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Deciding what constitutes an object, and what background, is an essential

task for the visual system. This presents a conundrum: averaging over the

visual scene is required to obtain a precise signal for object segregation,

but segregation is required to define the region over which averaging

should take place. Depth, obtained via binocular disparity (the differences

between two eyes’ views), could help with segregation by enabling identifi-

cation of object and background via differences in depth. Here, we explore

depth perception in disparity-defined objects. We show that a simple

object segregation rule, followed by averaging over that segregated area,

can account for depth estimation errors. To do this, we compared objects

with smoothly varying depth edges to those with sharp depth edges, and

found that perceived peak depth was reduced for the former. A computational

model used a rule based on object shape to segregate and average over a cen-

tral portion of the object, and was able to emulate the reduction in perceived

depth. We also demonstrated that the segregated area is not predefined but is

dependent on the object shape. We discuss how this segregation strategy

could be employed by animals seeking to deter binocular predators.

This article is part of the themed issue ‘Vision in our three-dimensional

world’.
1. Introduction
Binocular disparity, the tiny differences between right and left eye views of a

scene, can be used to segregate an object from its background even without

other visual information about the boundary between object and background.

This was first popularized by Julesz in 1971 via the random dot stereogram

(RDS) [1], a stimulus that contains disparity information without other form

cues. Julesz used RDSs to suggest that binocular vision alone can break camou-

flage, as disparity reveals the three-dimensional shape of an object even when

the object has identical patterning to the background. Thus, disparity can break

camouflage designed to make an object match its background in luminance or

colour, a common evolutionary strategy [2–4]. Evidence to support the specific

suggestion is scant, although several studies have shown that masking, where

an object is harder to see when it is superimposed on another scene, is reduced

when target and mask have different disparities [5–7].

One can think of the process of obtaining depth from disparity as having at

least two stages. The first is disparity extraction, of which we now know a great

deal, including upper and lower disparity limits that can be linked to the prop-

erties of disparity sensitive neurons [8–12]. Disparity extraction is thought to

rely on a process akin to local cross-correlation, where individual disparity-

sensitive neurons signal a single disparity over a spatial region—their receptive

field [11,13–18]. Models of this process can explain a variety of effects, includ-

ing why some transparent scenes are perceived as a single plane rather than a

pair of (or more) planes at different depths [19–22]. However, these models are
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designed to explain how disparity is extracted; they do not

consider the potentially different problem of how the

extracted disparities (which may not be extracted veridically)

are combined across scale, space and time to represent depth.

The disparity combination process is much less well

explored, but we know the visual system is prone to error

here. For example, disparity averaging is thought to be par-

tially responsible for our perception of interpolated depth,

across regions where no disparity exists [23–25]. Addition-

ally, there exist depth–contrast effects, where the depth of

nearby objects or stimulus regions can affect perceived

depth of a target area [26,27].

When combining disparities across space for depth per-

ception, there are two potentially opposing aims for the

visual system. Extraction of disparity will not always be ver-

idical: by averaging extracted disparities across space, it is

possible to improve the signal-to-noise ratio and more accu-

rately estimate overall depth at some location. However, too

much averaging will effectively smooth over potentially

important depth edges, resulting in inaccurate depth appear-

ance and reduced effectiveness of depth segregation. One key

question is how the visual system balances the need to aver-

age with the need to precisely represent fine-scale depth

information. Our aim here is to explore this problem.

In this study, we used RDSs to measure perception of

depth in objects containing either a sharp or smooth grada-

tion in disparity, from the background to the peak depth at

the object centre (figures 1 and 2). As our aim was to study

effects caused by disparity combination, and not disparity

extraction, we used a large spatially depth-defined region

(2.88), and easily visible peak disparity (5.7 arcmin) whose

dominant depth corrugation frequency (around 0.17 cpd)

was in the range of high sensitivity and large upper disparity

limit [12,28]. We assumed that disparity would be extracted

veridically for this range.1

We also assumed that the visual system must identify a

boundary, i.e. segregate a region, before averaging to

improve that signal. We reasoned that, for an object with a

sharp disparity edge, there would be a strong signal defining

that edge across all spatial scales of disparity extraction. This

could serve to form a boundary for any subsequent disparity

averaging across the object (to improve signal-to-noise). For

an object with a smooth depth edge, the disparity along the

edge changes continuously, making the boundary less well

defined. However, the visual system will still need to have

a ‘rule’ for segregation somewhere along this continuous

edge. Note that here we are not proposing an alternative

model to that accepted for disparity extraction [12–17].

Rather, we are taking a different approach to explore how

extracted disparities are combined. Our aim was to test

how far we could go to explain human depth perception,

assuming veridical disparity extraction, with errors caused

by failures in disparity averaging and segregation.

We explored the segregation rule by measuring depth

sensitivity and perceived depth. In experiment 1, we

measured the bias and sensitivity in assessing the peak

depth of a smooth object with a constant width at half-

depth, compared with an object defined by an abrupt

change in depth (figure 2b, bottom and top, respectively).

Ideally, averaging should be applied to regions likely to be

of the same depth. This is well defined for a sharp-edged

object. For the smooth-edged object, averaging could take

place over the central region of constant disparity, or from
a region starting at some point between the peak and the

background. If the latter, we expect a decrease in perceived

peak depth. We also considered the potential influence of

half-occlusions in experiment 2. These are areas of a scene

where the depth edge is so sharp that the foreground

occludes one eye’s view of the background (figure 4a and

see also [29]). Based on the experimental results, we proposed

a model to describe the segregation rule used, and the model

was tested further in experiment 3.
2. Methods
(a) Apparatus
Left- and right-eye images were presented side by side on a lumi-

nance calibrated CRT monitor (Iiyama HM204DT A Vision

Master Pro 514) in a darkened room. Stereoscopic presentation

was achieved using a Wheatstone stereoscope. Experiments

were coded using MATLABw (2013) with stimuli displayed

using the PSYCHOPHYSICS TOOLBOX [30,31]. A chin rest was used

to stabilize viewing position (1 m from the screen), and each par-

ticipant adjusted the central stereoscope mirrors to obtain

comfortable fusion. Responses were made using the up and

down arrow buttons on a keyboard, and the spacebar was

used to initiate stimulus display.

(b) Stimuli
Random dot stereograms [1] were used to isolate the binocular

disparity cue, so that there was no other information about

object edges and depth. The screen (238 � 178) was mid-grey

(6.1 cd m22). An RDS (5.68 wide by 11.28 tall) was filled with

black (less than 0.01 cd m22) and white (12.24 cd m22) dots of

size 2.14 � 2.14 arcmin, randomly distributed at a density of

326 dots per square degree (a Nyquist frequency of 9 cpd [11]).

Within each RDS, there was a pair of depth-defined patches,

one above the other, each containing depth projecting towards

the observer from the plane of the screen (figure 2a). For all

experiments, the standard patch was a square of side 2.88. Stan-

dard patch location was randomly assigned to either the upper

or lower location on the screen. Standard patches contained a

sharp transition from background depth to the foreground, so

that all pixels in the depth-defined region had either zero or

the peak disparity. We call this the sharp-edged object

(figure 2a,b, top). The crossed disparity of the sharp-edged

object was constant at 5.7 arcmin (participants were not

informed that the standard patch was of constant disparity). In

the right eye’s view, when the foreground was shifted to the

left to deliver disparity, there was a region on the left of the

object where the dots of the foreground overlapped the back-

ground, whereas a small rectangular gap remained on the

right. To avoid this providing a monocular cue to shape, the

overlapping background dots were deleted and randomly reas-

signed positions in the empty rectangle. This process was

repeated in the left eye. This created regions of the background

that only one eye could see, called half occlusions (HOs).

The test patch was given a different disparity profile

(figure 1) to produce a smooth change in depth. It contained at

least two depth edges that had a smooth transition between

the background disparity and the peak disparity of the object,

although the exact shape of the object was different for each

experiment. The shape of the smooth edge was defined by

f ðx, pÞ ¼
dp

2
tanh

1

s
x� w� p

2

� �� �
� tanh

1

s
x� wþ p

2

� �� �� �
,

ð2:1Þ

where f (x) is the x-axis disparity contribution at any point (x, y),
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Figure 1. (a) Cross section shows depth as a function of width of the stimulus used, for several different smoothness coefficients (s). Peak disparities were between
5.4 and 8.4 arcmin, the y-axis shows normalized disparity (disparity at each location/peak disparity for that trial). (b) Cross section of the stimulus used in
experiment 3, showing the effect of manipulating plateau size ( p).
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dp is the peak disparity of the stimulus, w is the width of the

object, p is the full width at half maximum depth (referred to

as plateau size) of the object and s is the smoothness coefficient.

The variation in shape with s for experiments 1 and 2 is shown in

figure 1a. The range of crossed peak disparities in the smooth test

object could vary from 5.4 to 8.4 arcmin for experiments 1 and 2

and 4–10 arcmin for experiment 3 (details below). On each trial,

the test object was given a peak disparity either drawn from

these extremes or one of five intermediate disparities. Figure 1a
shows normalized disparity (disparity at any location divided

by peak disparity for a particular trial) as a function of position,

to illustrate how a higher value of smoothness coefficient indi-

cates a smoother edge with a lower disparity gradient and rate

of change of gradient.

We ensured that the smoothness coefficient could not be so

high that the disparity at the peak of the object was less than

0.99 dp. Additionally, the maximum gradient was not allowed

to be large enough to deliver HOs [29] or be above the dis-

parity-gradient limit [32]. The function in equation 2.1 was

chosen as it is easy to manipulate, and the average depth of

the whole object was half the peak depth (for the range of

smoothness coefficients used).

The shape of object defined by equation 2.1 has two key vari-

ables. The smoothness coefficient, s, varies the shape of the

object as shown in figure 1a. Changing the smoothness coeffi-

cient does not change the average disparity across the whole

object or the position of the disparity inflection points. The

second key variable is the plateau size p. This took a constant

value of 171 arcmin in experiments 1 and 2, but varied in exper-

iment 3. Varying this moves the inflection points of the function

closer together/further apart (figure 1b), changing the width or

height of the smooth object. Plateau size is a particularly interest-

ing variable as it coincides with three major properties of the

smooth object which could be used in segregation of an edge for

the object. First, it corresponds to the distance between the inflec-

tion points on the function. Second, its width defines the points of

maximum gradient of the object, and third, it is the separation

between locations that have half the peak depth (i.e. dp/2),

which is also the average depth of the object. Plateau size was

varied in the third experiment, where we were interested in testing

if averaging is based on the size of the object. Because the average

disparity of the object changes systematically with changing

plateau size, we can predict how the perceived depth of the

peak is affected by changing object shape and compare it with

psychophysical measurements.

Experiment 1: test objects contained a smooth depth disconti-

nuity (figure 2a,b, bottom). We call this the smooth-edged object.

The plateau width was half the width of the object, equal to

171 arcmin ( p ¼ w/2), and the average disparity of the object

was constant at half the peak depth of the object. The shape
was defined by

dðx, yÞ ¼ f x,
w
2

� �
� f y,

w
2

� �
, ð2:2Þ

where d(x, y) is the disparity at the point (x, y). Test stimuli con-

tained one of four smoothness coefficients (3, 6, 14 and 23: unit is

per pixels, where 1.073 arcmin ¼ 1 pixel).

Experiment 2: test objects contained a combination of smooth

and sharp edges, with three smoothness coefficients (3, 14

and 23). In the first condition, the left/right edges of the object

were smooth, and the top/bottom edges sharp (figure 2c, top).

Sharp edges along horizontal borders do not deliver HOs, so

no half-occlusions (NHOs) were present in this condition. In

the second condition, the shape was rotated through 908, so

that the left/right edges were sharp and the top/bottom

smooth, resulting in HOs at the left/right edges (figure 2c,

bottom). The disparity d of a dot located at (x, y) in this stimulus

was described by

dðx, yÞ ¼ f x,
w
2

� �
� dv: ð2:3Þ

The first term is the equation for the smooth edge (equation (2.1),

here orientated along the x-axis, thus causing NHOs). dv is the

disparity contribution, where

dv ¼

0 if y � w
4

1 if
w
4

, y � 3w
4

0 if
3w
4

, y:

8>>>>><
>>>>>:

When the y coordinate of each stimulus dot lay within the central

region of the stimulus, the disparity contribution dv was 1 and the

magnitude of a dot’s disparity was dominated by the equation for

the continuous edge. When the y-coordinate was outside the

sharp edge, the entire equation reduced to 0 for all x, so there

was zero disparity within this region. This object had fewer dots

with disparities that were neither zero or dp than in experiment

1 owing to the removal of the second continuous edge.

Experiment 3: the smooth test patch from the first experiment

was altered to allow a change in the plateau or half-depth (where

d ¼ 0.5 dp) independently of the edge shape and object size

(figure 1b). We were primarily interested in the effect on per-

ceived peak depth of the plateau size p (the separation between

the edges of the patch at half-depth).

dðx, yÞ ¼ f ðx, pÞ � f ðy, pÞ: ð2:4Þ

Only one smoothness coefficient was used (14). The plateau size

was set to three different values: 107, 140 and 193 arcmin.



(a) (b) (c)

Figure 2. (a) Stimulus from experiment 1 set-up for divergent (left) and convergent (right) free fusion. (b,c) Three-dimensional representation of stimuli in exper-
iment 1 and 2. In this cartoon representation, the dark blue background mesh is in the plane of the screen, lighter colours demonstrate depth extending out from
the screen towards the observer.
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(c) Participants
Participants were recruited via the University of St Andrews’

online recruitment service and were recompensed for their

time. Stereoacuity was tested with a TNO test [33]. Those who

could not correctly identify a baseline depth of 8 arcmin or

larger were excluded from the study. This is a conservatively

high choice for the disparity threshold for exclusion. Naive

observer thresholds vary widely in a dimly lit room, and we

wanted to exclude as few participants as possible. The majority

of participants were included/excluded based on the perform-

ance on a further demonstration, which directly tested their

ability on the task [34].
(d) Procedure and analysis
The task and stimulus shape was initially explained using a

cross-sectional line drawing (x–z plane) of an artificial stimulus.

Participants were informed that the maximum depth or peak

was always in the centre of the object and that this was what

they would be asked to report on. A screenshot of the experimen-

tal stimuli was then presented to the participants through the

stereoscope. To ensure participants could correctly see the stimu-

lus, they were asked to describe the shapes present in the

stimulus. If the participant used ‘height’ instead of ‘depth’

when self-describing the object, then this was accepted.

Each participant then completed a shortened demonstration

version of the experiment, using a two-alternative forced choice

design, with the standard and test stimuli presented above one

another, to familiarize them with the task. In the demonstration,

larger disparities were used (maximum 9 arcmin crossed), and

the stimulus was initially shown for 10 s, reducing to 2 s by the

10th trial. Participants were asked to indicate if either

the ‘upper or lower stimulus had a greater peak depth’ and

specifically instructed to ignore the surrounding shape of the

object. After completing the demonstration run, we checked

the data to ensure the participants understood the task before

they were allowed to continue the experiment. If they did not,

then we tried to ascertain what they had misunderstood and

correct this, then re-ran and re-checked the data. If the misunder-

standing could not be specifically identified, or their second

run did not show an improvement, then the participant was

excluded from further study (four participants were excluded

in this manner).
Every experiment followed the same procedure: a fixation

cross at the centre of the screen (black less than 0.01 cd m22 on

mid grey 6.1 cd m22, 69 arcmin wide/high) appeared until the

space bar was pressed. The stimulus was then presented for

2 s, followed by a response prompt screen: black text on mid

grey requested participants to press either the up or down

arrows to indicate which stimulus had a greater peak depth.

The prompt screen was displayed until a response was given.

The fixation cross was then redisplayed, and the next trial

initiated by button press. Trials were presented in blocks

(approx. 300 trials) that took around 10–15 min to complete,

with a clear break between blocks. No participant spent more

than 1 h participating on any 1 day.

We used a method of constant stimuli design to explore

how the shape or size of the depth edge affected peak percei-

ved depth. We collected data from a minimum of 70 trials

(maximum 91) for each peak depth. This allowed us to plot a

full psychometric function: the proportion of standard objects

chosen as deeper, as a function of the displayed peak disparity

[35]. A cumulative normal was fitted [36], and the point of sub-

jective equality (PSE) extracted from the fitted function.

Thresholds, a measure of the slope of the fitted function, were

defined as half the difference between the disparity values at

the 75% and 25% points on the fitted function.
3. Results
(a) Experiment 1: perceived peak depth as edge profile

changes
Here we sought to test if perceived depth varied as the depth

profile of the disparity-defined object edge was varied.

Figure 3a shows raw data for one of five participants, and

an example fitted psychometric function, where the partici-

pant’s responses are plotted as a function of the peak

disparity of the smooth object (full psychometric functions

for all observers are in the electronic supplementary

material). For one participant, the psychometric function

was very flat, and the extracted PSE was outside of the dis-

played range of disparities (5.4–8.4 arcmin) suggesting this

observer to be very poor at the task. This participant’s data

were omitted from further study.
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Figure 3. (a) Raw data and example psychometric function for one participant. (b) PSEs for all four participants as a function of smoothness coefficient. The dotted
horizontal line shows the peak depth of the standard, sharp-edged, object. (c) Thresholds for four participants. Error bars show standard error of the mean.
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Figure 3b shows PSEs for the four remaining participants

as a function of smoothness coefficient (larger coefficients

represent a smoother depth profile). A repeated-measures

ANOVA showed a significant effect of smoothness coefficient

on the observed PSEs (F3,9 ¼ 21.1, p , 0.0005). A greater

smoothness coefficient delivered a larger PSE, thus

smoother-edged objects were perceived as having a smaller

peak depth than the sharp-edged object, for the same

physical depth.

Figure 3c shows the extracted thresholds as a function of

smoothness. A Bonferroni pairwise comparison showed no

significant effects between any smoothness values on the

observed thresholds ( p . 0.1).

These results are rather surprising, there are many

elements in the central area of the stimulus that are located

at the peak disparity. The fact that the visual system cannot

correctly compare the peak depths of the two objects

indicates that it is unable to obtain the peak depth of the

object independently from its overall shape. The effect is

notable because it takes place over such large length scales

(over 80 arcmin).

There are two reasons why perceived peak depth might

be smaller for the smooth-edged object: (i) disparity is aver-

aged across the whole (or part of the) object to improve

signal/noise ratio; (ii) the HOs present in the sharp-edged

object might provide an additional cue to depth and deliver

greater perceived depth. We tested the latter idea in

experiment 2.

(b) Experiment 2: enhanced depth from half-occlusions
Here we tested whether HOs such as those shown in figure 4a
were responsible for there being more depth perceived in the

sharp-edged object by comparing a condition with sharp ver-

tical edges and smooth horizontal edges (creating HOs) with

a condition where the patch was sharp-edged for horizontal

edges (NHOs).

Two of six naive participants were unable to complete the

fifth plate of the TNO test (more than 8 arcmin threshold) and

had PSEs that were outside of the measured range of disparities,

so were excluded from further study (data available in §3 of the

electronic supplementary material). Participant A had pre-

viously participated in experiment 1, but changes in

performance between experiment 1 and 2 are unlikely to be
practice effects as their performance did not improve as they

completed additional blocks. Figure 4b,c shows PSE as a func-

tion of smoothness coefficient for the four participants for both

conditions. The data confirm that, as for experiment 1, observed

PSE was higher for the larger smoothness coefficients. A

repeated-measures ANOVA showed there was no significant

difference between PSEs from the HO and NHO condi-

tions (F1,3 ¼ 0.452, p ¼ 0.459) or the thresholds (F1,3 ¼ 0.001,

p ¼ 0.975). Thus, we have no evidence that HOs contribute to

the bias in perceived depth found in experiment 1.

Note that the bias in perceived peak depth appeared a

little lower here than that found in experiment 1 (compare

figures 3b with 4b and 4c). We did use different observers

here, so this effect could be due to individual differences.

However, the object presented here had only one pair of

smooth edges, so the smaller bias might suggest that the

range of presented disparities is influencing perceived peak

depth. In §3c, we implemented a model inspired by this

possibility.

Thresholds for this experiment showed variation between

participants, but for all smoothness coefficients and both con-

ditions, the thresholds did not vary significantly (repeated-

measures ANOVA, F1,3 ¼ 0.001, p ¼ 0.975). Mean threshold

for all participants for the HO condition was 1.06 arcmin

and for the NHO condition 1.08 arcmin. There were large

differences between participants, but each participant

showed consistent thresholds for all conditions to within

0.2 arcmin. These results suggest that the reduction in per-

ceived peak depth for the smoother objects is not related to

the presence of HOs.

(c) Modelling
The results of experiment 1 were rather surprising in that

there is a large region (a square area with side length over

80 arcmin where elements have disparities over 95% of the

peak disparity) at the centre of each stimulus specifying the

peak depth. The visual system is clearly unable to use that

information alone. Estimates of peak depth were smaller

than veridical, suggesting that averaging, or some other

combination, must be going on at a rather large scale.

Averaging of disparities will necessarily take place at the

disparity extraction stage: current models of disparity extrac-

tion essentially rely on cross-correlation, which requires
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averaging across small regions of a scene [15–18]. If aver-

aging is the cause of the fall in perceived peak depth with

smoothness in our data, then it must occur over a large

region as there is a large central area where elements are

located at the peak disparity. We reasoned that this would

be a much larger region than current models of disparity

extraction could account for. To test our reasoning, we

implemented a simple disparity cross-correlation model,

operating over a number of spatial scales.

The cross-correlational model took screenshots from the

stimulus presented to the observer, and cross-correlated

small square regions, or windows (from 10.7 to

85.6 arcmin) from the left eye’s image with the right eye’s

image. For each location in the left eye’s image, cross-

correlations were performed for a range of horizontal offsets

of the window in the right eye’s image. The disparity for this

location was defined as the horizontal offset with the maxi-

mum response of the cross-correlator. This process was

repeated across all horizontal and vertical locations, for

each window size. For each window size, we calculated the

disparity at each point in the image.

We ran this simple model for disparity-defined objects

with smoothness coefficients 0, 14 and 26, all with a peak

disparity of 6.0 arcmin. For all window sizes, our simple

cross-correlation model veridically extracted a disparity of

6.0 arcmin as the peak depth across a large central region of

the object; the exact size and shape of this region varied

with window size, but was typically around 60 arcmin

across. Thus, cross-correlation across a range of scales

(window sizes) did not deliver peak disparities that were

different from those assigned in the stimuli. This was not sur-

prising as the depth corrugations in our stimuli were very

coarse, equivalent to around 0.17 cycles per degree of dis-

parity corrugation, well below disparity frequencies where

stereoresolution breaks down [11,16,28].

As our simple cross-correlational model did not account

for our results, we considered the effect of further averaging

occurring at a later stage, where extracted disparities are com-

bined to form a depth representation. We developed a simple

descriptive model to explore if, and how, the visual system

averages extracted disparities across an object to obtain a

depth estimate. The model assumed that the visual system

first uses the extracted disparities to segregate the object
from its background. The segregated object then defines the

shape and size of the area across which disparity is averaged

to estimate the depth of the object. Averaging only over the

segregated area avoids including background disparities

that would interfere with foreground depth perception and

vice versa, and gives a more reliable depth estimate.

The stimulus consisted of a square object centred in the

image. We chose a square region over which to average dis-

parity, centred on the middle of the disparity-defined

object. We call this the averaging window. However, we

did not know what rules the visual system might use to

segregate between the object and background, so we let the

data tell us, by exploring what size of window would best

fit our data.

Each stimulus patch in experiment 1 contained a region

where elements had non-zero disparity, as defined by

equation (2.1). The modelling was based directly on veridical

disparity estimates. This is not to say that we think the visual

system veridically estimates disparities of all points in a

visual scene, but rather we wanted to see how well

a simple model of disparity combination could explain

our results.

In order to calculate the summed disparity within the

square region, dregion, we applied disparity averaging over a

square window of size (x2 2 x1, y2 2 y1), where x2 ¼ y2 and

x1 ¼ y1, by integrating the disparity function (equations

(2.1) and (2.3), see electronic supplementary material, §S1

for mathematical details):

dregion ¼
ðx2

x1

ðy2

y1

dðx, yÞdydx ¼ dps
2 gðx2, x1Þ2, ð3:1Þ

where

gðx2, x1Þ ¼ 0:5 ln

cosh
1

s

w
4
� x2

� �� �
sech

1

s

w
4
� x1

� �� �� �
� 0:5 ln

cosh
1

s

3w
4
� x2

� �� �
sech

1

s

3w
4
� x1

� �� �� �
:

ð3:2Þ

We assumed that peak depth was based on the average

disparity over this window, and obtained this by dividing
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the summed disparity within the whole stimulus patch,

dregion, by the area enclosed by the window

dprediction ¼
dps

2 gðx2, x1Þ2

ðx2 � x1Þðy2 � y1Þ
: ð3:3Þ

To fit the model to our data, we varied only one parameter—

the window size (x22 x1). Essentially, we allow the model to

‘choose’ how to segregate the object from the background.

We iterated through different values of window size, calculat-

ing the predicted perceived peak depth for all four stimulus

smoothness coefficients at each window size. The window

size that minimized the reduced chi-squared test statistic

(across all smoothnesses) between model output and

human data was chosen as the best fit.

Figure 5a shows the experimental data and the best-fit

model output (lines through the data in figure 5a) for our

four observers from experiment 1, with the best-fit window

size individually calculated for each observer. The best-fit

window sizes for each observer are shown in 5b (similar fits

for experiment 2 are in §2 of the electronic supplementary

material). Overall, the model accounted for 92% of the var-

iance of the data, with the lowest R-squared (a R-squared

of 1 indicates a perfect fit, a R-squared of 21 or less indicates

that a linear function better fits the data) value being 0.81 and

the highest 0.98. A similar process was applied to the data

from experiment 2 and a similar result was found (see §2 of

the electronic supplementary material).

In principle, the peak-depth task could be performed by

obtaining an estimate of the depth at the very centre of

each stimulus. Such a simple estimate predicts no difference

between stimulus conditions and clearly does not fit our

data. Our model assumed that to obtain the best estimate

of peak depth, a square region was chosen over which dispar-

ities were averaged. The model was well able to fit the data,

and the best-fit window was estimated to be of side

162 arcmin. We explored other averaging window shapes to

test how the size of the window was related to object

shape. Neither a circle of variable radius (see electronic sup-

plementary material, with an R-squared ¼ 2239 to 215),

nor a weighted average with a Gaussian (did not converge),

came close to predicting either the size or shape of the
flattening. This suggests that the shape of the object is

relevant to the shape of the averaging window.

The average window size fitted by the model was

162 arcmin. This is similar to the stimulus plateau size

(width/height at half-depth) for all the smooth-edged and

sharp-edged objects (squares of length 171.2 arcmin). This

suggests two possibilities, which will be explored in exper-

iment 3: first, that the visual system chooses the region

within which to average based on the shape of the object,

with the edges of that region based on the disparity plateau

size. We will refer to this model to as ‘half-depth averaging’.

The second possibility is that the visual system uses the

standard stimulus, which has constant size and shape, as

a template to segregate the test stimulus into object and

background. We will refer to this as ‘template matching’.
(d) Experiment 3
Here we tested whether the visual system averaged disparity

information based on the shape of the smooth test stimulus

(specifically averaging across the plateau of the stimulus),

or by using the fixed size standard object as a template.

We altered the plateau size of the smooth object (the dis-

tance between the inflection points): see figure 6a for a

graphical representation of this manipulation, and figure 1b
for a cross-sectional view. We ran two versions of the

model, which has no free parameters, to obtain predictions

for participant performance (expected PSE) if they followed

either the template matching or half-depth averaging predic-

tions (mathematical details in electronic supplementary

material). These predictions are shown as the dashed red

(template) and solid blue (half-depth) lines in figure 6b. As

the model has no free parameters, there is no flexibility in

the model to account for variations in participant’s perform-

ance, so we expect the model to be unable to fully account

for all sources of error. The stimulus was displayed using a

larger range of disparities (between 4 and 10 arcmin peak dis-

parity) to ensure that either prediction at 107 arcmin plateau

size could be tested.

All 10 naive participants passed the TNO test, although

one was excluded owing to delivering a flat psychometric
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function. Participants compared the smooth-edged stimuli

with the standard stimulus, as in experiments 1 and 2, and

were asked to judge which had the larger peak depth.

Figure 6b shows results for the remaining nine partici-

pants. Note that most measured PSEs conform closely to

the half-depth model (blue solid line), and are very far

from the template prediction (red dotted line). A chi-squared

goodness-of-fit test (where a chi-squared of 1 is an

optimal fit) indicated that the half-depth model gave an

acceptable fit but did not account for all sources of error in

all participants, with a chi-squared between 1 and 5.5 for

seven participants (excluding participants H at 49 and M at

18). This is considerably better than the performance of the

template model, which performed very poorly with a

chi-squared between 140 and 276 (excluding participants H

and M at 8 and 33, respectively). We should emphasize that

the model was fitted with no free parameters, with window

size being fixed as the distance between the half-depths of

the smooth edged object in the half-depth model, or the

edge length of the sharp-edged object in the template

model. Why specifically the size of the plateau appears to

be the governing factor is not clear.

Participant M showed a different pattern of performance.

For them, PSEs fell dramatically as plateau size was

increased, so their data fell closer to the prediction of the

template model, although the test for goodness of fit indi-

cated that this was a poor fit. Participant H had a very

unusual response where their PSEs increased with plateau

size. Both these participants had thresholds more than three

times those of the other participants (par H: 2.3–2.9 arcmin,

par M: 7–4 arcmin, all other participants 0.5–1.3 arcmin),

indicating that they found this task much harder than other

participants.
4. Discussion
This paper has addressed a key question in disparity proces-

sing: how does the need to average to enhance signal-to-noise

ratio interact with the need for edge extraction to enable
object segregation? Our aim was to explore how disparity

averaging and subsequent depth extraction was affected by

the three-dimensional shape of a depth edge defining the

object. In experiment 1, we measured the bias in assessing

the peak depth of a smooth object compared with an object

defined by an abrupt change in binocular disparity. We

found that smooth-edged objects were perceived as having

a smaller peak depth than sharp-edged objects. However,

there is a major difference between the object types, namely

the presence or absence of HOs. In experiment 2, we demon-

strated that depth biases owing to HOs could not account for

the misperception found in experiment 1. We next proposed a

model to explore the disparity segregation and combination

rule used. The model used the shape of the object to deter-

mine the region over which disparities should be averaged,

and we found that it described the smaller peak perceived

depths found for the smooth-edged objects, and predicted

the size of the region over which averaging occurred.

A third experiment compared this shape-based averaging

model with a very simple template alternative, where the

size and shape of the averaging window was dictated by

the sharp-edged comparison object. We found that the prop-

erties of the smooth-edged object, not the comparison object,

dictated the area that was averaged over. The implications

of each finding will be described below, in relation to the

current literature.

(a) A role for monocular half-occlusions?
In the first experiment, there was the possibility that the pres-

ence of HOs in the standard stimulus could have caused the

brain to assume the smooth-edged object was flatter than

physically presented. However, in experiment 2, the presen-

tation of a stimulus that could be rotated to be presented

with or without a HO showed no significant difference

between the half occluding and the non-half occluding con-

dition. Although other studies have found that HOs can

contribute to perceived depth ([37,38] or see [29] for an in-

detail discussion), we found no evidence that the visual

system is using HOs to help assist the peak depth judgement

of objects.
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(b) Averaging and segregation versus disparity
extraction models

It is well established that disparity estimation is the first

major step in the processing of depth from binocular dis-

parity. As described in the Introduction, we now know a

lot about this process, and elegant models of it have very

powerfully explained a number of perceptual effects

[15–18,39]. However, very little work has addressed how

the extracted disparity estimates are combined across scale

and space to obtain depth perception.

How disparities are combined is a tricky problem to work

on, because one can imagine any number of ways that the

outputs of disparity correlators could be combined, and

there is very little data out there to constrain the problem.

The issue is also difficult to address because it is hard to sep-

arate the effect of disparity extraction and subsequent

combination stages. Here, we worked to study that combi-

nation stage alone, by using stimuli where disparities

should be veridically extracted. This was backed up with a

basic disparity-correlation model that delivered veridical dis-

parities over the parameter ranges we tested. We chose a

simple model for how disparity information must be com-

bined: that there must be a choice made about which areas

to average over based on the disparity between the fore-

ground and background, and we studied the simplest way

this could be achieved.

Thus, our model is not an alternative to the standard

models based on combinations of disparity detectors.

Rather, we used our simple model to provide a description

of the ways in which perception of a three-dimensional

scene may be created from the extracted disparity infor-

mation. We anticipate that future work will use the

information from our model as a guide to the way in

which disparity detector outputs may be combined when

segregating and averaging depth in objects. In §4c, we

review experimental literature providing evidence for

disparity averaging.
(c) Perceived depth and disparity averaging
In the literature, there have been a number of different

phenomena observed where the perceived depth from dis-

parity does not coincide with reality. Some of these are

likely caused by constraints of the disparity extraction

stage, but others may not be. For example, perceived depth

from binocular disparity is commonly found to be non-

veridical in the absence of additional scaling cues to indicate

viewing distance [40–42]. As our stimuli were all presented

at a single viewing distance, and observers asked to make a

relative peak depth judgement between smooth- and sharp-

edged objects, mis-scaling of distance cannot account for

the apparent compression of perceived depth that was

observed for the smooth-edged objects.

There is very little research in the literature that compares

the perceived depth of different disparity-defined objects.

We know that mandatory disparity averaging occurs across

some types of stimuli. This kind of disparity averaging

most likely takes place at the disparity extraction stage,

where position information is necessarily pooled across

space [15–18]. For example, disparity corrugations of more

than five cycles per degree are not detected and are thought

to be averaged [43]. This is thought to occur, because the
finest scale disparity detectors are around 5 arcmin across

[10,15]. Any variation in disparity of a finer scale will there-

fore be averaged across the size of the smallest processing

units. However, this is a very much smaller scale than the

averaging we are reporting, which appears to be taking

place over distances of 100þ arcmin.

Disparity averaging is also reported when two disparity-

defined planes overlap (stereo transparency). Kaufman et al.
[44] were the first to report that depth in a RDS containing a

pair of planes is perceived as the average disparity of the

two planes, whereas Parker & Yang [20] explored the con-

ditions required to cause averaging. Typically, the percept

of two planes breaks down into a perception of a volume

defined by dots when the separation between the planes is

below 2–6 arcmin [20,21,45]. Although averaging in these

studies occurred over a similar range of disparities to

those used here, there is a major difference in the lateral

separation between dots of different disparity: with overlap-

ping planes adjacent dots were frequently of very different

disparities, whereas the dots presented in our stimuli were

on a smooth opaque surface where adjacent dots were of

similar disparities. Akerstrom & Todd [19] found the

difference between opaque and transparent surfaces to be

significant, with superior disparity discrimination between

two adjacent opaque surfaces than in two overlapping

transparent surfaces. Some of the above effects might well

be caused by disparity extraction, especially when dis-

parity-defined elements are in close proximity, rather than

by subsequent averaging. For example, Harris [46] found

that introducing dots at disparities between the planes

reduced the perceived depth between the planes further.

Modelling of scale-specific disparity extraction showed

that some of the effects found could be explained by

disparity extraction.

Other research shows that errors in perceived depth are

reminiscent of the simultaneous contrast illusions in the

brightness domain, and it is harder to attribute them to

constraints on disparity extraction. For example, in the

Craik–O’Brien–Cornsweet illusion, a pair of equal lumi-

nance patches are connected by a region containing an

increasing luminance gradient with a step decrease in lumi-

nance at the centre. Although of equal luminance, the side

patches appear to be different [47–49]. An analogous effect

is found with depth edges [26], and the effect is larger for

shallower disparity gradients [50]. The effect has been

explained in terms of the visual system being relatively insen-

sitive to the shallow depth gradients [26,50], but could be

thought of in terms of disparity averaging across specific

stimulus regions.

Our results show that there appears to be long-range

depth averaging across objects where the borders of the aver-

aging are defined by the properties of the object itself. Our

results are akin to findings by Deas & Wilcox [51], where

grouping two vertical lines into an object caused a reduced

perception of depth. Such effects could be caused by mechan-

isms that average across objects, as we suggested here. Pizlo

et al. [52] found a similar (non-stereo) effect: that the grouping

of separated line elements in a Necker cube affected the per-

ceived shape of the object. In both these studies, grouping

elements into an object changed the perceived depth, in

agreement with our results, suggesting that the visual

system is segregating objects before averaging to enhance

depth signal strength within an object.
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(d) Stereoscopic camouflage
Finally, we would like to provide some speculations about

camouflage. Julesz [1] suggested that stereoscopic vision

may have evolved to break camouflage. If this is so, this

may have led to an evolutionary arms race where prey ani-

mals may themselves have evolved to ‘break’ those

stereoscopic camouflage-breaking properties. There is some

evidence that prey are camouflaged in a way that disrupts

monocular shape-from-shading cue, via an effect called coun-

ter-shading [2–4,52,53]. Predator visual systems may use

disparity to break that kind of camouflage, and their visual

systems may be constrained to first segregate objects and

then average. If so, there could be many possibilities for

prey animals to also camouflage themselves against stereo-

scopic observers. For example, an animal could reduce its

apparent depth by changing sharp edges in its outline to

smooth edges (similar to our smooth stimuli) that merge con-

tinuously into the background. This change of edge profile

would result in a reduction in perceived depth and could

cause the animal to become harder to detect.

Second, a common form of camouflage includes the use

of false borders to make the outer edges of an animal

‘break up’ into many separate sections [2,53,54]. If depth

averaging occurred after these separate areas were segregated

into different objects, then the depth might be averaged over

the false, broken up borders. This could lead to several differ-

ent depth-plateaus being perceived, thus making recognition

of a single, continuous prey animal much more difficult. In

future studies, we intend to investigate if these forms of

potential stereoscopic camouflage do indeed work.
5. Summary and conclusion
Participants were unable to correctly estimate displayed peak

depth within an object with continuous depth edges. Rather,
perceived peak depth was reported as being lower than dis-

played: thus, the object appeared flatter. HOs were found

to have no impact on the perceived depth in our stimuli.

The flattening is consistent with averaging over a region

that is defined by object segregation, in this case the half-

depth of the object. This potentially allows for stereoscopic

camouflage, hiding the actual peak depth of an object by

deceiving the viewer into perceiving the object as flatter

than it truly is.
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Endnote
1We backed this up by confirming our assumption using a simple
cross-correlation disparity extraction model, operating over a
number of spatial scales, see the modelling section.
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