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Abstract

Autophagy occurs at a basal level in all eukaryotic cells and may support cell survival or activate death pathways. Due
to its pathophysiologic significance, the autophagic machinery is a promising target for the development of multiple
approaches for anti-neoplastic agents. We have recently described the cytotoxic and pro-apoptotic mechanisms,
targeting the tumour suppressor p53, of climacostol, a natural product of the ciliated protozoan Climacostomum virens.
We report here on how climacostol regulates autophagy and the involvement of p53-dependent mechanisms. Using
both in vitro and in vivo techniques, we show that climacostol potently and selectively impairs autophagy in multiple
tumour cells that are committed to die by apoptosis. In particular, in B16-F10 mouse melanomas climacostol exerts a
marked and sustained accumulation of autophagosomes as the result of dysfunctional autophagic degradation. We
also provide mechanistic insights showing that climacostol affects autophagosome turnover via p53-AMPK axis,
although the mTOR pathway unrelated to p53 levels plays a role. In particular, climacostol activated p53 inducing the
upregulation of p53 protein levels in the nuclei through effects on p53 stability at translational level, as for instance the
phosphorylation at Ser15 site. Noteworthy, AMPKa activation was the major responsible of climacostol-induced
autophagy disruption in the absence of a key role regulating cell death, thus indicating that climacostol effects on
autophagy and apoptosis are two separate events, which may act independently on life/death decisions of the cell.
Since the activation of p53 system is at the molecular crossroad regulating both the anti-autophagic action of
climacostol and its role in the apoptosis induction, it might be important to explore the dual targeting of autophagy
and apoptosis with agents acting on p53 for the selective killing of tumours. These findings also suggest the efficacy of
ciliate bioactive molecules to identify novel lead compounds in drug discovery and development.

Introduction

Macroautophagy (hereafter autophagy) targets the
delivery of intracellular content to the lysosomal com-
partments, via the formation of double-membraned
vesicles termed as autophagosomes'™*. Autophagy is
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controlled by a set of evolutionarily conserved autophagy-
related proteins®, occurs at a basal level in all eukaryotic
cells, including the unicellular organisms®, and is
modulated by diverse endogenous systems and cellular
stresses’ . The role of autophagy in cell fate is con-
troversial since it may support cell survival, also via sup-
pression of cell death (including apoptosis, necrosis or
other forms of non-apoptotic cell death), and activate
death pathways'®™'% Due to the pathophysiologic sig-
nificance of both malfunction and over-activation of
autophagy in different diseases, such as cardiomyopathies,
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muscular dystrophy, metabolic syndromes, infectious-
immune diseases, and neurodegenerative disorders,
autophagy has been intensively studied in the past dec-
ades” 813, Noteworthy, as it links cancerous and non-
transformed components of the tumour microenviron-
ment, autophagy and its network are important for
tumour initiation, progression and response to therapy'*.
In particular, efficient autophagic responses in pre-
malignant cells suppress transformation (anti-cancer
function) while autophagy supports the natural progres-
sion of neoplasms (pro-cancer mechanism). This places
the autophagic machinery in the limelight as a promising
target for development of multiple approaches for anti-
neoplastic agents such as promotion of autophagy for the
purpose of cancer prevention and suppression of autop-
hagy as therapeutic intervention in different types of
established cancers, including melanoma'*'*'>,

Natural compounds are involved in the modulation of
several cellular events, thus showing a great potential
to unravel physiological process and to be translated
into clinical use, as for instance cancer treatment'®'’.
Among the bioactive molecules isolated from aquatic
eukaryotic microorganisms'®, we have recently described
the cytotoxic and pro-apoptotic effects of climacostol
[(Z)-5-(non-2-en-1-yl)benzene-1,3-diol], a natural toxin
physiologically produced by the freshwater ciliated pro-
tozoan Climacostomum virens'>*°, in tumour cells'®*' >,
Both in vitro and in vivo evidence demonstrated that
climacostol inhibits the viability/proliferation of mouse
melanoma cells, induces a persistent inhibition of tumour
growth and improves the survival of transplanted mice
thus triggering the cell death process as a result of DNA
damage and apoptosis'®*>. The signalling events respon-
sible for the climacostol-induced pro-apoptotic effects
rely on the up-regulation of p53 tumour suppressor net-
work that, in turn, activates the intrinsic programmed cell
death pathway.

The transcription factor p53 is one of the major barriers
against cancer’?®, However, the exact mechanisms by
which p53 mediates tumour suppression are not under-
stood. Whereas p53-dependent modulation of apoptosis
appear crucial for p53-mediated tumour suppression
in some studies, in other ones their involvement in
p53 effects may be dispensable®’. Experimental evidence
reports that p53, depending on its localisation and mode
of action, can act as either an activator or an inhibitor
of autophagy”>?®. Although the extent to which autop-
hagy regulation determines cell death/survival by p53
is unclear, it may underlie key aspects on the biology
and treatments of cancer®>*$~3,

A large number of natural products are involved in
autophagy modulation through multiple signalling path-
ways and transcriptional regulators®®. In this context,
we investigated here how climacostol regulates autophagy
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through both in vitro and in vivo approaches, as well as
the involvement of p53-dependent mechanisms and their
impact on autophagosome turnover and cell fate.

Results
Climacostol disrupts autophagy in mouse melanoma:
in vivo and in vitro evidence

The activity of climacostol in vivo was described in a
melanoma allograft model, the B16-F10 cells injected
subcutaneously in mice'®**, The experimental procedure
consisted of 100 pl intra-tumour injections of climacostol
at 600 pg/ml or vehicle (control) every 3—4 days for ca.
3 weeks. Using the same experimental paradigm, we
defined the autophagy levels in melanomas locally treated
with climacostol at day 16. First, we analysed mRNA
levels of autophagy mediators by real-time PCR in
tumours' ™. Transcripts encoding LC3b, p62, beclin 1,
bnip 3, bnip 3L, atg3, atg4, and atg5 autophagy genes
significantly enhanced in climacostol-treated group
(Supplementary Fig. la), suggesting a perturbation of
autophagic machinery.

An increase of LC3 staining and the detection of LC3
puncta, reminiscent of autophagosome formation, was
detected in melanoma from climacostol-administered
mice, whereas diffuse LC3 staining was visualised in
control samples (Fig. 1la). Climacostol treatment also
increased lipidated LC3 (LC3-II) levels (Fig. 1b). The
lipidation and clustering of LC3 may be the result of both
induction and suppression of autolysosomal maturation.
The cargo protein p62 is a useful method to distinguish
whether autophagosome accumulation is due to autop-
hagy induction rather than an inhibition®*. As shown in
Fig. 1c, treatment of B16-F10 allografts with climacostol
significantly increased p62 immunofluorescence leading
to accumulation of p62-positive aggregates. These results
were confirmed by western blot experiments detecting an
increase of p62 protein band in climacostol-treated
tumours (Fig. 1d).

B16-F10 cells were treated in vitro with climacostol at its
target dose for potency and efficacy (30 pg/ml), inducing
cytotoxic, anti-proliferative and pro-apoptotic effects'®*,
Similarly to in vivo results, 24h climacostol treatment
increased immunofluorescence intensity and puncta of
LC3 (Fig. 2a) and LC3 cleavage (Fig. 2b). In addition, we
observed higher levels of aggregated p62 and a significant
increase of p62 staining in climacostol-treated cells
(Fig. 2c) which paralleled with an accumulation of p62
immunoblot levels (Fig. 2d). The effect of climacostol on
autophagy was then evaluated by treating cells with the
known autophagic flux inhibitor chloroquine (CQ)®. B16-
F10 cells treated with CQ (10puM, 6h)* showed an
increased amount of lipidated LC3 and accumulation of
p62 (Fig. 3a, b). Of notice, 24h climacostol-induced
accumulation of LC3-II and p62 was not modified in the
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group. **p <0.01 and ***p < 0.0001 relative to CTRL

Fig. 1 Climacostol impairs autophagy in in vivo melanoma. Subcutaneous B16-F10 melanoma allografts were excised from mice at day 16 of
treatment (from day 0 - every 3-4 days) with 100 ul climacostol (CLIMA; 600 pg/ml) or control vehicle (CTRL). a, ¢ Immunofluorescence imaging of
LC3 and p62. DAPI was used for nuclei detection. Scale bar: 50 um. Inserts represent enlarged image details. Lower panels: quantitative analysis of LC3
and p62 immunofluorescence. A total of 6 different images were analysed per tumour. Results are expressed as fold change of CTRL. b, d Western
blotting images of LC3 and p62 expression. LDH was used as internal standard. Lower panels: densitometric analysis of LC3-Il and p62 relative to their
respective standard. Results are expressed as fold change of CTRL. Images and data represent the results obtained from 6 animals per experimental

presence of CQ. The absence of an additive effect between
CQ and climacostol is consistent with the inhibition of the
autophagic flux exerted by climacostol.

The autophagic response was then analysed using
transmission electron microscopy. As shown in Fig. 3c,
B16-F10 cells treated with climacostol for 6 h showed
accumulation of autophagosomes in the cytosol. Autop-
hagosomes, also referred to as initial autophagic vacuoles
(AVi), have been defined as a double-membraned struc-
ture containing undigested cytoplasmic contents®*. The
parallel membrane layers (bilayers) of AVi are separated
by a relatively narrower or wider electron-translucent
cleft, sequestering cytosol, mitochondria, or endoplasmic
reticulum membranes not yet degraded. Differently, late
or degradative autophagic vacuoles (AVd)*, defined as a
hybrid organelle generated by the fusion of an autopha-
gosome and a lysosome were clearly detectable in control
but scarce in climacostol-administered cells (Fig. 3c). The
AVd showed a single membrane and contained materials
at various stages of degradation, visualised as intense, dark
structures within the vacuoles®. Climacostol-treated cells
moreover showed disorganised structures, swollen cristae
in mitochondria and accumulation of melanosomes in
the cytoplasm.

B16-F10 cells were transiently transfected with a red
fluorescent protein (mRFP)-green fluorescent protein
(GFP)-LC3 as a dual-fluorescence pH sensor of autop-
hagic vacuoles in live cells®. The expression of this
reporter results in both green and red fluorescence and
detects autophagosomes (pH neutral) and
autophagosome-lysosome fusion (pH acid)***, as autop-
hagosomes appear yellow and autolysosomes as only red
vacuoles, since the low lysosomal pH quenches GFP more
quickly than mRFP. In control conditions, about half of
autophagic vacuoles had only red fluorescence signal
while the other half had yellow signal (Fig. 4a, b). After
treatment of the cells with climacostol, yellow punctate
fluorescence significantly increased whilst only-red
puncta markedly decreased, indicating a time-dependent
blockade of autophagosome maturation/autophagosome-
lysosome fusion. The effect of climacostol was detected at
3h (although below the statistical significance) and
reached the almost maximal effect already at 6 h. Close to
90% of the autophagic vacuoles had yellow signals fol-
lowing 24 h treatment. Similar results were observed with
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CQ alone (10 uM, 6 h). The kinetics of climacostol was
further confirmed by immunoblot experiments showing
evident LC3 cleavage and p62 accumulation induced by 6
h of treatment (Fig. 4c).

Climacostol induces cell death/apoptosis and impairs
autophagy in human and murine tumour cells

Human melanoma A375 and SK-MEL-5, murine
glioma GL261 and human glioblastoma U87MG cells
were treated for 24 h with climacostol. In agreement
with previous results in multiple human and rodent
cell lines'®*'~??, climacostol caused a concentration-
dependent reduction of cell viability with an E,, con-
centration value (nearly 100% inhibition) of ca. 30 pg/ml,
as assessed by the MTT assay (Fig. 5a—d). Data also
indicated that climacostol affects the viability with a
comparable potency among cells, i.e., ECsq of 5.7, 6.4, 6.7
and 5.8 pg/ml for A375, SK-MEL-5, GL261 and US87MG
cells, respectively. Similar results were obtained in B16-
F10 cells as a control (Supplementary Fig. 1b)**. Clima-
costol treatment (24h, 30pg/ml) induced apoptosis
and impaired autophagy in A375, SK-MEL-5, GL261 and
U87MG cells since it increased the expression of cleaved-
(active) executioner caspase 3 and led to an accumulation
of LC3-II and p62 (Fig. 5e-h).

Climacostol signalling regulating autophagy: p53-
dependent and independent effects

Climacostol-induced pro-apoptotic effects in melanoma
rely on the up-regulation of p53 that, in turn, activates the
intrinsic programmed cell death pathway, including cas-
pase 3'®?%, This is confirmed by the analysis of cleaved-
caspase 3 in B16-F10 cell transfected for 48 h with a p53-
specific or a non-targeting siRNA*?, followed by clima-
costol treatment (24h, 30pug/ml). Indeed, when the
climacostol-dependent increase of p53 was silenced
(Supplementary Fig. 2a) the activation of caspase 3 was
abolished (Fig. 6a). The mRNA of p53 did not change
(Fig. 6b) while p53 protein clearly enhanced following
climacostol exposure, with a detectable effect obtained at
6h of treatment (Fig. 6¢). Consistently, we detected a
time-dependent accumulation of p53, almost completely
localised in the nuclei of B16-F10 cells (Fig. 6d). The p53
protein phosphorylated at Serl5 site (p-p53°“'°), a
modification responsible of p53 stability*>®, up-regulated
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independent experiments. **p < 0.005 and ***p < 0.0001 relative to CTRL

Fig. 2 Climacostol impairs autophagy in melanoma cells. B16-F10 cells were cultured in the presence of 30 ug/ml climacostol (CLIMA) or control
vehicle (CTRL) for 24 h. a, ¢ Immunofluorescence imaging of LC3 and p62. Phalloidin and DAPI were used for cytoskeleton and nuclei detection,
respectively. Scale bar: 50 um. Inserts represent enlarged image details. Right panels: quantitative analysis of LC3 and p62 immunofluorescence
(> 30 cells per experimental condition). Results are expressed as fold change of CTRL. Images and data are representative of 6 independent
experiments. b, d Western blotting images of LC3 and p62 expression. LDH was used as internal standard. Right panels: densitometric analysis of
LC3-Il and p62 relative to their respective standard. Results are expressed as fold change of CTRL. Images and data are representive of 11-15

as well in the presence of climacostol and p53/p-p53°®*®
staining was superimposable, thus indicating a post-
translational effect on p53 induced by climacostol.

We then determined whether the role of climacostol on
autophagic flux involved p53 signalling. The silencing of
p53 perturbed climacostol effects on autophagic flux. LC3
lipidation in response to climacostol (24 h, 30 ug/ml) was
still active (Fig. 6e). By contrast, p62 levels significantly
decreased in p53 siRNA cells treated with climacostol
reaching values comparable to control (Fig. 6e), despite
climacostol inducing a sustained increase of the mRNA
encoding p62 in native cells (Supplementary Fig. 2b). This
is consistent with a sustained autophagy turnover induced
by climacostol in the absence of p53, thus suggesting that
climacostol treatment simultaneously induces autopha-
gosome formation and compromises autophagosome
turnover, this latter via the up-regulation/phosphorylation
of p53.

To gain more mechanistic insights we evaluated dif-
ferent autophagy signalling molecules. The mammalian
target of rapamycin (mTOR), when is activated by protein
kinase B (PKB/Akt), drives the phosphorylation of
autophagy proteins including S6'*. The 5’-AMP-acti-
vated protein kinase (AMPK) can also impact on autop-
hagy'~*3°. Within the temporal window of climacostol
effects on autophagosomes, climacostol (30 pg/ml) trig-
gered an early (3-6h) decrease of Akt and S6 phos-
phorylation in B16-F10 cells which persisted over-time
(Fig. 7a). In contrast, activated AMPKa substantially
peaked at 6 h of treatment. Similar results were obtained
in vivo, analysing melanoma allografts intra-tumour
injected with 100 pl climacostol at 600 pg/ml or vehicle
(control) every 3—4 days. The activity of S6 was lower in
climacostol-injected tumours (at day 16 of treatment)
while phosphorylated AMPKa increased (Fig. 7b), thus
confirming that climacostol inhibits and stimulates
mTOR and AMPK pathways, respectively. B16-F10 cells
were then transfected for 48 h with an AMPKa-specific or
a non-targeting siRNA, followed by climacostol treatment
(24 h, 30 pg/ml). When the expression of AMPKa halved,
the lipidation of LC3 by climacostol increased while p62
levels were significantly reduced (Fig. 7c), indicating the
accumulation of autophagosomes via AMPK activation.

We next measured the phosphorylation of Akt/S6/
AMPK after p53 silencing in cultured B16-F10 cells
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treated with 30 pg/ml climacostol for 6 h. In these con-
ditions, the climacostol-induced up-regulation of p53 was
abolished (Supplementary Fig. 2c). Notably, the decrease
of Akt and S6 activity induced by climacostol was
unchanged in non-targeting siRNA and p53 siRNA cells
(Fig. 7d). On the contrary, the ablation of p53 significantly
inhibited climacostol activation of AMPKa, that therefore
is partially p53-dependent. AMPK regulates p53 acetyla-
tion and phosphorylation in cancers®. In B16 cells, the
activation of AMPKa by the toxic natural compound
vincristine is involved in p53 activation®”. We found this
not to be a key mechanism in our system since B16-F10
cell transfection with an AMPKa-specific siRNA did not
affect p53 levels induced by climacostol (30 pg/ml)
(Fig. 7e).

Autophagy disruption and apoptotic cell death

The autophagy modulation in context with apoptosis
was assessed in vivo. Climacostol at 2 and 4 mg/kg or
vehicle (control) was injected intraperitoneally in mice
every 3—4 days for 4 weeks, in line with the dosage used in
the intra-tumour treatments. No animal died in the
experimental or the control group; all mice appeared
healthy and clinically normal, with no behavioural chan-
ges, suggesting the absence of systemic toxicity. The
weight of climacostol-administered animals tended to
increase, which was consistent with that of the control
(Table 1). GFP-expressing B16-F10 cells (B16-GFP) were
injected into the tail vein of syngeneic mice the week
before climacostol intraperitoneal treatment (4 mg/kg
every 3—4 days for 2 weeks) and diaphragm was analysed
by fluorescence microscopy 3 weeks after transplantation.
Tumour foci (Supplementary Fig. 2d), i.e., GFP and
melan-A-positive cells, were clearly observed in dia-
phgram tissue (Fig. 8a). Melanoma cells expressed robust
LC3 puncta and cleaved-caspase 3 staining (Fig. 8a) while
these markers were almost undetectable in muscular
(laminin-positive) cells (Fig. 8b).

Autophagy and apoptosis cross-talk functions to
maintain cellular homeostasis and respond to stress*®. To
test whether autophagy has a key role regulating cell fate
in our system, we measured the cytotoxic effect of cli-
macostol by exclusion dye staining with trypan blue in
B16-F10 cells transfected with an AMPKa-specific or a
non-targeting siRNA. As shown in Fig. 8c and
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and data are representative of 3-5 independent experiments. *p < 0.05, **p < 0.005 and ***p < 0.0001 relative to CTRL. ¢ Electron microscopy images
presenting ultrastructure of B16-F10 cells cultured with 30 pg/ml CLIMA or CTRL for 6 h. The panels 1-3 depict representative control cells at increasing
magnifications: (1) whole cells; (2) an early or initial autophagic vacuole (Avi), containing morphologically intact ribosomes. The electron-lucent cleft
between the two limiting membranes is visible. A dense lysosome (Ly) is also found in contact with the outer limiting membrane of the autophagosome
and a normal mitochondria (mi); (3) a late or degradative autophagic vacuole (Avd) containing partially degraded cytoplasmic material. The panels 4-7
depict representative climacostol-treated cells at increasing magnifications: (4) whole cells showing abundant black melanosomes; (5) note the presence
of numerous autophagosome-like compartments in the cytoplasm; (6) higher magnification of melanosomes and (7) mitochondria with swollen cristae.
Scale bars: 1 and 4: 2 um; 2 and 3: 200 nm; 5, 6 and 7: 500 nm. Images are representative of 3 independent experiments

Supplementary Fig. 2e, cell viability of AMPKa siRNA  treatment (Supplementary Fig. 2f), a well-known inhibitor
cells remained high. Climacostol (24h, 30pg/ml) of AMPK.

displayed a similar high toxicity both in the presence Finally, B16-F10 cells were treated with climacostol (24 h,
of AMPKa or when its expression was knocked-down. 30 pg/ml) both in the absence and presence of the pan-
A similar result was observed after compound C caspase inhibitor Z-VAD-(OMe)-FMK at 100 uM. The
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activation of caspase 3 induced by climacostol was reduced
by Z-VAD-(OMe)-FMK (Fig. 8d). In contrast, caspase
inhibition did not affect the accumulation of LC3-1I and p62
(Fig. 8e) obtained after climacostol treatment thus clear-
ly indicating that the activation of caspases is not
associated with climacostol disruption of autophagic flux.
Z-VAD-(OMe)-FMK administration did not rescue
climacostol-induced reduction of MTT absorbance (Fig. 8f)
thereby suggesting that climacostol effects on cell viability
are not necessarily mediated by caspase-dependent
mechanisms.
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Discussion

The cellular homeostatic process autophagy occurs at a
basal level in all eukaryotic cells and may support cell
survival or activate death pathways'®''. Many of the
core autophagy genes found in humans are expressed in
ciliated protozoa®. Alveolata (comprising single-celled
ciliates, dinoflagellates and Apicomplexa) share with
Opisthokonta (including Fungi and Animalia) a last
common ancestor about 1.5 billion years ago. Notwith-
standing the diversity and the evolutionary interval that
separate these organisms, ciliates provide versatile
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caspase 3, LC3 and p62 expression in A375 (e), SK-MEL-5 (f), GL261 (g),
and U87MG (h) cells cultured in the presence of 30 ug/ml climacostol
(CLIMA) or control vehicle (CTRL) for 24. LDH was used as internal

standard. Images are representive of 3 independent experiments

molecular tools to determine autophagic pathway in
mammals®. They synthesise a great variety of chemicals
with biotech potential'®**’. Our present findings show that
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climacostol, a pro-apoptotic natural compound produced
by the ciliated protozoan Climacostomum virens, potently
impairs autophagy. Climacostol, which has a chemical
structure distinct from the current blockers of autophagic
flux®!®, exerts a sustained accumulation of autophago-
somes in tumour cells as the result of dysfunctional
autophagic degradation. The analysis of B16-F10 allo-
grafts revealed a disruption of autophagy when melano-
mas were treated with intra-tumoural injections of
climacostol. In addition, non-toxic doses of intraper-
itoneally administered climacostol reached diaphragm
muscle selectively targeting transplanted melanoma cells,
which thus showed impaired autophagy and were com-
mitted to die by apoptosis. In some cases climacostol
toxicity was reported to be higher against tumour than
non-tumour cells'®**"** and not only cell death/apoptosis
but also the impairment of autophagy was induced by
climacostol in multiple cancer cell lines, i.e., human
melanomas and murine/human glial tumour cells.
Moreover, local delivery of climacostol inhibited mela-
noma growth thus inducing apoptosis and a significant
improvement of animal survival'®*®, These data indicate
climacostol as a highly effective compound against a
wide range of cancers, including those affecting humans.
Many natural compounds exert pro- and anti-autophagic
activity and thus may contribute to treatments of diverse
human diseases®**!. Autophagy inhibition is a promising
strategy and different agents disrupting autophagy are
being evaluated in clinical trials for cancer treatment'*'®.
This study suggests that screening autophagy regulators
from natural compounds might be an efficient metho-
dology to identify novel autophagy inhibitors and lead
compounds for cancer therapy.

Autophagy and apoptosis share key regulatory proteins,
suggesting that the pathways regulating them are con-
nected®*?, Since climacostol participates in the impair-
ment of autophagy while inducing apoptosis, its action
may be situated at the molecular crossroads regulating
both autophagy and apoptosis. Our present data provide
molecular ground and confirm this hypothesis. Firstly we
demonstrated further that climacostol elicits apoptosis via
p53'®%, Cimacostol activates p53, likely as a result of
DNA damage, and its signalling, i.e., Noxa and
PUMA'®?? inducing a quick up-regulation of p53 in the
nuclei. This is not a change in gene transcription-
mechanism but occur through effects on p53 stability at
translational level>>?%, as for instance the phosphorylation
at Serl5 site. p53 is both a promoter and a suppressor of
autophagy and these effects establish a p53-dependent cell
fate’?®, We unravelled a double-edged role played by
climacostol in either promoting autophagy, independently
on p53 levels, or suppressing autophagosome turnover via
the up-regulation of p53. In this way, i.e., coordinately
inducing autophagosome accumulation and inhibiting the



Zecchini et al. Cell Death and Disease (2019)10:10 Page 10 of 19

a
KD nt siRNA p53 siRNA nt sSiRNA+CLIMA  p53 siRNA+CLIMA
a
15- ' P A 0 S cleaved-caspase 3
100- "= — — . ¢ w7 vineulin
b c > &@ &q% &v"
P S S SS
< &Y Y
Z KDa
E 50- e —— g @R D53
pi ;
37- A— c— c— s, s | DH
0
1h 3h 6h 9h 24h
d CTRL CLIMA 3h CLIMA 6h CLIMA %h CLIMA 24h
£
w
iy
(-7
=
<
a
(J
nt siRNA P53 siRNA nt siRNA+CLIMA  p53 siRNA+CLIMA 5
kDa 31§
15- e 1.C3-11 5
s s o ——— Z
3
37- S
D G e G G GEED G G G GRD G & LDH
nt siRNA p33 siRNA nt sSiRNA+CLIMA p53 siRNA+CLIMA =
kDa E
— £
% ——-"‘—__-..Q~-’ p62 £
g
37- -
‘-—————_-M-_——’ LDH
Fig. 6 (See legend on next page.)
A

Official journal of the Cell Death Differentiation Association



Zecchini et al. Cell Death and Disease (2019)10:10

Page 11 of 19

(see figure on previous page)

Ser15 site (p-p53°°"'?)

representative of 3 independent experiments

\

Fig. 6 p53 is involved in the climacostol regulation of autophagy. a Western blotting images of cleaved-caspase 3 expression in B16-F10 cells
transfected for 48 h with a p53-specific (p53 siRNA) or a non-targeting siRNA (nt siRNA), followed by vehicle or climacostol (CLIMA) treatment (24 h,
30 pg/ml). Vinculin was used as internal standard. b—d B16-F10 cells were cultured with 30 pug/ml CLIMA or control vehicle (CTRL) for increasing times.
b mRNA levels of p53 gene, as measured by real-time PCR. Results are expressed as fold change of control (dashed line), set as 1. ¢ Western blotting
images of p53 expression. LDH was used as internal standard. d Confocal immunofluorescence imaging of total p53 and p53 phosphorylated at
. Scale bar: 10 um. DAPI was used for nuclei detection. e Western blotting images of LC3 and p62 expression in B16-F10 cells
transfected for 48 h with a p53-specific (p53 siRNA) or a non-targeting siRNA (nt siRNA), followed by vehicle or CLIMA treatment (24 h, 30 ug/ml). LDH
was used as internal standard. Right panels: densitometric analysis of LC3-Il and p62 relative to their respective standard. Results are expressed as fold
change of nt siRNA. ***p < 0.0001 relative to nt SiRNA, #p < 0.05 relative to p53 siRNA, §p < 0.05 relative to nt siRNA 4+ CLIMA. Images and data are

J

autophagic flux, more autophagic vacuoles may be accu-
mulated in tumour cells. The natural compound bafilo-
mycin Al activates early stage of autophagy by
downregulating mTOR pathway, and inhibits later stages
of autophagy in hepatocellular carcinoma involving
PUMA®3, In addition, tetrandrine, which blocks autop-
hagic flux and induces apoptosis in cancer cells, has been
shown to induce a significant phosphorylation of
AMPK?®, In this respect, we provide evidence that the
activation of autophagy by climacostol is likely due to an
inhibition of mTOR signalling unrelated to p53; p53, via
AMPKa activation, is nevertheless involved in the
climacostol-induced impairment of autophagic process as
AMPKa phosphorylation is under its control and the
knock-down of AMPKa inhibited autophagosomes
accumulation by climacostol. Accordingly, the activation
of p53 increased the phosphorylation of AMPK and
inhibited mTOR in cancer cells in which the completion
of autophagy was inhibited**. In melanoma the activation
of AMPK may induce accumulation of autophagosomes
that are unable to be degraded when autophagosome
clearance is inhibited*”. Also, pro-inflammatory cytokines
inhibit mTOR in B-cells, stimulate the AMPK axis and
block autophagic flux®.

Autophagy may be either protective or toxic and
AMPK may be connected with apoptosis regulation®’. In
melanoma the block of autophagy may aggravate or
induce cell apoptosis*>**~>* due to excessive accumula-
tion of autophagic vacuoles containing deleterious unde-
graded material. Climacostol is an efficient agent acting
fast (between 3 h and 6 h) on autophagic flux resulting in
autophagosome accumulation in the cytosol. Although
dysfunctional autophagy in climacostol-treated cells
occurs prior to detectable apoptosis®’, the possibility that
climacostol-induced cell death is downstream autophagy-
related events is not supported by our data. The toxicity of
climacostol against melanoma cells was not affected by
the inhibition of AMPKa, thus the pro-apoptotic function
of climacostol could not be attributed to the block of
autophagosome turnover. Notably, climacostol disruption
of autophagic flux is not associated with the activation of
caspases and climacostol is also able to inhibit tumour cell
viability without the involvement of caspases. These data

10-12
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indicate that climacostol effects on autophagy and apop-
tosis are two separate events, although both reflecting the
upstream activation of p53. Noteworthy, they may act
independently and in a redundant manner on life/death
decisions of the cell. These observations provide a plat-
form for future studies to explore the dual targeting of
autophagy and apoptosis with cytotoxic agents acting on
p53 for the killing of tumours that frequently develop
chemoresistance due to protective autophagy**°.

In essence, our study shows that climacostol impairs
autophagy in tumours and suggests that the clinical
potential of climacostol should be investigated further.
We also generated valuable mechanistic insights identi-
fying the p53-dependent increase of AMPK activity as the
major responsible of autophagy disruption, although the
mTOR pathway unrelated to p53-AMPK axis also plays a
role. The up-regulation of p53 system is at the molecular
crossroad regulating both the anti-autophagic action of
climacostol and its role in the induction of apoptosis. In
agreement with the promising paradigm of dual targeting
of autophagy and apoptosis, different natural compounds
have been shown to display anti-autophagic flux and pro-
apoptotic effects in cancers®>******™%  Qur findings
suggest the efficacy of ciliate bioactive molecules, which
have several intrinsic properties'®****%, favouring their
consideration in drug discovery and development.

Materials and methods
Climacostol

Chemically synthesised climacostol (C;5H2,0,, alkenyl
resorcinol) was obtained as previously described®”. The
configuration of the double bond was assigned as a (Z)-
based. Structure-activity studies have indicated that the
C2-C3 unsaturation in the side chain plays a key role for
the biological activity'®*>**®!, The (Z)-diastereomer is
the active organic molecule, while the (E)-diastereomer is
less active. The NMR spectroscopy of the climacostol
obtained by our procedure allowed to determine that the
content of (Z)-diastereomer was major than 99%, without
contamination with the undesired (E)-diastereomer.
Given that in the mixture of the two diastereomers the
separation of the (Z)-diastereomer from its (E)-config-
uration was not possible through the common methods
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Fig. 7 Autophagy signalling molecules involved in the climacostol regulation of autophagy. a B16-F10 cells were cultured with 30 pg/ml
climacostol (CLIMA) or control vehicle (CTRL) for increasing times. Western blotting images of phosphorylated Akt, S6 and AMPKa. The total Akt, S6
and AMPK were used as internal standard. Images are representative of 6 independent experiments. b Western blotting images of phosphorylated S6
and AMPK in subcutaneous B16-F10 melanoma allografts excised from mice at day 16 of treatment (from day O - every 3—-4 days) with 100 pl CLIMA
(600 pg/ml) or CTRL. The total S6 and AMPK were used as internal standard. Images represent the results obtained from 6 animals per experimental
group. ¢ Western blotting images of AMPKa, LC3 and p62 expression in B16-F10 cells transfected for 48 h with an AMPKa-specific (AMPKa siRNA) or a
non-targeting siRNA (nt siRNA), followed by CLIMA treatment (24 h, 30 ug/ml). LDH was used as internal standard. Right panels: densitometric analysis
of AMPKa, LC3-Il and p62 relative to their respective standard. Results are expressed as fold change of nt siRNA + CLIMA. Images and data are
representative of 3 independent experiments. *p < 0.05 and **p < 0.005 relative to nt siRNA + CLIMA. d Western blotting images of phosphorylated
Akt, S6 and AMPKa in B16-F10 cell transfected for 48 h with a p53-specific (p53 siRNA) or a non-targeting siRNA (nt siRNA), followed by vehicle or
CLIMA treatment (6 h, 30 pug/ml). The total Akt, S6 and AMPKa were used as internal standard. Right panels: densitometric analysis of phosphorylated
proteins relative to their respective standard. Results are expressed as fold change of nt siRNA. Images and data are representative of 3 independent
experiments. **p < 0.005 and ***p < 0.0001 relative to nt siRNA; #p < 0.05, ##p < 0.005 and ###p < 0.0001 relative to p53 siRNA, §p < 0.05 relative to nt
SIRNA + CLIMA. e Western blotting images of AMPKa and p53 expression in B16-F10 cells transfected for 48 h with an AMPKa-specific (AMPKa siRNA)

|_representative of 3 independent experiments

or a non-targeting siRNA (nt siRNA), followed by vehicle or CLIMA treatment (24 h, 30 ug/ml). LDH was used as internal standard. Images are

Table 1 Body weight data
Week CTRL CLIMA
2mg/kg 4 mg/kg

0 20.80+0.28 20.78 £0.08 20.72+0.23
1 2227 £ 044 21.75+0.52 2139+0.35
2 23.34+058 22.79+0.13 22.73+058
3 2429+ 058 2409 +0.54 2436+0.23
4 2542 +057 25.08 £041 2547 048

The data points are expressed in grams and have been obtained from 3 animals
per experimental group
CTRL control (vehicle), CLIMA climacostol

of separation, the natural toxin purified from cultures
of Climacostomum virens was less active than synthetic
climacostol. The latter one was then dissolved in absolute
ethanol at 10 mg/ml stock, and stored in the dark at
—20°C until use. The stock solution of climacostol was
diluted in phosphate buffered saline (PBS) (Euroclone,
Pero, Italy) or in culture medium for in vivo injections
and in vitro experiments, respectively. Where not
indicated, the other reagents were purchased from Sigma-
Aldrich (Saint Louis, MO, USA).

Animals and cell cultures

Female C57BL/6 mice (8—12 weeks old) were purchased
from Charles River Laboratories (Calco, Italy), housed in
a regulated environment (23 +1°C, 50 + 5% humidity)
with a 12h light/dark cycle (lights on at 08.00 a.m.),
and provided with food and water ad libitum. All studies
were conducted in accordance with the Italian law on
animal care N° 116/1992 and the European Communities
Council Directive EEC/609/86. All efforts were made
to reduce both animal suffering and the number of ani-
mals used.

Official journal of the Cell Death Differentiation Association

Murine melanoma B16-F10, murine glioma GL261,
human glioblastoma U87MG?>>**?~** human melanoma
A375 and SK-MEL-5 (obtained by the American
Type Culture Collection) cell lines were cultured in
Iscove’s supplemented with 10% heat-inactivated foetal
bovine serum, glutamine (2 mM), penicillin/streptavidin
(100 U/ml), 1% Hepes 1 M (Euroclone), pH 7.4. Cells were
grown at 37°C in a humidified atmosphere containing
5% CO, (logarithmic growth phase, routine passages
every 3 days). To create B16-GFP cells, B16-F10 cells
were transfected with lentivirus pLVX-Puro (Takara Bio
USA, Mountain View, CA, USA) encoding for EGFP,
produced upon transfection of HEK-293T packaging cells
with the lentiviral vector. After two cycles of infection
cells were selected with puromycine (1 ug/ml) for 2 weeks
in order to obtain a stable GFP-expressing cell line.

RNA interference

Gene silencing of p53 and AMPKa in B16-F10 cells was
performed as previously published**’. Briefly, according
to the manufacturer’s protocol, iBONI siRNA Pool
(Riboxx, Radebeul, Germany) targeting mouse p53 (¢rp53)
and AMPKal/2 (Santa Cruz Biotechnology, Dallas, TX,
USA) targeting mouse AMPK« (prkaal and prkaa2) were
mixed to Lipofectamine RNAiMax transfection reagent
(Life Technologies, Monza, Italy). iBONI siRNA Pool
negative control (Riboxx) and control siRNA-A (Santa
Cruz Biotechnology) (non-targeting siRNAs) were also
used. The mix was added to cultured B16-F10 cells at a
siRNA concentration of 10-50 nM for 48 h.

Animal handling and allograft tumour models

Using published protocols'®****%*7%> mice (weighing
1821 g) received subcutaneous injections of 5 x 10* cells
B16-F10 in the lower-right flank. When the syngeneic
implantation was established (usually 10 days after
tumour cells inoculation) and the tumour was palpable
(volume range between 15-30 mm?), mice were randomly
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Fig. 8 Autophagy/cell death events induced by climacostol. a, b GFP-expressing B16-F10 cells were injected into the tail vein of syngeneic mice
the week before climacostol intraperitoneal treatment (4 mg/kg every 3-4 days for 2 weeks). Diaphragm, a skeletal muscle separating the thoracic/
peritoneal cavities, was analysed by confocal microscopy 3 weeks after transplantation. a Confocal immunofluorescence imaging of melan-A, LC3
and cleaved-caspase 3 in tumour foci observed in the sections of diaphgram tissue. The signal of GFP (tumour cells) and DAPI (nuclei) was also
detected. b Confocal immunofluorescence imaging of laminin, LC3 and cleaved-caspase 3 in diaphgram muscle. DAPI was used for nuclei detection.
Scale bar: 50 um. Images represent the results obtained from 5 animals. ¢ Exclusion dye staining with trypan blue in B16-F10 cells (>5 x 10° cells per
experimental condition) transfected for 48 h with an AMPKa-specific (AMPKa siRNA) or a non-targeting siRNA (nt siRNA), followed by vehicle or
climacostol (CLIMA) treatment (24 h, 30 ug/ml). Data are expressed by setting the number of living cells in control samples as 100%. Data are
representative of 3 independent experiments. ***p < 0.0001 relative to nt siRNA; ###p < 0.0001 relative to AMPKa siRNA. d - f B16-F10 cells were
cultured with 30 pg/ml CLIMA or control vehicle (CTRL) for 24 h, both in the absence and presence of the pan-caspase inhibitor Z-VAD-(OMe)-FMK
(Z-VAD; 100 uM). d Western blotting images of cleaved-caspase 3 expression. Vinculin was used as internal standard. Right panel: densitometric
analysis of cleaved-caspase 3 relative to the standard. Results are expressed as fold change of CLIMA. Images and data are representative of 3
independent experiments. **p < 0.005 relative to CLIMA.e Western blotting images of LC3 and p62 expression. LDH was used as internal standard.
Right panels: densitometric analysis of LC3-Il and p62 relative to their respective standard. Results are expressed as fold change of CTRL. Images and
data are representative of 3 independent experiments. **p < 0.005 and ***p < 0.0001 relative to CTRL; ##p < 0.005 and ###p < 0.0001 relative to Z-VAD.

f MTT assay assessing cell viability. Data are expressed by setting the absorbance of the reduced MTT in control samples as 100%. Data are
representative of 8 independent experiments. ***p < 0.0001 relative to CTRL; ###p < 0.0001 relative to Z-VAD

assigned to one of the two experimental groups. In par-
ticular, transplanted mice received 100 pl intra-tumour
injections of vehicle or climacostol (600 pg/ml, equivalent
to ca. a concentration of 3 mg/kg dose) every 3—4 days. At
day 16, mice were sacrificed, tumours removed and pro-
cessed. In testing the toxicity of intraperitoneal injections
of climacostol, mice were administered with dissolved
drug (at 2 and 4 mg/kg) or vehicle every 3—4 days for
4 weeks. In another set of experiments, mice received 1 x
10° B16-GFP cells into the tail vein®®. The week after,
climacostol was intraperitoneally injected every 3—4 days
at 4 mg/kg. Two weeks after climacostol treatment, mice
were sacrificed and the diaphragm skeletal muscle tissue
removed.

Real-time PCR

The analysis of mRNA expression was performed as
previously described'®**¢>%%%7 Briefly, total RNA from
in vivo resected B16-F10 tumours and in vitro B16-F10
cells was extracted with the High Pure RNA Tissue Kit
and the High Pure RNA Isolation Kit, respectively (Roche
Applied Science, Mannheim, Germany), according to the
manufacturer’s protocol. First-strand cDNA was gener-
ated from 1 pg of total RNA using iScript Reverse Tran-
scription Supermix (Bio-Rad, Hercules, CA, USA). A set
of primer pairs (Eurofins Genomics, Milano, Italy) was
designed to hybridize to unique regions of the appropriate
gene sequence (Supplementary Table 1). PCR was per-
formed using SsoAdvanced Universal SYBR Green
Supermix and the CFX96 Touch Real-Time PCR Detec-
tion System (Bio-Rad). The fold change was determined
relative to the selected control sample after normalising to
Rpl32 (internal standard) by the formula 2447,

Fluorescence microscopy
As previously published'®****®® in vivo resected B16-

F10  tumours were immersion-fixed in 4%
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paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4,
for 3 h. The fixed tissue was transferred to 25% sucrose in
PB. Tumour sections were cut at 10 um with a cryostat,
mounted onto positively charged slides and stored at —20
°C. Dissected diaphragm tissues®”’° were rapidly frozen
and then cut at 10 um with a cryostat, mounted onto
positively charged slides and stored at —20°C until use.
Slides were then immersion-fixed in 4% paraformalde-
hyde in PB, pH 7.4, for 10 min. Sections were treated for
30 min at room temperature with 5% bovine serum
albumin and 10% of normal goat serum (Life Technolo-
gies) in PB containing 0.5% Triton X-100. Overnight
incubation was performed with one of the following rabbit
primary antibodies: anti-LC3, anti-p62/SQSTM1 and
anti-laminin A (Sigma-Aldrich), anti-melan-A (GeneTex,
Irvine, CA, USA), anti-cleaved-caspase 3 (Cell Signaling
Technology, Danvers, MA, USA)’"’? in PB containing
0.5% Triton X-100. For fluorescence detection, sections
were stained with the appropriate Alexa Fluor secondary
antibody (Life Technologies) in PB containing 0.5% Triton
X-100 for 1.5h and cover-slipped with Fluoroshield
Mounting Medium containing DAPI (nuclei detection)
(Abcam, Cambridge, UK). Incubation in secondary anti-
body alone was performed as a negative control. Images of
resected tumours were acquired by a Zeiss Axioskop 2
plus microscope equipped with the Axiocam MRC pho-
tocamera and the Axiovision software (Carl Zeiss, Ober-
kochen, Germany). Images of diaphragm tissue were
acquired by a Zeiss LSM 710 inverted confocal
microscope.

Using published protocols®>**®?, in vitro B16-F10 cells
cultured in 120-mm coverslips were fixed in 4% paraf-
ormaldehyde in 0.1 M PB, pH 7.4, for 10 min and over-
night stained with rabbit anti-LC3, anti-p62/SQSTM1
and anti-phospho-p53 (Ser15), and mouse anti-p53 (Cell
Signaling Technology) primary antibodies. Cells were
also stained with the appropriate Alexa Fluor secondary
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antibodies in PB containing 0.5% Triton X-100 for 1h
and cover-slipped in a ProLong Gold Antifade Mountant
(Life Technologies), stained with fluorescein phalloidin
(cytoskeleton detection) (Life Technologies) and DAPI
(Sigma-Aldrich). Slides were analysed using a DMI4000 B
automated inverted microscope equipped with a DCF310
digital camera (Leica Microsystems, Wetzlar, Germany).
Confocal imaging was performed with a Leica TCS SP5
AOBS microscope system. Image acquisitions were con-
trolled by the Leica LAS AF software.

To perform quantitative analysis for LC3 and p62
immunostaining’>~"*, images were converted to grayscale
and normalised to background using Adobe Photoshop
software (Adobe Systems, Mountain View, CA, USA).
Mean gray levels were then measured in the selected
tumour area or cells.

Western blotting

Using published protocols , in vivo resected
B16-F10 tumours and human or murine cancer cell lines
were homogenised in RIPA lysis buffer, supplemented
with a cocktail of protease and phosphatase inhibitors
(cOmplete and PhosSTOP; Roche Diagnostics, Milano,
Italy). Equal amounts of proteins were separated by
4-20% SDS-polyacrylamide gel electrophoresis (Criterion
TGX Stain-free precast gels and Criterion Cell system;
Bio-Rad) and transferred onto nitrocellulose membrane
using a Bio-Rad Trans-Blot Turbo System. When indi-
cated, the membranes were probed using the rabbit anti-
LC3, anti-p62/SQSTMI, anti-cleaved-caspase 3, anti-
phospho-Akt (Ser473), anti-phospho-S6 (Ser240/244),
anti-phospho-AMPKa (Thr172) and mouse anti-p53 (Cell
Signaling Technology)”"”* primary antibodies. After the
incubation with the appropriate horseradish-peroxidase-
conjugated secondary antibody (Cell Signaling Technol-
ogy), bands were visualised using the Clarity Western ECL
substrate with a ChemiDoc MP imaging system (Bio-Rad).
To monitor for potential artefacts in loading and transfer
among samples in different lanes, the blots were routinely
treated with the Restore Western Blot Stripping Buffer
(ThermoFisher Scientific, Waltham, MA, USA) and re-
probed with the mouse anti-vinculin (Sigma-Aldrich) or
goat anti-LDH-A (Santa Cruz Biotechnology). Primary
antibodies, i.e., rabbit anti-Akt and anti-AMPKa, and
mouse anti-S6 (Cell Signaling Technology), that recognize
the protein independently of its phosphorylation state,
were also used in re-probing experiment for normal-
isation purposes. When appropriated, bands were quan-
tified for densitometry using the Bio-Rad Image Lab
software.

18,23,54,62,75,76

Transmission electron microscopy
The collected B16-F10 cells were stored overnight at
4°C in a fixative solution containing 2.5% (v/v)
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glutaraldehyde and 2% (v/v) paraformaldehyde in 0.1 M
cacodylate buffer, pH 7.2. Fixed cells were washed in
cacodylate buffer and post-fixed with 2% (v/v) osmium
tetroxide in 0,1 M cacodylate buffer, pH 7.2 for 2h at 4 °C.
Samples were washed in the same buffer and dehydrated
through an ascending series of ethanol and embedded
in LRWhite resin (Electron Microscopy Science, PA,
USA). For ultrastructural observations at least 20 ultra-
thin sections (60—90 nm) were obtained using a Reichert
Ultracut ultramicrotome equipped with a diamond
knife (Leica Microsystems). Ultra-thin sections were
collected on copper grids, stained with uranyl acetate
and lead citrate, and observed with a 1200 EXII electron
microscope (Jeol, Tokyo, Japan). Micrographs were cap-
tured by the SIS VELETA CCD camera equipped with
iTEM software (Olympus, Tokyo, Japan).

MTT and Trypan blue viability assay

Cell viability on human or murine cancer cell lines
was determined by MTT assay using published proto-
cols®>00626777=79 'MTT absorbance was quantified spec-
trophotometrically using a Glomax Multi Detection
System microplate reader (Promega, Milano, Italy). B16-
F10 cells were also stained with trypan blue (Bio-Rad) and
the amount of living cells was determined using a Bio-Rad
TC10 Automat Cell Counter. Cells were visualised using
a Leica DMI4000 B automated inverted microscope
equipped with a DCF310 digital camera.

mRFP-GFP-LC3 assay

B16-F10 cells were plated on 14 mm coverslips coated
with poly-D-lysine and then cultured for 24 h. Cells were
then transiently transfected with tandem fluorescent
mRFP-GFP-LC3 plasmid®°, kindly provided by Dr. Pura
Munoz-Canoves (Pompeu Fabra University, Barcelona,
Spain), using Lipofectamine LTX and Plus Reagent
(Life Technologies). Three hours following transfection
at 37 °C, two-thirds of the media is replenished with fresh
media. After drug treatments, cells were washed once in
PBS and fixed with 4% paraformaldehyde (in PBS) for 15
min at room temperature. After washing, coverslips were
mounted on glass slides with ProLong Gold Antifade
Mountant with DAPI and analysed using a Carl-Zeiss
LSM 710 inverted confocal microscope. The number of
autophagosomes (number of yellow puncta per cell) and
autolysosomes (number of red puncta per cell) was
quantificated per cell, and at least 100 cells for each
experiment were included.

Statistics

Statistical significance of raw data between the groups
in each experiment was evaluated using unpaired Stu-
dent’s ¢ test (single comparisons) or one-way ANOVA
followed by the Newman-Keuls post-test (multiple
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comparisons). ECsg (the concentration producing half the
maximum effect) and E,,, concentration (producing the
maximum effect) were determined by non-linear regres-
sion curve analysis of the concentration-effect responses.
Potency values among concentration-response curves
were compared with the F-test. Data belonging from
different experiments were represented and averaged in
the same graph. The GraphPad Prism software package
(GraphPad Software, San Diego, CA, USA) was used. The
results were expressed as means + SEM of the indicated n
values.
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