) pathway in yeast is activated, and the signal

is transported from the receptors down to the MAPKK Pbs2, which

in turn phosphorylates the MAPK Hog1. Finally, Hog1 regulates

several transcription factors, which activate the hyper-osmotic stress

response genes (Hohmann, 2002; O’Rourke and Herskowitz, 2004).

The central means to study signaling pathways is by cellular per-

turbations. Hence, computational analysis, modeling and interpret-

ation of perturbation data constitute the crucial tools in the field

(Markowetz, 2010). Examples of experimental perturbations in-

clude CRISPR-Cas genome editing, genetic knock-outs (gene dele-

tions) or transcriptional knock-downs through RNA interference

(RNAi). For the HOG pathway in Saccharomyces cerevisiae, its

components were perturbed by deletion and the effect of these per-

turbations was assessed in osmotic stress conditions by measuring

global expression changes between perturbed and wild-type cells

(O’Rourke and Herskowitz, 2004). The rationale behind the

perturbation studies is that interrupting the signal flow in the path-

ways gives insight into both their structure and their downstream

targets. First, with the interruption at a certain node in the pathway,

the signal cannot be transmitted further. For example, when the

MAPKK is deleted, the MAPK downstream cannot be phosphory-

lated. In this way, perturbations propagate in the pathway along its

edges in the same way as the signal. Second, each node in the path-

way may have its own (direct or indirect) contribution to the per-

turbation effects, such as gene expression changes. Those effects will

be observed in combination when the pathway components are per-

turbed. The focus of the present work is computational analysis of

cellular signaling pathways from perturbation data. The aim is to

model the structure of interactions within the pathway as well as the

contributions of its components to the observed perturbation effects.

The proposed approach is motivated by two problems that are

inherent to the analysis of perturbation data. The first problem con-

cerns the perturbation-effect gap problem, a common discrepancy

between the perturbed and the observed variables. In most experi-

mental studies, the perturbed signaling pathway constitutes one

layer of the system (layer 1 in Fig. 1A), only indirectly connected to
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a distinct layer of measured effects (layer 3). Usually, the states of

signaling genes are hidden, and their interconnections, i.e. the struc-

ture of the pathway is unknown. Layer 2 in Figure 1A corresponds

for example to gene regulation, where pathway components control

gene expression downstream, and changes of this expression due to

perturbations are observed. The second problem is that gene expres-

sion is rarely controlled by a single gene in the pathway. Instead, the

measured effects arise from a concerted contribution of several path-

way components. In addition, gene regulators consist not only of

transcription factors, placed in the ‘bottom’ of the pathway, but also

can include their upstream kinases, which via regulation of other

factors have their independent contribution to the effects.

Probabilistic graphical models were successfully applied to per-

turbation data previously (Pe’er et al., 2001; Friedman, 2004; Rogers

and Girolami, 2005; Sachs et al., 2005; Gat-Viks et al., 2006;

Markowetz et al., 2007; Ellis and Wong, 2008; Fröhlich et al., 2009a;

Bender et al., 2010). In these studies, however, the perturbation-effect

gap problem was not addressed, since the signaling pathway variables

are considered observed and not hidden. Either the data explicitly re-

ported signaling variables as protein concentrations (Sachs et al.,

2005; Fröhlich et al., 2009; Bender et al., 2010), or expression levels

were used as a proxy for the states of signaling genes. Nested effects

models (NEMs) (Markowetz et al., 2005; Markowetz et al., 2007;

Tresch and Markowetz, 2008; Fröhlich et al., 2008, 2009b) and their

extensions (Anchang et al., 2009; Fröhlich et al., 2011; Siebourg-

Polster et al., 2015) specifically address the perturbation-effect gap

problem. NEMs are represented by directed graphs, and have distinct

nodes for the variables representing signaling genes and for the down-

stream effects. The crucial assumption behind NEMs is that perturb-

ation effects show a nested subset hierarchy which reflects the

hierarchy of nodes in the signaling network. With a simple, determin-

istic model of signaling pathways, and with a probabilistic take on the

observed effects, NEMs constitute an attractive approach for learning

their structure. One disadvantage of this model, however, is an as-

sumption that each effect gene is regulated only by a single gene in the

pathway. Moreover, the discrepancy between model predictions and

observed effects is evaluated assuming fixed noise levels as param-

eters, which cannot be estimated from the data together with the

model, but as a preprocessing step. Finally, other previous studies

concentrated solely on elucidating the link between the pathway and

the observed effects (layer 2 in Fig. 1A; Gat-Viks and Shamir, 2007;

Szczurek et al., 2009). These approaches worked with an a priori

known and given pathway graph, and aimed at either small refine-

ments to the known graph, or resolving the detailed mechanisms gov-

erning the regulation of the downstream targets by the pathway

components, representing them as logic functions or discrete probabil-

ity distributions.

Here, we propose a linear effects model (LEM) for modeling per-

turbation data that addresses both problems and can be applied to

learn the structure of signaling networks together with individual

contributions of their genes to the perturbation effects. The model

contains a deterministic graph component representing how perturb-

ations propagate within the signaling pathway. It assumes that the

observed perturbation effects amount to a linear combination of the

individual contributions of the perturbed pathway genes. Model infer-

ence does not require parameter estimation as a preprocessing step.

Instead, inference of the pathway graph is performed within a

Bayesian framework, together with the inference of hyper parameters

defining distributions of the parameters of the model, including the

noise distribution. We prove that for identifiability LEM requires per-

turbations of all single and all pairs of nodes in the pathway. Tests on

simulated data demonstrated high accuracy of parameter estimation

and excellent recovery of pathway structures already with small num-

bers of repeated experiments, and within a wide range of noise levels.

In application to Dpbs2 and Dhog1 mutant data, LEM correctly iden-

tified the signal flow between Pbs2 and Hog1. In addition, LEM as-

signed high contributions to observed effects almost solely to Hog1,

which is in accordance with the known roles of Pbs2 as the upstream

kinase activator of Hog1, and Hog1 as a regulator of downstream

transcription factors as well as a promoter-binding and gene-

regulating protein.

2 Linear effects models

The LEM is defined for a set of genes G ¼ f1; . . . ; ng, a set of m per-

turbation experiments E targeting the genes, and their effect meas-

urements Y. The genes constitute nodes of a deterministic pathway
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Fig. 1. Linear effects model. (A) Three layers of the system: 1 perturbed signaling pathway, 2 intermediate and 3 observed effects. (B) Genes (circles, here 1, 2, 3)

are directly or indirectly (via propagation in the pathway) perturbed in experiments. Bold arrows indicate how perturbations propagate within the pathway.

Dashed arrows show the individual contributions of the genes to the observed perturbation effects Y. LEM assumes that Y is normally distributed around the

mean equal to the weighted sum of individual gene effects (here b1, b2, b3), with weights set to perturbation states. (C) Example means (y-axis) for all possible per-

turbation experiments (x-axis), as expected in the LEM with pathway structure as in B, and with b1; b2 and b3 values indicated by red, light blue and dark blue

bars, respectively. Whiskers indicate example error.
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graph G ¼ ðG;WÞ and are connected with a set of directed edges W.

Edges in W represent propagation of the perturbations within the

pathway, and we assume that G is transitively closed. For each edge

(i, j) we call gene i a parent and of j, and j a child of i. Two nodes i

and j, which are not connected via a direct edge are called cousins,

including nodes with no incoming edges. Since G is transitively

closed, each pair of nodes in G can only either be in a parent–child

relation, or be cousins, which defines their family relation in G. Each

perturbation experiment e targets one or more gene in the pathway,

and will be represented as the set of targeted genes, for example

{1, 2, 3}. The set of experiments E and the pathway graph G together

define a binary matrix S, referred to as perturbation states matrix.

For given experiment e and gene g, entry Se;g ¼ 1 if gene g is (directly

or via propagation in the pathway) perturbed when experiment e is

performed, and 0 otherwise. Denote as PaðgÞ the set of parents

nodes of gene g in G. Perturbations in the pathway propagate via lo-

gical disjunction, meaning that Se;g ¼ 1 if experiment e directly tar-

gets g, or if for any of its parents p 2 PaðgÞ the perturbation status

Se;p is 1:

Se;g ¼
1 if e targets g;

_fSe;pjp 2 PaðgÞg otherwise:

(
(1)

Here, we assume that a disjunction over an empty set is 0, i.e.

perturbation state Se;g of a gene g without parents can attain value 1

only when e directly targets g. The data Y quantify the magnitude of

perturbation effects, with Ye recording the effect of experiment e.

For example, the values of Y may correspond to absolute values of

log gene expression change. Thus, LEM is not concerned with the

direction of the effects, i.e. whether it is gene repression or activa-

tion, but how large these effects are on absolute scale. For simplicity

we now assume that Y is a one-dimensional vector, for example cor-

responding to expression changes of a single gene. Extension to

multidimensional vectors (for many genes) is straightforward and

explained below. Finally, a vector of parameters b ¼ ½b1; . . . ; bn�T ,

with each bi > 0, represents the individual contributions of the genes

to the observed perturbation effects. Formally, the model assumes

that Y is a random variable, normally distributed around a linear

combination of the individual gene contributions, with weights set

to their perturbation states (Fig. 1B)

Ye ¼
X

g

Se;gbg þ �e ¼ ST
e bþ �e; (2)

where �e stands for measurement error, � � Nð0; c�1IÞ, with c denot-

ing the precision parameter (inverse variance), and where ST
e denotes

the e-th row of matrix S. Note that from the assumptions that S is

binary, that each experiment e targets at least one gene, and that the

contributions b are positive, it follows that the means ST
e b of the

normal distributions for Ye are also positive. This is with accordance

with the fact that Y records the effect magnitudes and not their dir-

ection. Equation (2) can be read as the linear regression equation

with design matrix S and coefficients b. With these assumptions, the

log likelihood function for the LEM takes the form

ln pðYjS;b; cÞð Þ ¼
Xm
e¼1

ln NðYejST
e b; c�1Þ

� �
(3)

¼ m

2
lnðcÞ �m

2
lnð2pÞ � c

2

Xm
e¼1

Ye � ST
e b

� �2
: (4)

As a direct implication from Equation (2) and the fact that S is

binary, we have

FACT 1. Denote D(g) the descendants of gene g in graph G, i.e.

the set of nodes reachable along directed edges from g. In the LEM,

the effect observed under perturbation targeting g, denoted Yfgg, is

given by

Yfgg ¼ bg þ
X

h2DðgÞ
bh þ �fgg:

Thus, the model makes explicit how the total effect of perturbing

a single node in the pathway graph distributes across its sub-graph

into the individual contributions of the descendant genes.

2.1 Learning the pathway structure
In most applications, the goal is to infer the pathway structure G
from observed data. To learn a LEM, the model space needs to be

searched evaluating candidate pathway graphs in terms of model fit

to the data. For LEM, we implemented exhaustive search for small

structures (up to five nodes) and greedy hill climbing in model space

for larger ones (Russell and Norvig, 2003). Examples of models

with developed greedy model search include Bayesian Networks

(Chickering, 2003) or NEMs (Fröhlich et al., 2009b). Here, we

relied on corresponding procedures developed for the NEMs due to

similarity of the deterministic pathway graph in our and the NEM

model. Exhaustive LEM search enumerates and evaluates all pos-

sible distinct models of the size equal to the number of genes. More

specifically, it enumerates one model per equivalence class by con-

sidering only transitive models with collapsed cycles (see below).

Greedy search of model space traverses from one model to another

in small steps corresponding to adding edges, greedily choosing the

next graph as the one with the largest evaluation score.

Recall that the given set of experiments E and the candidate

pathway graph G define the perturbation states matrix S. In both

exhaustive and greedy LEM search procedures, each considered

candidate graph G is evaluated in a Bayesian manner, using mar-

ginal likelihood for Bayesian linear regression (Bishop, 2006). To

this end, we employ a flat prior on all possible graphs, and assume

that the precision parameter c is a constant, while the prior distri-

bution of the b parameters, denoted pðbjbÞ, is a zero mean

isotropic Gaussian with precision b, b � Nð0;b�1IÞ. Thus, we

have two hyper-parameters, b and c. In a fully Bayesian setup, we

would consider priors on the hyper-parameters, and to compute

the marginal likelihood pðYjSÞ, we would marginalize over both

the hyper-parameters b and c, and the parameters b. For the sake

of the efficiency of computations, we use an (empirical Bayes)

approximation instead, taking point estimates bb;bc of the hyper-

parameters, and computing the marginal likelihood function

pðYjS; bb;bcÞ, which involves integrating over only the parameters

b. The point estimates are obtained by maximizing the marginal

likelihood. For given b and c values, the log marginal likelihood

function takes the form

lðYjS; b; cÞ ¼ ln

ð
pðYjS; b; cÞpðbjbÞdb

� �
; (5)

where pðYjS; b; cÞ is the likelihood introduced in Equation (3) and

pðbjbÞ is the prior distribution of b. Using the evaluation of the mar-

ginal likelihood function by Bishop, 2006 (Chapter 3.5), we have

lðYjS;b; cÞ ¼ n

2
lnðbÞ þm

2
lnðcÞ � EðlÞ þ 1

2
lnðjVjÞ �m

2
lnð2pÞ; (6)

where jVj denotes the determinant of V and where V and l are given

by
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V�1 ¼ bI þ cSTS (7)

l ¼ cVSTY; (8)

and EðlÞ is computed as

EðlÞ ¼ c

2
jjY � Sljj2 þ b

2
lTl:

With the requirement of combinatorial perturbations for identifi-

ability (see below), the number of experiments m exceeds the num-

ber of genes n, and we follow an iterative procedure to identify the

estimates of hyper-parameters which maximize the marginal likeli-

hood (Bishop, 2006). We start with initial values of b and c. In each

iteration, we first fix those values to compute V and l using the

above equations, and second we recompute b and c using

b ¼ n

lTl
(9)

c ¼ m

jjY � Sljj2
: (10)

We iterate until convergence.

2.2 Parameter inference
The parameters b which describe the individual contributions of the

genes to the effects are estimated as the mean of the posterior distri-

bution inferred using the above Bayesian procedure

bb ¼ l:

2.3 Application to multidimensional data Y
In the case when more than one effect is measured in the experiment

(e.g. expression changes of many genes), we deal with multidimen-

sional data Y, which can be represented as a set of k random vari-

ables Yj, j 2 1; . . . ; k. We assume the contributions of the pathway

components to each effect are different. Formally, this means that

for each effect j there is a different contribution vector bj, and preci-

sion parameters bj and cj. Thus, to compute the log marginal likeli-

hood for a given pathway structure G and multidimensional data Y,

we first estimate the hyper-parameters bj and cj for each effect j, and

compute the marginal likelihood lðYjjS; bj; cjÞ as explained above,

and next we sum over the marginal likelihoods

lðYjS;b1; . . . ;bk; c1; . . . ; ckÞ ¼
Xk

j¼1

lðYjjS;bj; cjÞ:

This procedure results also in k estimators of the contribution

vectors bb j
; j 2 1; . . . ;k.

2.4 Integration of network prior
In the above considerations we assumed a flat prior over network

structures. If available, existing knowledge of plausible networks

should be formalized as a prior PðGÞ over all possible networks G. If

the prior knowledge specifies that the network contains a specific set

of edges, a simple prior reflecting that knowledge could for example

be flat over the set of all graphs that include these edges, and fixed to

0 for all networks which miss them. Alternatively, to penalize net-

work graph complexity, the prior could be a function inversely pro-

portional to the number of its edges. Such a prior can be incorporated

into model search procedures, where the set of experiments E is given

and candidate pathway graphs G are searched for the best fit with the

data Y. To include the model prior, we set the prior over perturbation

states matrix S, derived from the set of experiments and the candidate

graph, as equal to the prior on G, i.e. PðSÞ ¼ PðGÞ, and in the search

procedure we maximize the log posterior

lðYjS; b; cÞ þ ln PðSÞð Þ;

instead of the log marginal likelihood (Equation (6)).

2.5 Model identifiability
Models that are undistinguishable in terms of their likelihood based

on the observations belong to the same equivalence class and are not

identifiable from data. For example, several Bayesian Networks

with different directions of edges may equally well describe the same

joint probability distribution over a set of random variables.

Likewise, an equivalence class of NEMs with equal likelihood is

defined by the set of all directed graphs with the same transitive clos-

ure. With the log likelihood function for the LEM defined by

Equation (3), two different models A and B will belong to the same

equivalence class if SAbA ¼ SBbB and cA ¼ cB, where the upper

indexes A and B indicate the states matrix and the parameters for

the two models, respectively.

We now list the general constraints for the LEM to be identifi-

able. First, we put the requirement that the model graph G is transi-

tively closed. Due to the assumption of perturbation propagation,

for a given set of experiments E two different model graphs with the

same transitive closure would result in the same perturbation states

matrix S, and with the same values of the parameters b and c would

obtain equal likelihoods (compare Equation (3)). In addition, the

LEM does not allow negative nor zero b values. In the most degener-

ate example, consider a LEM with a given graph G and a zero b vec-

tor. In such a case, any other model with a different graph, the same

parameter c and the same zero parameter b vector would have equal

likelihood. Likewise, the positive and negative b values can cancel

out, resulting in zero total expected effects, giving room for equally

likely but different model graph structures. Finally, note that as in

the NEMs, since the model graphs are transitive, cycles are cliques.

Indeed, for model graphs with cycles, perturbation of any of the

genes in the cycle propagates to all genes in the cycle, so that they

are always either perturbed or not all at once. For those genes, their

exact corresponding b values in the LEM are not identifiable.

Assume a given LEM with pathway graph G and a set of genes C

� G in a cycle and parameters b�; c�. The entries of the states matrix

S� of this graph for those rows which perturb any gene in C have all

values in columns C filled with value 1. There are infinitely many

possible models, which have the same model graph G and the same

parameter c�, but different parameter vectors b and equal likelihood.

The b vector of any such model has the same values as b� in entries

not corresponding to genes in C, and such entries for the genes in C

which sum up to bC ¼
P

g2C b�g. Nevertheless, all these models will

have the correct pathway graph structure, with C in a clique.

Therefore, the model structure of such LEMs is identifiable. For

models with cycles, we collapse the set of nodes in the cycle into a

single node. Since we evaluate models using marginal likelihood

where the b parameters are integrated out, all models, including

those with reduced number of nodes due to collapsing, can effect-

ively be compared. If needed, each collapsed node can be expanded

into its corresponding clique C, and the b values for the genes in the

clique can be estimated as bC

jCj, where jCj is the size of set C.

We will now derive that the set of perturbations of both all single

nodes and all pairs of nodes in S (together
nþ 1

2

 !
experiments for n
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genes) is required to identify the LEM from the data Y. The following

is proven in the Supplementary Material and illustrated in Figure 2.

LEMMA 1: Each LEM graph G ¼ ðG;WÞ is uniquely defined by

stating the family relation for each pair of its nodes i; j 2 G.

LEMMA 2: Let Y be a vector of effects for perturbations of single

nodes in a given set G. There exist LEMs with model graphs on G

which are not identifiable from Y.

LEMMA 3: Let Y be a vector of effects for perturbations of double

nodes in a given set G. There exist LEMs with model graphs on G

which are not identifiable from Y.

THEOREM 1: Let Y be a vector of effects for perturbations of all sin-

gle nodes and all pairs of nodes in a given set G. All LEMs with

model graphs on G are identifiable from Y.

3 Applicability to noisy data in various
experimental setups

To assess the performance of our model, we applied it to simulated

data with various levels of noise, small and large pathway sizes, vio-

lations to model assumptions and with different numbers of experi-

mental repeats. First, we tested the ability of exhaustive LEM search

to correctly identify all possible pathway structures G with three

nodes (with the assumptions of transitive closure and excluding the

model collapsing into a single cycle, there are 28 of them) and to

correctly estimate their simulated contributions b. We simulated

worst case, one-dimensional data vector Y, for all possible perturb-

ations of single and pairs of nodes, and with five different experi-

mental setups, where the number of times each experiment was

repeated was equal 1;2; 3; 4 or 5. Each setup was simulated with

five different levels of noise (r ¼
ffiffiffiffiffiffiffi
c�1
p

2 f0:01;0:05;0:1;0:25; 0:5g,
where r denotes standard deviation of error terms in Equation (2)).

For each simulated pathway graph, noise level and experimental re-

peat number, the model parameters b were obtained as absolute val-

ues sampled 30 times from the standard normal distribution. Thus,

the noise ranged from one hundredth to one half of the standard de-

viation of the beta values.

Figure 3 indicates that only extreme levels of noise

(r 2 f0:25; 0:5g) for few experimental repeats are an issue for par-

ameter estimation in LEM when such small networks are con-

sidered. Otherwise, the median correlation between estimated and

true b values is close to 1 (Fig. 3A). Similarly, root mean squared

error (RMSE; Fig. 3B) of the estimations is only increased for large

noise and few experimental repeats.

We refer to pathway structure as perfectly reconstructed when

all the inferred edges of the pathway graph are exactly the same as

the edges of the original used for simulation (Fig. 4A). Perfect recon-

struction rate of small networks is sensitive to noise values, with the

fraction of perfectly learned structures for r ¼ 0:01 equal almost 1,

and for r ¼ 0:5 around 0.5. The fraction of perfectly learned struc-

tures increases with the number of experimental repeats. Faults in

reconstruction may result from cases where the simulated b are very

small and due to noise cannot effectively be distinguished from 0,

raising practical identifiability issues. These cases can be resolved by

increasing the power of the estimation by adding more experimental

repeats. Interestingly, sensitivity (fraction of true edges that are cor-

rectly identified as such) of exhaustive search is almost perfect al-

ready for one experimental repeat; with just a few exceptions

observed for extreme noise levels (Fig. 4B). Specificity (fraction of

missing edges that are correctly identified as such) is more affected

by noise and repeat number, but still, its median is close to one in all

cases but for a single repeat and the highest noise considered

(r ¼ 0:5; Fig. 4C).

Fig. 2. Identifiability of the LEMs with only single and with only double-node

perturbations. (A, B) Two distinct LEMs are considered: model A with parent

gene 2 and child gene 1, and contributions bA
1 ¼ 2; bA

2 ¼ 1 to the measured ef-

fects Y (A), and model B with cousins 1 and 2, and contributions bB
1 ¼ 2; bB

2

¼ 3 (B). (C, D) For single node perturbation experiments e, models A and B as-

sume equal means ðSA
e Þ

T bA ¼ ðSB
e Þ

T bB for the distributions of Y, and equal

parameter c values would result in the same likelihood for both models. The

model-predicted means would only be different if a double perturbation f1,

2g was performed. (E, F) Two distinct LEM models: Model A with graph as in

A and parameters bA
1 ¼ 1; bA

2 ¼ 1 (E) and model B as in B with parameters bB
1

¼ 1; bB
2 ¼ 1 (F). (G, H) For the double perturbation e ¼ f1, 2g and with equal

parameter c, the likelihood of these models given the data Ye is the same,

since ðSA
e Þ

T bA ¼ ðSB
e Þ

T bB . The likelihoods are only different for a single per-

turbation f2g.

Linear effects models of signaling pathways i301

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw268/-/DC1
Deleted Text: ,
Deleted Text: equation 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: Figure 


To show that LEM can successfully be applied also to larger net-

works, we repeated the above described simulations, assuming the

same noise levels and numbers of experimental repeats, each time

generating 30 random networks of size 10, and for each sampling

30 absolute standard normal b parameters. This time, to infer the

network structures back from the simulated data, we applied a sim-

ple greedy hill climbing heuristic. This algorithm starts with an ini-

tial graph structure consisting of unconnected nodes, and iteratively

adds one edge a time, choosing the additional edge that increases the

marginal likelihood of the model the most. Compared with exhaust-

ive search, the correlation of inferred to true b parameters decreased,

but to most extent for large noise values, where the median correl-

ation dropped to 0.65 for the worst case of one experimental repeat

(Fig. 3C). For noise levels � 0:1, median correlation remained

around 1 for all numbers of experimental repeats. Median RMSE

stayed below 0.5 for all tested cases (Fig. 3D). Fraction of the 10-

node networks learned perfectly using the greedy hill climbing heur-

istic drops by around 40% compared with exhaustive search for

small networks (Fig. 4D versus Fig. 4A). The sensitivity of greedy

search remains, however, very high, with median close to one in all

experimental settings apart from the large noise case (r ¼ 0:5)

where the median drops to around 0.8 (Fig. 4E). Median specificities

are lower compared with exhaustive search, but remain above 0.85

for all experimental setups, including large noise and low experi-

mental repeat numbers (Fig. 4F).

Finally, we again repeated the 10-node network simulations, but

setting one noise level (r ¼ 0:05) and adding effects violating the lin-

ear model assumptions. To this end, we generated the data as a lin-

ear combination of all pathway gene contributions and products of

contributions of a selected number (0, 5, 10 and 15) of pairs of these

genes, and applied greedy network search and LEM inference.

Regardless of the number of experimental repeats, nonlinearity in

the data substantially decreases the correlation of inferred to true b
values (Fig. 3E), and the fraction of perfectly learned networks. For

the chosen noise level r ¼ 0:05, the median correlation dropped

from around 1 to between 0.6 and 0.9, while the fraction of per-

fectly learned networks decreased from 0.5 to around 0.1. This devi-

ation from model assumption affects also sensitivity (Fig. 4H) and

specificity (Fig. 4I) to a larger extent than the increase of noise levels

(compare Fig. 4E and F). Still, even with interaction terms contrib-

uted by 15 pairs of nodes (here, 30% of all possible pairs), median

sensitivity around 0.75 and specificity around 0.9 is reached.

In summary, tests on simulated data demonstrated high accuracy

as well as robustness to noise and violations to model assumptions

of the LEM model search procedures.

4 Application to the MAPK HOG pathway

We next utilized our approach to infer the direction of the signal

flow in the MAPK HOG pathway in yeast. LEM was applied to

compare the marginal likelihood for the two alternative models, one

where Pbs2 activates Hog1 and another where Hog1 activates Pbs2.

Here, we utilized wild type and single mutants Dpbs2 and Dhog1 in

0.5M KCl-mediated osmotic stress conditions, for which expression

of 2684 genes was monitored 40 min after treatment (O’Rourke and

Herskowitz, 2004). This data allowed us to resolve the direction of

the relation between the two kinases using LEM. To compare to the

third possible model, where Pbs2 and Hog1 are independent, we

would need an additional experiment where both are perturbed at

the same time and gene expression changes are recorded, which was

not included in the collection (O’Rourke and Herskowitz, 2004).

It has been long established that Dpbs2 deletion has phenotypic-

ally the same effects as Dhog1. Exposing either of the two mutants to

elevated osmolarity causes shift in expression of ribosomal genes, fol-

lowing the inability to grow and failure to proliferate as well as acqui-

sition of unusual morphology, resembling mating projections or

pseudohyphae (Hohmann, 2002). The latter phenotype is due to in-

appropriate activation of the pheromone response pathway and the

pseudohyphal development pathway in Dpbs2 and Dhog1 mutants.

Similarly to the phenotype, gene expression effects of the mutations in

osmotic stress, when inspected by eye, also do not clearly indicate the

direction of the signal flow between the two kinases (Fig. 5A). Effect

magnitudes for most genes are high for both mutants, a lower fraction

of genes shows large effects only for Dpbs2, a similarly low fraction

only for Dhog1, and a final group of genes shows relatively subtle ef-

fects for both mutants. Thus, the fact that Pbs2p is upstream of

Hog1p was historically derived not from deletion screens, but by the

direct experimental observation that an osmotic upshift caused phos-

phorylation of Hog1 in a Pbs2p-dependent manner.

From all 2684 genes measured in the experiments, we selected

698 reporter genes which showed a 2-fold expression change be-

tween either mutant and wild type in osmotic stress. To this end, we

selected those genes for which the ratio of expression in either mu-

tant with 0.5 M KCl added and measured after 40 min was either

less than 0.5 or larger than 2 when compared with WT with 0.5 M

KCl after 40 min. We next transformed the ratios to effect

Fig. 3. LEMs allow accurate parameter estimation. (A, C) Distribution of the cor-

relation between the true b values used to simulate the data and the estimated

values (y-axis) for increasing number of experimental repeats (x-axis) and for

increasing noise (colours), for exhaustive search over 3-node networks (A) and

greedy search over 10-node networks (C). (B, D) Distribution of RMSE in the

same setup as in A and C. The performance of parameter learning is affected by

extreme noise values only for few experimental repeats. (E) Distribution of the

correlation between the true b values and the estimated values (y-axis) for

increasing number of experimental repeats (x-axis) and for increasing number

of pairwise interaction terms (colours), which were used in linear combination

with the true bs to generate the data (as violation to the model assumptions).

The noise level is set to 0.05. (F) Distribution of RMSE in the same setup as in E.
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magnitudes by taking absolute natural logarithm values (Fig. 5A). In

application to this data, LEM correctly identified the true model

structure (Fig. 5B). The distribution of the per-gene log marginal

likelihoods (Fig. 5C) is clearly three-modal, with a pronounced low-

end mode for genes with small log marginal likelihood for the

model, and high-end mode of genes with high log marginal likeli-

hood. We focused on the genes in the high-end mode (with log mar-

ginal likelihood > 20). Not surprisingly, these effect genes are

enriched for functionality associated with the above-mentioned

mutant phenotypes, including pheromone response, ribosomal pro-

tein functions (translation), as well as stress response (Fig. 5B). After

removal of several ORFs now annotated as dubious, we further sub-

divided those genes into three groups. One group contained 126

genes with large estimated contributions (bHog1 > lnð2Þ) for Hog1

and lower (bPbs2 < lnð2Þ) for Pbs2. Second contained five genes

with large estimated contributions for Pbs2 and lower for Hog1.

The third was composed of two genes with high contributions esti-

mated for both pathway components.

In summary, the LEM correctly pointed at the true model struc-

ture, and provided a clear interpretation of perturbation data,

associating almost all of the control of the downstream effects to

Hog1, implying that the effects seen in Dpbs2 mutant are almost

solely due to propagation down to Hog1.

5 Conclusion

To our knowledge, LEM is the first approach which uses observed ef-

fects of perturbations of hidden variables to tackle two tasks at the

same time. First, it resolves the interconnections between the per-

turbed pathway components (layer 1 in Fig. 1A), and second, it de-

rives their individual contributions to the observed effects (layer 2).

Results on simulated data clearly show that LEMs are indeed capable

of accurately solving both tasks. One group of existing approaches,

with the most prominent class of models based on nested effects as-

sumption (NEMs and extensions) (Markowetz et al., 2005;

Markowetz et al., 2007; Tresch and Markowetz, 2008; Fröhlich

et al., 2008, 2009b, 2011; Anchang et al., 2009; Siebourg-Polster

et al., 2015), is mostly concerned with the first task. The output

brought by LEMs from perturbation data is richer than what can be

inferred with the NEM-based methods, but also requires more input.

Fig. 4. LEMs allow accurate structure learning. Fraction of perfectly learned pathways (y-axis A, D), as well as sensitivity (y-axis B, E) and specificity (y-axis C, F) of

edge learning, decrease with growing noise levels (indicated by colours), and increase with the number of times the experiments are repeated (x-axis), both for

the exhaustive search over 3-node networks (A–C) and greedy search over 10-node networks (D–F). The addition of an increasing number of non-linear effects

(colours G, H, I) decreases the fraction of perfectly learned pathways (y-axis G), as well as sensitivity (y-axis H) and specificity (y-axis I) of edge learning, regard-

less of the number of times the experiments are repeated (x-axis; here plotted for greedy network search). The performance of structure learning is most affected

by high noise values and addition of non-linear effects.
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Both the NEM methods and LEM represent layer 1 in the same way,

but unlike NEM, LEM estimates layer 2 as continuous, positive-value

contributions of all pathway components to the effects. For unam-

biguous model inference, LEM requires not only perturbations of all

single pathway genes, but also of all pairs of genes. Other previous

studies concentrated solely on the second task of learning the links

from the pathway to the effects in layer 2 (Gat-Viks and Shamir,

2007; Szczurek et al., 2009). LEM outperforms these approaches

with the ability to infer the pathway graph in layer 1, with the price

that the description of layer 2 by LEM is by far less involved.

LEMs assume the measured effects are linear combinations of in-

dividual, per-pathway gene contributions to these effects. With this

assumption, LEM is not suitable for modeling epistatic effects.

Therefore, LEM is not aimed at studying redundancy between path-

ways, and in general nonlinear effects of combinatorial perturb-

ations. Instead, it is tailored to resolve the structure of one pathway

at a time, where the perturbations are assumed to propagate from

parent regulator nodes to the child nodes whenever any of the par-

ents is perturbed. Moreover, due to identifiability constraints, LEMs

cannot take into account positive and negative contributions, as ac-

tivation and repression, and can consider only the absolute magni-

tude of the measured effects. The assumption that the gene

contributions are only positive is not obviously biologically sound;

for example perturbation of one gene may mask effects of perturb-

ation in another. This assumption, however, apart from model iden-

tifiability, assures also that the definition of the gene contributions is

compatible with the definition of the network graph. Propagation of

perturbation effects in the network graph is only ‘positive’ in the

sense that there is no masking or down-regulation of perturbations.

In summary, not accounting for higher-order interactions among

gene contributions or for their sign pose limits on the range of model

applicability. Still, already with the application to the small example

of the signal flow in MAPK HOG pathway, we see that the power

of LEM lays in resolving the structure together with distributing the

control over effects to the proper players within the pathway.
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