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ABSTRACT: To investigate the systemic metabolic effects of SARS-CoV-2
infection, we analyzed 1H NMR spectroscopic data on human blood plasma and
co-modeled with multiple plasma cytokines and chemokines (measured in
parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D
J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-
PCR-positive patients (n = 15, with multiple sampling timepoints) and age-
matched healthy controls (n = 34, confirmed rRT-PCR negative), together with
patients with COVID-19/influenza-like clinical symptoms who tested SARS-
CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with
in vitro diagnostic research (IVDr) information on quantitative lipoprotein
profiles (112 parameters) extracted from the raw 1D NMR data. All NMR
methods gave highly significant discrimination of SARS-CoV-2 positive patients
from controls and SARS-CoV-2 negative patients with individual NMR methods,
giving different diagnostic information windows on disease-induced phenocon-
version. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without
detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical
relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1β, SDF-1α, IL-
22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which
was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with
multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1−4
subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a
multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and
characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and
testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic
recovery.
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■ INTRODUCTION

COVID-19 is a complex respiratory and systemic disease
caused by infection with the SARS-CoV-2 coronavirus. The
virus, both directly and indirectly, causes systemic damage to
multiple organs resulting in several new-onset pathologies
including diabetes,1 liver dysfunction,2 neurological damage,
and renal damage,3,4 as well as possible pulmonary5 and
cardiovascular damage.6 We have shown that SARS-CoV-2
infection induces a metabolic “phenoconversion” process that
gives a characteristic complex blood plasma signature
exhibiting multiple pathological effects of the disease and in
a complex mosaic of biochemical change.7 This COVID-19

phenoconversion signature is readily detectable by both
nuclear magnetic resonance (NMR) and mass spectrometric
techniques, with the spectral profiles providing multiple
windows onto the disease sequelae in different organ systems.7

The general term, phenoconversion, is defined here as follows:
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“The systemic shift in multiple molecular phenotypic proper-
ties from the healthy to a characteristic activated or
pathophysiological state in response to an infectious or a
pathophysiological challenge”. The term has previously been
used to describe accurately, but more narrowly, the process of
cellular metabolic activation by drugs to alter the biochemical
response to subsequent drug treatments via enzyme
induction.8 The broader definition applied here extends the
concept to cover disease processes and the resultant systemic
metabolic state changes. This is particularly appropriate for
COVID-19 that expresses itself in multiple clinical subpheno-
types involving several major organ systems. Thus, the exact
pattern of phenoconversion may give insights into the
underlying pathophysiological processes and their individual
variations.
We have suggested previously that the use of orthogonal

phenoconversion tests for COVID-19 detection might be
considered to augment polymerase chain reaction (PCR)-
based diagnostics based on systemic disease effects.7 Such
diagnostics can also be extended to clinical trial monitoring9,10

and long-term disease recovery studies. There are numerous
possible spectroscopic approaches to such augmented COVID-
19 diagnostics including NMR spectroscopy7,11 and mass
spectrometry,12,13 and all these carry different and comple-
mentary information sets describing a particular condition.
Multiple studies have shown the potential of metabolic
phenotyping with respect to the diagnosis of SARS-CoV-2
infection, and a comparison with healthy controls has indicated
a distinctive pattern of underlying pathologies.7,14 Mass
spectrometry has been used to identify characteristic patterns
of amino acids, biogenic amines, and lipids,7 whereas 1H NMR
spectroscopic studies have identified perturbations in multiple
lipoprotein subfraction patterns and an elevation in α-1-acid
glycoprotein [observed through characteristic N-acetyl proton
signals from the oligosaccharide side-chains designated
glycoprotein A (GlycA) and glycoprotein B (GlycB)], an
acute phase reactive protein that is elevated in systemic
inflammation.7,15

High-resolution 1H NMR spectroscopy of blood plasma and
other biofluids has been shown to have a wide variety of
diagnostic and biochemical applications.16−18 A number of 1D
and 2D experiments can be used to probe plasma
biochemistry,19 and recently, in vitro diagnostic research
(IVDr) methods have been developed to extract lipoprotein
information from plasma samples20−22. Information recovery
has been shown to be reliable with respect to sample collection
and storage, and spectral data are highly reproducible
irrespective of sample handling, collection tube type, or
freeze−thaw cycles.23 However, sample preparation methods
are key to obtaining reliable results, and prior heat treatment
for virus inactivation is highly disruptive of NMR-based
COVID-19 diagnostic biomarker information,23 causing
significant metabolic and lipoprotein disruption.
We have shown that a combination of IVDr-based

lipoprotein measurements with mass spectrometry-based
amino acid and biogenic amine analysis can discriminate
between SARS-CoV-2 positive patients and healthy controls
showing a distinctive pattern of underlying pathologies.7 Here,
we explore the potential of different 1H NMR methods to
classify SARS-CoV-2 positive samples in relation to both
healthy individuals and those with respiratory symptoms that
were serologically confirmed to be SARS-CoV-2 negative.
Three of the main NMR methods used in in vitro diagnostic

suites are evaluated here, exploiting the relative strengths of
each experiment and comparing their diagnostic performance
and information recovery. There has been much speculation
that acute acceleration of COVID-19-related morbidity is due
to accelerated immunological reactions, and that the so-called
“cytokine storm” events are significant contributors to
mortality. Thus, we have also examined the relationships
between these NMR data sets and a set of 34 circulating
cytokines measured on plasma samples from the same patients
taken at the same time in order to evaluate the possible
metabolic connections with systemic immunological events
that might relate to the underpinning pathological mecha-
nisms.

■ MATERIALS AND METHODS

Patient Enrollment and Sample Collection

Blood plasma samples were collected from a cohort of adult
individuals in a study initiated at Fiona Stanley Hospital in the
Western Australian South Metropolitan Health Service catch-
ment as part of the International Severe Acute Respiratory and
Emerging Infection Consortium (ISARIC)/World Health
Organization (WHO) pandemic trial framework (SMHS
Research Governance Office PRN:3976 and Murdoch
University Ethics no. 2020/052). Healthy control participants
were enrolled as volunteers, provided with study details, and
written consent was obtained prior to data collection in
accordance with ethical governance (Murdoch University
Ethics no. 2020/053). Three groups of participants were
recruited from the Fiona Stanley and Royal Perth Hospitals:
(i) patients who presented COVID-19 disease symptoms and
subsequently tested positive for SARS-CoV-2 infection from
upper and/or lower respiratory tract swabs by reverse
transcription PCR (rRT-PCR; n = 15 participants sampled at
various times resulting in n = 68 specimens); (ii) healthy
controls who had not exhibited COVID-19 disease symptoms
(n = 34 participants with 39 specimens); and (iii) patients with
COVID-19 disease symptoms and who tested negative (n = 35
participants with n = 35 specimens). The SARS-CoV-2
negative participants were further classified as those who
required hospitalization (n = 11) versus those who were
recruited from a COVID clinic but did not require hospital-
ization. The demographic data together with the clinical
symptoms are shown in Supporting Information Tables S1 and
S2.
As SARS-CoV2 has been reported to induce lingering

metabolic effects, in order to ensure that the control group
used to train the diagnostic model contained true healthy
controls, rather than individuals that may have been exposed to
the virus but were asymptomatic, additional serology testing
was performed for a subset of 44 individuals using a
commercial point-of-care serological COVID-19 IgA/IgG
test. Serology testing was conducted at the by PathWest
Laboratory Medicine WA, using 10 μL of plasma sample for 36
specimens (25 specimens from eight SARS-CoV-2 positive
patients, 3 specimens from 3 SARS-CoV-2 negative patients,
and 8 specimens from 7 healthy controls). Samples were
considered as SARS-CoV-2 positive if IgA > 1.0 or equivocal
where IgA = 0.8−1.0. IgG levels are reported in Supporting
Information Table S3). Plasma samples were stored at −80 °C.
Sample processing was performed according to Bruker IVDr
protocols for the small molecule and lipoprotein data24 and
according to the protocols for multiplexed Human Procarta-
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Plex Panel 1A (Life Technologies, USA) for the cytokine and
chemokine analyses.
1H NMR Spectroscopy Data Acquisition and Processing
Parameters

Plasma samples were thawed at 20 °C for 30 min and then
centrifuged for 10 min at 13,000g at 4 °C. Plasma samples were
prepared in 5 mm outer diameter SampleJet NMR tubes,
following the recommended procedures for in vitro analytical
and diagnostic procedures22 using 300 μL of plasma mixed
with 300 μL of phosphate buffer (75 mM Na2HPO4, 2 mM
NaN3, and 4.6 mM sodium trimethylsilyl propionate-[2,2,3,3-
2H4] (TSP) in D2O, pH 7.4 ± 0.1). NMR spectroscopic
analyses were performed on a 600 MHz Bruker Avance III HD
spectrometer equipped with a 5mm BBI probe and fitted with
the Bruker SampleJetTM robot cooling system set to 5 °C. A
full quantitative calibration was completed prior to the analysis
using a previously described protocol.24 All experiments were
completed using the Bruker In Vitro Diagnostics research
(IVDr) methods.21 For each sample, three experiments were
completed in automation mode, amounting to a total of 12.5
min of acquisition time per sample: a standard 1D experiment
with solvent presaturation (32 scans, 96 K data points, and a
spectral width of 30 ppm), a Carr−Purcell−Meiboom−Gill
(CPMG) spin-echo experiment (32 scans, 72 K data points,
and a spectral width of 20 ppm) which filters the spectrum by
differential T2 relaxation removing the peaks from the large
molecules, and a 2D J-resolved experiment (40 t1 increments
with 2 scans each). Data were processed in automation using
Bruker TopspinTM 3.6.2 and ICONTM NMR to achieve
phasing and baseline correction. In addition to the information
extracted from the standard 1D and CPMG spectra regarding
the low molecular weight plasma components, a total of 112
lipoprotein parameters for each sample were generated using
the Bruker IVDr Lipoprotein Subclass Analysis (B.I.-LISA)
method, whereby the −(CH2)n at δ = 1.25 and −CH3 at δ =
0.80 peaks of the 1D spectrum after normalization to the
Bruker QuantRef manager within Topspin were quantified
using a PLS-2 regression model.22 B.I.-LISA data consist of
total plasma lipid analyte cholesterol, free cholesterol,
phospholipids, triglycerides, apolipoproteins A1/A2/B100
and the B100/A1 ratio, and analyte distributions in different
density classes of plasma-lipoproteins: high-density lipoprotein
(HDL, density 1.063−1.210 kg/L), intermediate-density
lipoprotein (density 1.006−1.019 kg/L), low-density lip-
oprotein (LDL, density 1.09−1.63 kg/L), and very low-density
lipoprotein (VLDL, 0.950−1.006 kg/L). The main lipoprotein
classes HDL, LDL, and VLDL were subdivided into different
density subclasses (LDL-1: 1.019−1.031 kg/L, LDL-2: 1.031−
1.034 kg/L, LDL-3: 1.034−1.037 kg/L, LDL-4: 1.037−1.040
kg/L, LDL-5: 1.040−1.044 kg/L, and LDL-6: 1.044−1.063
kg/L), HDL subfractions into four density classes (HDL-1
1.063−1.100 kg/L, HDL-2 1.100−1.125 kg/L, HDL-3 1.125−
1.175 kg/L, and HDL-4 1.175−1.210 kg/L), and VLDL
subfractions into five density classes. A list of all the 112
lipoprotein parameters are shown in Supporting Information
Table S4. In addition to the 112 lipoprotein parameter, α-1-
acid glycoprotein (N-acetyl-glucosamino N-acetyl) signal
integrals were calculated as GlycA from the superimposition
of terminal N-acetyl signals (δ 2.03a) and GlycB calculated
from the branched chain N-acetyl signals (δ 2.07) from the
CPMG experiment.

NMR Data Modeling

Both the standard 1D and CPMG NMR spectral datasets were
calibrated to the α-anomeric proton signal of glucose at δ 5.23.
Each spectrum was baseline-corrected using an asymmetric
least squares routine; spectral regions corresponding to the
residual water resonance signal (δ 4.60−4.85) or predom-
inantly noise (δ < 0.5 and δ > 9.5) were excluded from
analyses. Spectra were normalized via a probabilistic quotient
method using the median spectrum as reference.25 Data were
mean-centered and scaled to unit-variance prior to multivariate
modeling. Principal component analysis (PCA) was used to
assess the main sources of structured variation within each
dataset (lipoprotein classes and subclasses, 1D and CPMG
spectra). In order to identify the lipoproteins and metabolites
differentiating SARS-CoV-2 positive participants from healthy
controls, an orthogonal projection to latent structures
discriminant analysis (OPLS-DA) model26 was constructed
using a training sample set comprising a single timepoint from
PCR-confirmed SARS-CoV-2 patients (n = 7) and age- and
sex-matched healthy control subjects (n = 7) confirmed to be
serologically negative based on IgA and Supporting Informa-
tion Table S3. The remaining dataset (n = 61 SARS-CoV-2
positive, n = 35 SARS-CoV-2 negative, n = 28 healthy control
samples, and n = 7 control samples, subsequently identified as
serology positive) was used as a test set and projected into the
OPLS-DA training set model. This was performed for each
spectral dataset (1D, CPMG, and quantitative lipoprotein)
separately and the optimal number of orthogonal components
was determined using the area under the receiver operator
characteristic curve (AUROC) calculated from predictive
component scores, generated using an internal leave-one-out
cross-validation procedure. The SARS-CoV-2 negative samples
were color-coded according to whether the samples were
obtained from patients hospitalized for respiratory conditions
(dark gray, n = 11) versus those reporting to a “walk-in”
COVID testing clinic (light gray, n = 28).

Cytokine and Chemokine Analyses

Where sample volume was sufficient (n = 23 SARS-CoV-2
positive samples and n = 15 healthy) xMAP cytokine assays
were carried out in 96-well polystyrene microplates using a
MagPix detection system (Luminex, USA). A total of 34
cytokines and chemokines were quantified using a multiplexed
Human ProcartaPlex Panel 1A (Life Technologies, USA)
according to manufacturer’s instructions. Briefly, capture bead
mixes were incubated overnight with 25 μL of serum sample at
4 °C and then washed three times in the wash buffer. Samples
and standards were then incubated with detection antibodies
for 30 min at room temperature, followed by three washes with
the wash buffer; all washes were performed using a Bio-Plex
Pro Wash station (Bio-Rad Laboratories). Streptavidin-PE was
then added and the plate incubated for 30 min at room
temperature (20 °C). Plates were subsequently washed three
times before the reading buffer was added. All buffers and
reagents were supplied with the Luminex detection kit (Life
Technologies, USA). The plate was incubated for further 5
min at room temperature before analysis. All incubation steps
were carried out using an orbital shaker at 500× rpm. Data
were analyzed using Luminex xPonent software.
Cliff’s delta statistic, a nonparametric effect size measure that

quantifies the group differences of a variable, was calculated for
both the quantitative lipoprotein data and the log-transformed
cytokine data, separately and in combination, in order to assess
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group differences. An absolute Cliff’s delta of 1 denotes the
maximum difference, while a value of zero denotes no
differences between two groups. The arithmetic sign indicates
the elevation or decrease in reference to a reference group (in
this case, the control group). To test for statistical significance,
a two-tailed paired Wilcoxon rank sum was applied. Correction
for multiple hypothesis testing was not appropriate as many of
the measured lipoprotein parameters are interdependent. Here,
a statistical significance level was fixed at α = 0.05. All
computation and data visualization were performed using R
and RStudio IDE with the open-source R package metabom8
(version 0.2), available from GitHub (github.com/tkimhofer/
metabom8).

■ RESULTS AND DISCUSSION

SARS-CoV-2 Positive Metabotypes are Distinct from Both
Healthy Controls and SARS-CoV-2 Negative Respiratory
Patients

The plasma from SARS-CoV-2 positive participants was clearly
biochemically distinct from that of either the healthy controls
or the SARS-CoV-2 negative participants based on information
drawn from all the spectral datasets (1D, CPMG, and
lipoproteins). Considering the PCA model of the 1D spectral
datasets (Figure 1A), the healthy controls clustered on the left
side of the Score Plot (plotted in blue) with the SARS-CoV-2
positive samples (plotted in red) clustering to the right side of
the diagram. Patients that tested negative for SARS-CoV-2
were mainly nonhospitalized (plotted in light gray) and tend to
cluster with healthy controls, while patients hospitalized for
other respiratory conditions (plotted in dark gray) showed a
greater overlap with those of SARS-CoV-2 positive patients. A
similar pattern was evident in the PCA score plots generated
from the CPMG data (Figure S1). Patient data and other
metadata are provided in Supporting Information Tables S1
and S2.
Antibody testing for IgA and IgG levels was performed on a

subset of samples in order to ensure that selected spectra used

for training the OPLS-DA model were correctly classified. It is
of note that 7 out of 34 participants originally recruited as
healthy controls (denoted by green symbols in the PCA score
plot; Figure 1) were found to have high IgA and/or IgG levels,
suggesting that either these individuals had previously been
unknowingly infected but were asymptomatic/mildly affected
or that there may have been some cross-reactivity with other
corona viruses.27 These individuals map in-between the SARS-
CoV-2 positive and healthy controls in the Principal
Components (PCs) space, with one individual mapping within
the SARS-CoV-2 positive cluster (identified by the circled co-
ordinates in Figure 1A), with an IgA value of 2.9 (positive) and
an IgG value of 0.8 (equivocal) mapping within the SARS-
CoV-2 positive cluster (Figure 1). Of the seven individuals in
the seropositive cluster, all but one had reported mild to severe
cold or influenza-like symptoms ranging from fever and nasal
decongestion to extreme fatigue in the 2 months prior to
sampling but were not tested at the time. Further, five of the
seven had traveled to countries with high levels of SARS-CoV-
2 infection within the 2 months prior to testing. The fact that
the seropositive but not PCR-confirmed samples lie at the
boundary between the SARS-CoV-2 positive and healthy
groups indicates that there are some metabolic similarities with
the SARS-CoV-2 positive group and may represent participants
who had been exposed to the virus.
PC1 loadings (Figure 1B), which define the direction of

metabolic separation of SARS-CoV-2 and healthy control
classes, were dominated by elevated signals from glucose and
α-1-acid glycoprotein15,28 consistent with previous observa-
tions of diabetes and acute inflammation associated with
COVID-19 disease.28 The NMR signals for GlycA at δ 2.03
and GlycB at δ 2.07 were integrated and significant intensity
differences were found between groups, with SARS-CoV-2
positive samples containing the highest median concentrations
of both GlycA and GlycB, followed by SARS-CoV-2 negative
samples (Figure S2). GlycA has been shown to be a robust
marker of inflammatory and proinflammatory conditions
including inflammatory bowel disease,29 gestational diabetes,30

Figure 1. PCA of 1D 600 MHz 1H NMR spectral data. (A) PCA score plot showing clustering patterns for the healthy controls (blue), SARS-CoV-
2 positive (red), nonhospitalized SARS-CoV-2 negative (light gray), hospitalized SARS-CoV-2 negative (dark gray) samples, and control
participants who tested positive for IgA (green). The ellipse indicates Hotelling’s T2 statistic (α = 0.95), which can be interpreted as a multivariate
confidence interval; (B) PCA loading plots for PC 1 and (C) PC2. Key: 1 = valine; 2 = lactate; 3 = GlycA; 4 = GlycB; 5 = glucose; and 6 =
triglycerides.
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Figure 2. OPLS-DA for the training (closed triangle) and test sets (open triangle) of the 1D spectral dataset. (A) Score plot for OPLS-DA of the
training set using the 1D spectra of the healthy controls and COVID-19 positive (n = 7 per group) patients. (B) Coefficient plot of the OPLS-DA
model showing that the SARS-CoV-2 patients were dominated by signals from GlycA, GlycB, glucose, and lactate; whereas the control group was
driven by higher concentrations of a phosphocholine molecule. Projection of test set into the OPLS-DA training set model for (C) healthy
individuals (blue open triangle); (D) SARS-CoV-2 positive patients (red open triangle); and (E) SARS-CoV-2 negative patients for hospitalized
(dark gray open triangle), nonhospitalized patients (light gray open triangle), and (F) controls who tested positive according to the IgA serology
results but who had not been formally diagnosed as having SARS-CoV-2. Key: 2 = lactate; 3 = GlycA; 4 = GlycB; 5 = glucose; 6 = triglycerides; 7 =
lysophosphatidylcholine; and 8 = pyruvate.
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alcoholic liver disease,31 cardiovascular risk,32 rheumatoid
arthritis33 and certain cancers,28 although GlycA is confounded
by hemolysis and is not an appropriate marker of inflammatory
conditions such as sickle cell disease.34 In general, GlycA has
been found to be a better predictor of inflammatory conditions
than either C reactive protein (CRP) or interleukin-6 (IL-6),
and is independent of both, although GlycA and CRP have
been found to be strongly correlated in many studies.28

Kettunen et al. reported GlycA to be predictive of mortality
risk in angiography patients31 and has also been shown to be
an early predictor of subclinical cardiovascular disease and
treatment response in the early stage of rheumatoid arthritis33

and in the development of gestational diabetes.30

The signal defining GlycA at δ 2.03 is mainly attributed to α-
1-acid glycoprotein but represents a conglomerate of five

circulating glycoproteins, with alpha-1 antitrypsin, haptoglobin,
transferrin, and α-1-antichymotrypsin additionally contributing
to the signal intensity.35 Ritchie et al. calculated the
concentrations of each of the five components and assessed
their correlation with the GlycA signal and with mortality risks
and found that while α-1-acid glycoprotein demonstrated the
strongest correlation with GlycA, α-1 antitrypsin levels were
the most predictive of morbidity and mortality for a range of
diseases including heart failure, influenza, and liver diseases.
GlycA has also been associated with microbial diversity,
underscoring the relationship between the gut microbiome and
inflammation.36 While there are fewer studies relating to
GlycB, associations between GlycB and inflammatory con-
ditions have also been reported.33

Figure 3. PCA of lipoprotein parameters. (A) PCA of lipoprotein parameters of the healthy (blue); individuals from the healthy cohort with a
seropositive IgA result (green) and SARS-CoV-2 positive patients (red); (B) PCA lipoprotein loading plot; PCA of the lipoprotein parameters with
an individual SARS-CoV-2 positive patient trajectory (C) showing change in the metabolic lipoprotein profile over five collection timepoints; and
(D) another individual with seven collection timepoints. Coordinates marked with red * represent timepoints where the participant tested PCR
positive and cyan * denotes a negative PCR result.
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The second PC loading vector (Figure 1C) is dominated by
triglyceride signals consistent with obesity in several of the
participants shown in Figure 1A, with all of the samples
mapping outside the Hotelling’s T ellipse derived from
overweight or obese individuals. A PLS regression of the 1H
NMR spectral data against the body mass index (BMI) for all
the SARS-CoV-2 positive participants and all the healthy
control participants yielded similar loadings to those identified
in the PCA model of the dataset (Figure S3), indicating that
BMI was the major driver for the variance observed in the
second PC. This observation is consistent with other studies
showing the association between BMI and high levels of serum
triglycerides.37 The second PC was also weighted by one
SARS-CoV-2 positive patient, represented by several samples
obtained at different times postinfection, with a pre-existing
type 2 diabetes diagnosis and a BMI of 37.4 (indicated by the
coordinates connected by a gray line in Figure 1A).
In order to extract a clearer signal of SARS-CoV-2 infection

that was less confounded by BMI and other factors such as
comorbidities, OPLS-DA was applied to the 1D 1H NMR
spectral data and yielded a strong model (AUROC = 1.0, based
on one predictive and one orthogonal component) separating
the control and SARS-CoV-2 positive patients. The scores,
together with the corresponding loading plots for the training
set, based on seven healthy control and seven SARS-CoV-2
patients, are shown in (Figure 2A,B). The test set projections
of the healthy control, SARS-CoV-2 positive patients, and
SARS-CoV-2 negative patients into the OPLS-DA model show
good prediction of healthy control participants (Figure 2C)
and SARS-CoV-2 positives (Figure 2D), whereas the SARS-
CoV-2 negative patients cluster in-between the healthy and
SARS-CoV-2 positive groups but map more closely to the
healthy group (Figure 2E). Samples from individuals originally
included in the healthy control set but who were seropositive
for IgA (Figure 2F; green triangles) were projected between
the healthy and SARS-CoV-2 positive groups with three
samples from the same individual identified in Figure 1
mapping closer to the positive group.
PCA and OPLS-DA analyses were also performed using

CPMG spin-echo NMR data (Figures S1 and S4) in addition
to the 1D spectral dataset. In addition to elevated α-1-acid
glycoprotein signals (GlycA and GlycB), key discriminatory
features of SARS-CoV-2 positive patients were detected in the
CPMG dataset, and these included higher concentrations of
alanine, lactate, and pyruvate compared to healthy controls,
which were highly statistically correlated indicative of a shift in
the energy metabolism. The lactate/pyruvate ratio was
significantly greater (p < 0.0002) for the SARS-CoV-2 positive
group (28.20 ± 11.95) compared to that of the healthy group
(21.31 ± 4.57) and has been shown to be a good test of
impaired mitochondrial respiration as it indirectly reflects the
NADH:NAD+ redox state in the cytoplasm38 and is high in
poorly ventilated patients. The discriminatory powers of
CPMG spin-echo spectra for identifying SARS-CoV-2 positive
individuals which edits out most macromolecular signals
except from those from GlycA and GlycB acetyl signals from
N-glycans (δ 2.03) and the attached oligosaccharide backbone
sugar ring protons. Even though these moieties are carried on a
macromolecule, there is significant segmental motion in the
oligomeric chain which means that the T2 relaxation times are
relatively long and so are not attenuated.39,40

The loadings for the aromatic region were difficult to
interpret due to the partial overlap of signals from various

metabolites. However, as alluded to in previous publications, a
general disturbance in amino acid metabolism was manifested
in the SARS-CoV-2 positive group with increased phenyl-
alanine [δ 7.33 (doublet); (δ 7.43 (multiplet)] being in the
SARS-CoV-2 positive group in contrast to 1-methylhistidine [δ
7.05 (singlet); δ 7.77 (singlet)], which was decreased in
comparison with the healthy control group (Figure S4). NMR
signals from the ether glucuronide conjugate of the widely used
analgesic drug acetaminophen (paracetamol, Tylenol) were
also noted in some of the SARS-CoV-2 positive patient group
(8 out of 15), consistent with disease-related analgesia, and
with a third of SARS-CoV-2 negative group (12 out of 39)
showing acetaminophen signals but none in the healthy control
(n = 28) as shown in the comparison of an exemplar 2-D J-
resolved of a healthy control sample (blue) overlaid with a
SARS-CoV-2 sample (Figure S5). Detailed NMR signal
analysis of acetaminophen metabolites has been reported
previously41 and their presence in normal human populations
from widespread over-the-counter self-administration.42

Differential Effects of SARS-CoV-2 on Lipoprotein Profiles

The standard Bruker IVDr quantification was applied to the
1D NMR data in order to extract the impact of SARS-CoV-2
infection on the lipoprotein profile. The PCA score plot
(Figure 3A) of the 112 lipoprotein concentrations and their
ratios, together with the corresponding loadings (Figure 3B),
shows a clear differentiation between SARS-CoV-2 positive
patients and healthy controls. The quantitative lipoprotein
model produced a slightly inferior classification of SARS-CoV-
2 positivity to the simple 1D NMR spectra shown previously,
which is consistent with the loss of the extra discriminatory
power conveyed by the GlycA and GlycB signals that carry
extra information on the inflammatory processes. Nonetheless,
most of the samples from healthy participants (blue), including
those from the healthy group who had tested positive for IgA
(green), are clustered on the left hand side of the plot with
SARS-CoV-2 positive patients tending to cluster to the right
hand side. Within the SARS-CoV-2 positive group, several
patients were represented by multiple samples, which showed a
metabolic trajectory, or progression of infection, within the
SARS-CoV-2 cluster, indicating that the metabolic effects of
the virus were relatively stable through the time in which they
were studied. Such metabolic time trajectories have previously
been demonstrated in a variety of experimental toxicity states
and provide useful insights into the progression of disease43−45

showing onset, progression, and resolution of disease.
The individual patient journey trajectories are illustrated for

two patients where longitudinal data were available (Figure
3C,D). For both of these patient trajectories, the biochemical
profiles mapped within the SARS-CoV-2 positive space,
indicating that there was no biochemical recovery toward
“normal” during that time period even though the nasal swab
confirmed the absence of virus by the end of their hospital stay.
This raises an interesting and important clinical point in that
“recovery” for COVID-19 is normally assessed on respiratory
symptoms. However, a patient cannot be said to be truly
recovered unless they are also biochemically normal and free of
some of the more complex, but less visually obvious systemic
effects of the disease. For example, the trajectory depicted in
Figure 3C shows a patient who was diagnosed as SARS-CoV-2
positive at timepoints 1, 2, and 3 (indicated by a red*) and
confirmed as negative by timepoint 5 (cyan*). Similarly, the
second trajectory Figure 3D tested positive at timepoint 1
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(red*) and tested negative at timepoint 5 (cyan*) with no
testing carried out between timepoints 1 and 5. This

observation suggests that SARS-CoV-2 infection leaves a
residual metabolic signature with an, as yet, undetermined time

Figure 4. OPLS-DA of lipoprotein training set. (A) OPLS-DA score plot for healthy controls and SARS-CoV-2 positive patients; (B)
corresponding loadings of the OPLS-DA; projection of the test set into the OPLS-DA training model for (C) healthy individuals; (D) SARS-CoV-2
positives patients; (E) SARS-CoV-2 negative patients, and (F) serology IgA positive.53
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of resolution. This type of information could be clinically
useful in determining the rates of recovery of patients or
indeed incomplete recovery with respect to new onset co-
morbidities described previously.7

The PCA loadings demonstrate relatively higher concen-
trations of LDL cholesterol (LDCH), LDL phospholipids
(LDPL), LDL-free cholesterol (LDFC), LDL apolipoprotein
B, HDL cholesterol (HDCH), and phospholipids (HDPL) in
the healthy control group, whereas the SARS-CoV-2 positive
group was associated with higher concentrations of VLDL
cholesterol (e.g., V1CH, V2CH, and so forth) and triglycerides
(e.g., V1TG, V2TG, and so forth) subclasses in general. In
order to interrogate further the impact of the virus on the
serum lipoprotein composition, an OPLS-DA model was
constructed (Figure 4) based on the same training set as the
1D and CPMG spectral dataset. The model yielded an
AUROC of 1.0 attesting to the strength of the model and
echoing the observations from the PCA model. The strong
influence of high concentrations of LDL triglycerides and its
subclasses (e.g., L1 to L4TG) in driving the SARS-CoV-2
signature was reinforced along with VLDL cholesterol

(V3CH) and phospholipids (V4PL). In addition, the ratio of
apolipoprotein A1 to apolipoprotein B100 (ABA1) was
strongly positively associated with the SARS-CoV-2 positive
group (Figure 4B and Table S5). Healthy participants
demonstrated higher concentrations of HDL and LDL
cholesterol and phospholipids (HDCH, HDPL, LDCH, and
LDPL) and total plasma apolipoproteins A1 and A2 (TPA1
and TPA2). The lipoprotein signature attributed to the SARS-
CoV-2 positive group shares similarities with the lipoprotein
signature associated with type 1 diabetes reported by Llaurado ́
et al.,46 who showed that diabetes was associated with high
concentrations of LDL triglycerides, VLDL particle number
and LDL, HDL, and total cholesterol. A lower LDL particle
number was also a key feature of both SARS-CoV-2 infection
and type 1 diabetes. Coronary artery disease (CAD) in
diabetics has previously been associated with higher concen-
trations of small dense LDL (LDL 5 and 6), which
demonstrated an association with increased risk of CAD in a
diabetic population.47 Other studies have confirmed the
observation that small and medium LDLs are predictive of
CAD risk in type 1 diabetics and further have shown that the

Figure 5. Eruption plot of the combined lipoprotein data, cytokine data, and GlycA and GlycB ratios for the SARS-CoV-2 positive samples formed
from Cliff’s delta (abscissa) and O-PLS-DA loadings (ordinate). Variables are color-coded for statistical significance.
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LDL particle concentrations were associated with carotid
intima media thickness.48 This is of particular relevance to the
consideration of the longer term effects of the disease which
include abnormal cardiac MRI patterns in 78% of COVID-19
patients up to 3 months after so-called recovery,49 which could
have potentially serious longer term changes to patients’
disease risk profiles. This would point to the potential value of
lipoprotein monitoring to help assess long-term recovery in
COVID-19 patients. It is of note that type 1 diabetes is
typically characterized by the increased liver fat content, which
is also associated with CAD. Soedamah-Muthu et al. showed a
strong correlation between the liver fat content and higher
VLDL and VLDL levels48 consistent with our observations in
SARS-CoV-2 positive patients, which is consistent with liver
dysfunction identified as characteristic of SARS-CoV-2
infection, as indicated by the elevated concentrations of
tyrosine, phenylalanine, and glutamine/glutamate and Fischer’s
ratios.7

Infection with SARS-CoV-2 has been associated with
adverse cardiac events.6 A comparison of perturbation in the
lipoprotein profile associated with patients with coronary
artery calcification, carotid intima thickening, and SARS-CoV-
2 positive patients of the current study shows an overlap in
higher LDL triglycerides under the disease conditions
compared to healthy controls.50 In contrast, the lipoprotein
signature associated with intima thickening showed distinct
differences compared to that of SARS-CoV-2 positive
concentrations. For example, where total LDL, LDL-5, and
LDL-6 cholesterol and phospholipid apolipoprotein B are
positively associated with intima thickening, they do exert a
strong influence on the SARS-CoV-2 model. Although there is
a clear trend in the literature toward a distinctive lipoprotein
signature for diabetes, CAD, and liver disease, it should be
borne in mind that the lipoprotein profiles are significantly
influenced by gender51 and ethnicity.52 It is yet to emerge if
SARS-CoV-2 infection produces a unique phenotypic pattern
of dyslipoproteinemia.

Figure 6. Immunometabolic correlation plot between hierarchically clustered cytokine subpatterns of significantly expressed proteins in COVID-19
positive patients versus their quantified lipoprotein patterns for (A) major fraction components only together with glucose, lactate, and
glycoprotein levels and (B) lipoprotein subfractions. Cluster subpatterns C1−C4 are discussed in the main text.
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The remaining study participants (test set) were predicted in
the SARS-CoV training model and showed, as expected, the
healthy controls were classified with the controls in the training
set (Figure 4C). For the SARS-CoV-2 positive validation set,
most of the validation set projected correctly with only one
sample mapping with the control group and a further four
mapping on the border between the groups in the healthy
control (Figure 4D). Three further samples from the SARS-
CoV-2 validation group (denoted by symbols within black
circles) mapped outside the Hotelling’s T ellipse and were
attributed to a patient with type 2 diabetes. The patients
presenting with respiratory symptoms but who were identified
as SARS-CoV-2 negative from upper and/or lower respiratory
tract swabs by rRT-PCR mainly mapped to the control group
with six samples falling clearly within the SARS-CoV-2 positive
sample grouping and SARS-CoV-2 negative groups (Figure
4E). Unlike the standard 1D spectral dataset, the control
samples later shown to be seropositive for IgA largely co-
mapped with the control group (Figure 4F).
The Cliff’s delta eruption plot was modeled based on a

combination of lipoprotein and cytokine concentrations in
addition to the GlycA/GlycB ratios to compare the strength of
all the parameters in the discrimination between the SARS-
CoV-2 positive patients and the healthy controls (Figure 5).
The comparative effect size of the difference between the
lipoprotein profile, cytokine dataset, and GlycA and GlycB
ratios associated with the healthy versus SARS-CoV-2 positive
groups (abscissa) and the absolute weight of parameters in the
OPLS-DA model (ordinate) is shown in the eruption plot.
Thus, those parameters that differentiate the two groups on

the basis of both the multivariate and univariate metric are at
the top corners of the plot with those that are elevated in the
SARS-CoV-2 positive group mapping to the right-hand side of
the plot and those that are elevated in the control group
mapping to the top left. The parameters are colored according
to the absolute log-transformed p-value corrected for the false
discovery rate. Thus, the “hotter” the color, the higher the
discriminatory power of the lipoprotein, cytokine, or GlycA/
GlycB ratio variables. The plot emphasizes the higher levels of
the HDL lipoprotein class in the plasma of the control group
along with the total apolipoprotein particles, whereas the
triglycerides, particularly those associated with LDL and the
ratio of apolipoprotein A1 to apolipoprotein B100 ratio
(ABA1) drive the signature associated with the COVID-19
disease. The ABA1 ratio has been associated with the
atherogenic risk and represents the balance between
atherogenic particles that are rich in apolipoprotein B and
particles that are rich in apolipoprotein-1, which is generally
considered to be antiatherogenic.53 IP-10 mapped together
with ABA1 and several of the LDL triglyceride components
with high weightage in both Cliff’s delta (abscissa) and O-PLS-
DA loadings (ordinate) and was key in defining the SARS-
CoV-2 positive class. IL-1RA, IL-8 and SDF-1α all ranked
highly using the Cliff’s delta statistic but did not exert such a
strong influence on the O-PLS-DA loadings. As expected, none
of the cytokines were associated with metabolic patterns in the
healthy control group.
The SARS-CoV-2 positive and healthy control serum

samples were clearly differentiated based on their cytokine
composition (as illustrated in the OPLS-DA score plot; Figure
S6). Ten of the panels of inflammatory cytokines and
chemokines were found to be significantly different between
healthy controls and SARS-CoV-2 positive patients (Table S6

and Figure S7), with most of these also differentiating between
the SARS-CoV-2 positive and SARS-CoV-2 negative groups.
IL-1RA, IP-10, and IL-8 were the strongest differential
cytokines.
Many of the lipoprotein parameters showed a strong

correlation with multiple cytokines, and four main clusters of
cytokine−lipoprotein correlation patterns were observed when
the correlation matrix was ranked by hierarchically clustering
the cytokines. Cluster C1 consisted of MIP-1β, SDF-1α, Il-1α,
and IL-22, which were associated with decreased levels of LDL
particles and increased VLDL particles (Figure 6). MIP-1β was
strongly discriminatory between the control and SARS-CoV-2
positive groups, and together with the rest of the cluster, most
likely reflects the inflammation mediated by innate immune
cells and is consistent with the activation of monocytes and/or
macrophages in response to the virus. The second cluster
(C2), consisting of IL-17 and IL-10 and ratios of IL-10 to IL-6
and IP-10 demonstrated a much weaker general correlation
with the lipoproteins. IL-8 and MCP-1 (cluster 3a) were
characteristic of the virus infection and were weakly inversely
correlated with most of the lipoproteins, with the exception of
L1 and L2 LDL subfractions of cholesterol and triglycerides.
Confirming the observation with cluster 1, this group reflects
inflammation mediated essentially by innate immune cells and
implies a central role played by activated neutrophils and
monocytes/macrophages. IP-10 and RANTES (subcluster 3c)
show the strongest association of all of the cytokines with the
lipoprotein panel (correlated with L1−L4 LDL subfractions
and anticorrelated with HDL, VLDL, and L6 LDL
parameters). Additionally, RANTES is directly correlated
with GlycA, a marker of systemic inflammation and has been
proposed as a more robust marker of inflammation than CRP
or IL-6.54

Both RANTES and IP-10 (cluster 3C) are associated with
inflammatory and cytotoxic T cell responses that help
eliminate viruses, and their correlation with GlycA may suggest
that the increase in these circulating cytokines is reflecting the
severity of the respiratory infection55,56 Neotarangelo showed
that, during the course of disease, certain inflammatory
markers, such as IL-6, did not change significantly, whereas
others, such as soluble IL-33R (sIL-33R) and CXCL10,
decreased in patients who eventually recovered but remained
persistently elevated in those who succumbed to COVID-19.57

Cluster 4b is defined by IL-7 and IL-1RA, which are
significantly elevated in SARS-CoV-2 patients and TNF-α. The
functions of TNF-α and IL-1RA would suggest a good
prognosis with reduced inflammation and increased elimi-
nation of the infected cells. However, their levels may be
insufficient to counter the level of inflammatory cytokines
released in response to the virus. IL-1RA is strongly correlated
with HDL and VLDL lipoprotein particles. HDL is generally
classed as an anti-inflammatory lipoprotein with protective
effects against oxidized lipids58 and has been shown to
negatively regulate T cell activation,59 thus the correlation of
HDL with IL-1RA supports the hypothesis that IL-1RA
reduces the inflammatory cascade.

■ CONCLUSIONS
We have demonstrated that single-pulse, spin-echo, and
quantitative NMR methods all provide strong differential
diagnostic models for SARS CoV-2 positive patients versus
controls and SARS CoV-2 negative patients based on models
of their characteristic lipoprotein, glycoprotein, and metabolite
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profiles. Each NMR method provides valuable and comple-
mentary windows on the complex COVID-19 systemic pattern.
There were strong indications of the underlying systemic
disease in the NMR data indicative or diabetes, liver
dysfunction, and cardiovascular abnormalities. Long-term
cardiovascular problems appear to be common for COVID-
19 patients, and these may be reflected in abnormal
lipoproteins after the acute respiratory symptoms have
subsided, indicating a potential role for these measurements
in the assessment of systemic patient recovery. There are
strong and characteristic statistical relationships between
multiple cytokines and chemokines and the lipoproteins in
COVID-19, suggesting a major role in the overall immune
response to the disease. However, we await more detailed
longitudinal studies to evaluate the exact roles of each cytokine
cluster−lipoprotein interaction in the overall immunometa-
bolic mechanism and signature of the disease progression. We
noted that some patients who were in the recovery process and
also testing negative for the virus were still highly metabolically
abnormal, indicating that the clinical recovery should not be
assessed by reduction of respiratory symptoms alone.
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■ ADDITIONAL NOTE
aWhen calibrated to the α anomeric proton signal of glucose,
the chemical shifts for GlycA and GlycB are δ 2.03 and δ 2.07,
respectively. When calibrated to the TSP signal using the IVDr
method, GlycA and GlycB signals are at δ 2.06 and δ 2.10,
respectively.
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