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Introduction
Balanced chromosome partitioning during anaphase relies on 

the prior establishment of sister chromatid cohesion, which takes 

place concomitantly to DNA replication. Sister chromatid co-

hesion is essential for bipolar attachment of chromosomes to 

the mitotic spindle and depends on a cohesin complex formed by 

the Smc1, Smc3, Mcd1/Scc1, and Scc3 proteins. The Pds5 pro-

tein binds less tightly to this core complex but also contributes 

to  sister chromatid cohesion (Nasmyth and Haering, 2005).

To undergo chromosome segregation in anaphase, cohesin 

must be removed from chromosomes. This occurs through two 

distinct routes in higher eukaryotes, where a “prophase pathway” 

involving Polo and Aurora B kinases promotes the dissociation 

of most cohesin from chromosome arms as they condense. The 

remaining cohesin is removed at the metaphase-to-anaphase 

transition by separase that operates the proteolytic cleavage of 

Mcd1, in turn stimulated by Polo kinase–dependent Mcd1 phos-

phorylation (Uhlmann, 2003; Nasmyth and Haering, 2005). Such 

a prophase pathway does not seem to exist in budding and fi ssion 

yeasts, where separase appears fully responsible for cohesin dis-

sociation along the entire chromosome (Uhlmann, 2003).

Because of its irreversible nature, sister chromatid sepa-

ration is tightly regulated and inhibited by several checkpoint 

mechanisms. Separase activation, for example, is fi nely tuned by 

its association with securin, which acts both as a molecular chap-

erone contributing to separase activation and as an inhibitor of its 

protease activity (Agarwal and Cohen-Fix, 2002; Uhlmann, 2003). 

Anaphase-promoting complex (APC)– dependent ubiquitylation 

of securin triggers its destruction, which is essential for anaphase 

onset (Peters, 2006), and both DNA and spindle damage inhibit 

anaphase by stabilizing securin (Uhlmann, 2001).

In budding yeast, the morphogenesis checkpoint prevents 

the onset of anaphase in case of budding defects or alterations 

of the actin cytoskeleton. This depends on the Swe1 kinase that 

triggers the inhibitory phosphorylation of Cdk1 (Lew, 2003). By 

investigating how the morphogenesis checkpoint controls sister 

chromatid separation, we found that neither securin inactivation 

nor forced Mcd1 cleavage are suffi cient to allow anaphase when 

the morphogenesis checkpoint is activated. Rather, the protein 

phosphatase PP2A associated with its regulatory subunit Cdc55 

is necessary to inhibit sister chromatid separation under these 

circumstances. Altogether, our data highlight a novel mechanism 

for controlling sister chromatid severing and segregation that 

involves the PP2ACdc55-regulated release of cohesion.

Results
The morphogenesis checkpoint prevents 
sister chromatid separation independently 
of Pds1
High levels of a truncated version of the budding yeast p21-activated 

kinase Cla4 (Cla4t) activate the morphogenesis checkpoint by 
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inhibiting endogenous Cla4 and its paralogue Ste20 (Chiroli 

et al., 2003), which share essential functions in bud neck for-

mation, septin ring assembly, and cytokinesis (Johnson, 1999). 

Upon CLA4t overexpression from the GAL1 promoter, haploid 

yeast cells arrest with wide bud necks, replicated chromosomes, 

undivided nuclei, short metaphase spindles, and high levels of 

the securin Pds1 (Chiroli et al., 2003). In addition, they mark-

edly delay activation of the Polo kinase Cdc5 (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200609088/DC1), 

suggesting that they arrest in G2.

As PDS1 deletion is suffi cient to allow anaphase in most 

mutants arresting in mitosis, we asked whether it could bypass 

the G2 arrest caused by high Cla4t levels. Elutriated G1 cells of 

a pds1∆ strain with four copies of the GAL1-CLA4t construct 

integrated in the genome (4X GAL1-CLA4t pds1∆) were re-

leased into the cell cycle in the presence of galactose. As ex-

pected, DNA replication (Fig. 1 A) and bipolar spindle formation 

(Fig. 1 B) took place normally in these conditions, whereas bud 

neck formation was abnormal because of CLA4t overexpression 

(not depicted). Surprisingly, pericentromeric chromosomal se-

quences marked by a tet operator array that binds TetR-GFP 

(Michaelis et al., 1997) could not separate in these cells (Fig. 

1 B), indicating that sister chromatid separation did not occur. 

Nuclear division and spindle elongation did not take place 

throughout the course of the experiment (Fig. 1, B and C), simi-

lar to 4X GAL1-CLA4t cells under the same conditions (Fig. 1, 

A, B, and C). Thus, deletion of PDS1 is not suffi cient to bypass 

the G2 arrest caused by high levels of Cla4t.

As shown in Fig. 1 (D–F), latrunculin-A (Lat-A), which 

activates the morphogenesis checkpoint by depolymerizing the 

actin cytoskeleton, induced, like Cla4t, a securin-independent 

G2 arrest. In fact, cells released from a G1 arrest in the pres-

ence of Lat-A did not bud (Fig. 1 E) but replicated DNA (Fig. 

1 D) and formed bipolar spindles (Fig. 1, E and F). However, 

neither wild-type nor pds1∆ cells underwent sister chromatid 

separation, nuclear division, or spindle elongation (Fig. 1, E and F). 

In contrast, the same events took place promptly in the mor-

phogenesis checkpoint–defective swe1∆ cells, which also exited 

mitosis and entered a new round of DNA replication, as indicated 

by the appearance of 4C DNA contents (Fig. 1 D). Altogether, 

these data indicate that the morphogenesis checkpoint appears to 

prevent the onset of anaphase independently of securin.

CLA4t overexpression does not impair 
securin-mediated nuclear import of separase
Besides its inhibitory function, securin also has a positive role in 

separase activation in several eukaryotic systems, prompting us to 

test whether Cla4t overproduction might impair Pds1 interaction 

with the Esp1 separase and/or Esp1 nuclear import. Wild-type, 

4X GAL1-CLA4t, and 4X GAL1-CLA4t swe1∆ cells expressing 

HA-tagged Pds1 (Pds1-HA) and myc-tagged Esp1 (Esp1-myc18) 

were grown in raffi nose, arrested in G1 by α-factor, and released 

in the presence of galactose, followed by the analysis of Pds1 

and Esp1 nuclear localization and physical interaction. As 

shown in Fig. 2 A, budding was delayed in 4X GAL1-CLA4t 
cells compared with wild type, but kinetics of Pds1-HA and Esp1-

myc18 nuclear accumulation were similar in the two strains. 

Figure 1. G2 arrest by the morphogenesis checkpoint does not depend on 
securin. (A–C) Strains with the indicated genotypes (ySP3575, ySP3435, 
and ySP3436) were grown at 25°C in YEPR. Elutriated G1 unbudded cells 
were released at 25°C in the presence of galactose (time 0), followed 
by FACS analysis of DNA contents (A) and determination of kinetics of 
budding, sister chromatid separation, spindle formation/elongation, and 
nuclear division (B). Micrographs (C) were taken at 240 min (wt), 420 
min (4X GAL1-CLA4t), and 300 min (4X GAL1-CLA4t pds1∆). (D–F) wt 
(ySP601), pds1∆ (ySP2894), and swe1∆ (ySP3887) cells were grown in 
YEPD at 23°C, arrested in G1 by α-factor, and released in the presence of 
Lat-A, followed by FACS analysis of DNA contents (D) and determination of 
kinetics of budding, sister chromatid separation, spindle formation/elonga-
tion, and nuclear division (E). (F) Micrographs represent cells at 90 min.
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Thus, Pds1 can still act as an Esp1 molecular chaperone in the 

presence of high levels of Cla4t. Accordingly, similar levels of 

Esp1-myc18 were immunoprecipitated with Pds1-HA from 

both wild-type and 4X GAL1-CLA4t cell extracts (Fig. 2 B).

Cohesin cleavage is not suffi cient for 
execution of anaphase in the presence 
of high Cla4t levels
Although lack of securin did not allow chromatid separation 

upon morphogenesis checkpoint activation, ectopic cohesin 

cleavage could be expected to trigger nuclear division in the same 

conditions. We engineered 4X GAL1-CLA4t cells to express a 

Mcd1–tobacco etch virus (TEV) variant, where the Esp1 cleavage 

site at position 268 is replaced by the recognition sequence for 

the TEV protease (Uhlmann et al., 2000). We then introduced in 

the same cells the TEV protease coding sequence under the con-

trol of the GAL1 promoter. These cells grow normally under 

uninduced conditions because the Mcd1-TEV variant can be 

cleaved by separase at position 180, whereas it is cleaved and 

fully removed from chromosomes upon TEV induction even if 

separase is inactive. Small G1 cells of this strain were elutriated 

and released in the presence of galactose to trigger expression of 

both Cla4t and TEV. Remarkably, nuclear division did not take 

place (Fig. 3 A), suggesting that cohesin cleavage might be insuf-

fi cient to allow chromosome segregation in 4X GAL1-CLA4t 
cells. Conversely, as previously reported (Uhlmann et al., 2000), 

cohesin cleavage by the TEV protease was suffi cient to trigger 

anaphase in cells depleted for Cdc20 (Fig. 3 B), the APC regula-

tory subunit essential for Pds1 proteolysis and anaphase onset 

(Peters, 2006). Thus, cohesin cleavage seems to be suffi cient to 

trigger anaphase in metaphase-arrested cells but not in cells 

arrested in G2 by the morphogenesis checkpoint.

Because it was formally possible that the lack of nuclear 

division in 4X GAL1-CLA4t MCD1-TEV cells was due to in-

effi cient cohesin cleavage, we analyzed the kinetics of cohesin 

cleavage by the TEV protease in 4X GAL1-CLA4t versus wild-

type cells after release from G1 in the presence of galactose. 

Full length of Mcd1-TEV tagged with 3 HA epitopes at the 

C terminus (Mcd1-HA3) and its cleavage product by separase 

(at position 180) were detectable in both strains in cycling cells 

and at time 0 (Fig. 3 C). Upon galactose addition, kinetics of 

TEV production, as well as appearance of the TEV-induced 

Mcd1-HA3 cleavage product (at position 268), were similar in 

the two strains. However, disappearance of full-length Mcd1 

and its separase-induced cleavage product, which can both be 

cleaved by TEV, was slower in 4X GAL1-CLA4t than wild-type 

cells (Fig. 3 C). This might be due to delayed activation of the 

Polo/Cdc5 kinase, which stimulates Mcd1 cleavage (Alexandru 

et al., 2001), in 4X GAL1-CLA4t versus wild-type cells. In spite 

of that, most, if not all, Mcd1-HA3 was cleaved by 3 h in 4X 

GAL1-CLA4t cells, but nuclear division occurred only in a small 

fraction of them (Fig. 3 C). In contrast, >75% of wild-type cells 

had accomplished nuclear division under the same conditions. 

Therefore, other mechanisms besides cohesin-mediated sister 

chromatid cohesion likely contribute to prevent chromosome 

segregation when the morphogenesis checkpoint is active.

The spindle is functional under 
morphogenesis checkpoint activation
Because mitotic Cdks regulate spindle assembly and microtubule 

dynamics, the morphogenesis checkpoint might delay nuclear 

division through spindle misfunction. Upon bipolar attachment 

of sister kinetochores to microtubules, spindle forces overwhelm 

centromeric cohesion, leading to precocious separation of sister 

Figure 2. Binding to securin and nuclear accumulation of 
separase are not affected by the morphogenesis checkpoint. 
Strains with the indicated genotypes (ySP1735, ySP4690, 
and ySP4692) were grown in YEPR at 25°C, arrested by 
α-factor, and released in YEPRG (time 0). (A) At the indicated 
times, cells were analyzed for DNA contents (histograms), 
budding, nuclear division, and Pds1 and Esp1 nuclear accu-
mulation (graphs). Pds1 and Esp1 localization was scored on 
fi xed cells after in situ immunofl uorescence. (B) Protein ex-
tracts from cells harvested at the indicated times were ana-
lyzed by immunoblotting with anti-HA (Pds1) or anti-myc 
(Esp1) antibodies either directly (total) or after Pds1 immuno-
precipitation with anti-HA antibodies (αHA IP).
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centromeres before anaphase (Goshima and Yanagida, 2000), 

thus providing a readout for spindle function. We found that 

sister centromeres of chromosome 15 could separate concomi-

tantly with spindle formation in the presence of Lat-B (Fig. 4 B), 

suggesting that spindle forces are normal.

Because kinetochore inactivation by the ndc10-1 mutation 

prevents kinetochore–microtubule attachment without affecting 

spindle formation and elongation (Goh and Kilmartin, 1993), 

we also asked whether spindle elongation could take place 

in ndc10-1 cells under morphogenesis checkpoint activation. 

We induced morphogenetic defects by using a temperature-

sensitive cdc24 mutation, which alters a guanine-nucleotide ex-

change factor for the GTPase Cdc42 that is required for budding 

(Johnson, 1999). Upon release of synchronized G1 cells at 37°C, 

cdc24 cells arrested in G2 as unbudded with undivided nuclei 

and short metaphase spindles. Lack of kinetochore attachment 

in cdc24 ndc10-1 cells was suffi cient to allow spindle elonga-

tion (Fig. 4 A), suggesting that spindle dynamics is not affected 

by morphogenetic defects. Therefore, residual sister chromatid 

cohesion, rather than a misfunctional spindle, is likely respon-

sible for preventing chromosome segregation in the absence of 

Mcd1 upon morphogenesis checkpoint activation.

The phosphatase PP2ACdc55 prevents 
sister chromatid separation upon 
morphogenesis checkpoint activation
Cdc55 is one of the two regulatory subunits of yeast protein phos-

phatase PP2A and was previously implicated in maintaining sister 

chromatid cohesion in response to spindle defects (Minshull et al., 

1996). This prompted us to test whether CDC55 deletion could al-

low sister chromatid separation in Cla4t-overexpressing cells. Elu-

triated G1 cells of a 4X GAL1-CLA4t cdc55∆ strain carrying the 

tetO/tetR-GFP constructs for monitoring sister chromatid separa-

tion were released into the cell cycle in the presence of galactose. 

As shown in Fig. 5 A, deletion of CDC55 partially rescued the 

cytokinetic defects caused by high Cla4t levels, indicated by re-

accumulation of a small fraction of cells with 1C DNA contents 

at the end of the fi rst cell cycle. Most cells, however, displayed 

abnormal bud necks characteristic of 4X GAL1-CLA4t cells. In 

spite of that, they underwent effi cient sister chromatid separation 

Figure 3. Mcd1 cleavage is not suffi cient for 
nuclear division upon CLA4t overexpression. 
(A) GAL1-CLA4t cells expressing Mcd1-TEV 
and GAL1-TEV (ySP5871) were grown in YEPR 
at 25°C. Elutriated small G1 cells were re-
leased in YEPRG at 25°C (time 0). At the indi-
cated time points, cell samples were analyzed 
for DNA contents (top left), budding, and nu-
clear division (top right). Micrographs represent 
cells at the end of the experiment. (B) MET3-
CDC20 MCD1-TEV GAL1-TEV cells (ySP5870) 
were grown in raffi nose medium lacking methi-
onine. Elutriated G1 cells were released in 
YEPRG containing 2 mM methionine (time 0). 
Cell samples were analyzed as in A. (C) MCD1-
TEV (ySP3448) and GAL1-CLA4t MCD1-TEV 
(ySP5871) cells were grown in YEPR at 25°C, 
arrested in G1 by α-factor, and released in 
YEPRG at 25°C at time 0. Cells were collected 
at the indicated times for Western blot analysis 
with anti-HA (Mcd1) and anti-myc (TEV) anti-
bodies (left), FACS analysis of DNA contents 
(not depicted), and kinetics of nuclear division 
and bipolar spindle formation (right). Swi6 
was used as loading control.

Figure 4. Spindle dynamics is not affected by the morphogenesis check-
point. (A) cdc24 (ySP305) and cdc24 ndc10-1 (ySP6207) cell cultures were 
arrested in G1 by α-factor and released at 37°C (time 0). Cells were ana-
lyzed at the indicated times for DNA contents (not depicted), budding, spindle 
formation/elongation, and nuclear division (graphs). Micrographs represent 
cells at 150 min after release. (B) Wild-type cells with tagged CEN15 
(ySP1717) were arrested in G1 by α-factor and released in the presence of 
Lat-B (time 0). Cells were analyzed at 1-h intervals for DNA contents (not 
depicted), CEN15 separation, tubulin immunostaining, and nuclear division.
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and nuclear division (Fig. 5, B and C), suggesting that Cdc55 pre-

vents anaphase onset when p21-activated kinases are inactive.

Nuclear division could also be induced in 4X GAL1-
CLA4t cells by expressing a mutant form of the Pph21 cata-

lytic subunit (Pph21-L369∆; Fig. S2, available at http://www

.jcb.org/cgi/content/full/jcb.200609088/DC1) that was shown to 

preferentially fail to interact with Cdc55 (Jiang, 2006). There-

fore, chromatid cohesion upon morphogenesis checkpoint acti-

vation requires the protein phosphatase PP2A bound to Cdc55.

The catalytic and structural PP2A subunits can form mu-

tually exclusive complexes with either one of the regulatory sub-

units Cdc55 and Rts1 (Evans and Hemmings, 2000). PP2ARts1 

and its human counterpart have recently been shown to prevent 

precocious dissociation of centromeres both in mitosis and in 

meiosis I (Kitajima et al., 2006; Riedel et al., 2006). In an ex-

periment similar to the one described for cdc55∆, we found that 

pericentromeric sequences could not separate in the majority of 

4X GAL1-CLA4t rts1∆ cells (Fig. 5 B). When pericentromeric 

regions did split (�25% of the cells), GFP dots were always 

found very close to each other (Fig. 5 C) and nuclear division 

was negligible (Fig. 5 B), suggesting that PP2ARts1 plays a 

minor role, compared with PP2ACdc55, in controlling chromatid 

cohesion under these circumstances.

Because Cdc55 and Rts1 compete for binding to the other 

PP2A subunits, sister chromatid separation in the absence of 

Cdc55 could be ascribed to increased levels of the PP2ARts1 

complex. To investigate this possibility, we asked whether 4X 

GAL1-CLA4t cells lacking both Cdc55 and Rts1 could undergo 

anaphase. Elutriated G1 cells of the 4X GAL1-CLA4t cdc55∆ 
rts1∆ strain released in the presence of galactose progressed 

into the cell cycle very slowly, as a result of budding and repli-

cation defects (Fig. 5, A and B). In spite of that, those that could 

fi nish chromosome replication underwent effi cient dissociation 

of sister chromatids and nuclear division (Fig. 5 B), suggesting 

that anaphase onset in 4X GAL1-CLA4t cells lacking Cdc55 is 

not due to increased levels of PP2ARts1 activity.

We then asked whether PP2ACdc55 also controls sister 

chromatid cohesion in other conditions that activate the mor-

phogenesis checkpoint. Wild-type and cdc55∆ cells were ar-

rested in G1 by α-factor and then released in the presence of 

Lat-A. In these conditions, neither wild-type nor cdc55∆ cells 

budded throughout the course of the experiment (Fig. 5 D). 

Figure 5. PP2ACdc55 prevents sister chromatid separation upon activation of the morphogenesis checkpoint. (A–C) Strains with the indicated genotypes 
(ySP5115, ySP5112, and ySP5165) were grown at 30°C in YEPR. Elutriated G1 cells were released in YEPRG at 25°C at time 0. Cell samples were ana-
lyzed at the indicated times for DNA contents (A), budding, sister chromatid separation, and nuclear division (B). (C) Micrographs represent sister chroma-
tid separation at 285 min (4X GAL1-CLA4t cdc55∆) and 300 min (4X GAL1-CLA4t rts1∆). (D) Wild-type (wt; ySP3575) and cdc55∆ (ySP5068) cells were 
grown in YEPD at 30°C, arrested in G1 with α-factor, and released in the presence of Lat-A (time 0). Cells were analyzed at the indicated times for DNA 
contents (histograms), budding, sister separation, nuclear division, and spindle formation/elongation (graphs). (E) Micrographs represent pericentromeric 
chromosomal sequences (GFP) and merged pictures of tubulin and DNA staining (tub/DNA) at 150 min. DIC, differential interference contrast. (F) Wild-
type (ySP3575) and cdc55∆ (ySP5068) cells were arrested in G1 by α-factor and released at 16°C. Cells were analyzed at the indicated times for bud-
ding, sister chromatid separation, spindle formation/elongation, and nuclear division. 
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As expected, wild-type cells accumulated with 2C DNA con-

tents, unsevered sister chromatids, undivided nuclei, and short 

metaphase spindles (Fig. 5, D and E). Strikingly, sister chroma-

tids separated effi ciently in cdc55∆ cells under the same condi-

tions, thus allowing spindles to elongate and nuclei to divide 

(Fig. 5, D and E). Finally, because CDC55 deletion causes 

by  itself morphogenetic defects and Swe1 stabilization at low 

temperatures (Healy et al., 1991; Yang et al., 2000), we asked 

whether the cdc55∆ mutant could separate sister chromatids at 

16°C. At this temperature, cdc55∆ cells showed prominent mor-

phogenetic defects (not depicted), but nevertheless could split 

chromatids and divide nuclei, albeit with a delay compared with 

wild-type cells (Fig. 5 F).

To directly compare the effects of cohesin inactivation 

and lack of PP2ACdc55 on sister chromatid separation of cells 

with morphogenetic defects, we used the temperature-sensitive 

scc1-73 allele, which inactivates Mcd1 and advances sister 

chromatid separation relative to wild type at the restrictive tem-

perature (Michaelis et al., 1997). G1-arrested cdc24 cells either 

lacking CDC55 or carrying the scc1-73 allele were released at 

37°C. cdc24 scc1-73 cells could effi ciently separate chromosome V 

arm sequences, although with a delay compared with scc1-73 

cells, but did not elongate spindles or divide nuclei (Fig. 6 A). In 

contrast, cdc24 cdc55∆ cells underwent complete chromosome 

segregation under the same conditions (Fig. 6 A). Accordingly, 

the distance between separating chromatids at 150 min after 

release was signifi cantly higher in cdc24 cdc55∆ cells than in 

cdc24 scc1-73 cells (Fig. 6 B). Therefore, some residual chro-

matid cohesion likely persists even when cohesin is inactivated 

and PP2ACdc55 plays a crucial role in controlling sister chroma-

tid separation when the morphogenesis checkpoint is activated.

Mcd1 cleavage does not occur in 
cdc55𝚫 cells undergoing anaphase under 
morphogenesis checkpoint activation
Although ectopic cohesin cleavage did not allow nuclear division 

during morphogenesis checkpoint activation, CDC55 deletion 

might still allow anaphase onset in these conditions through cohesin 

cleavage. To test this possibility, cdc24, cdc24 swe1∆, and cdc24 
cdc55∆ cells were arrested in G1 by α-factor and then released at 

37°C, followed by analysis of cell cycle parameters (Fig. 7, A and B) 

and Mcd1 cleavage by separase (Fig. 7 C). As expected, cdc24 

cells arrested with 2C DNA contents, unseparated sister chroma-

tids, and metaphase spindles, whereas most cdc24 swe1∆ cells 

underwent anaphase and spindle elongation and eventually exited 

mitosis and rereplicated their chromosomes, accumulating DNA 

contents higher than 2C (Fig. 7, A and B), suggesting that lack 

of Swe1 overrides cells’ ability to sense morphogenetic defects. 

Interestingly, cdc24 cdc55∆ cells could also undergo anaphase 

in the same conditions, albeit with a delay compared with cdc24 
swe1∆ cells, but remained mostly arrested with 2C DNA con-

tents. The Mcd1 cleavage product, which was readily apparent in 

cdc24 swe1∆ cells and preceded sister chromatid separation, was 

mostly negligible in cdc24 cdc55∆ cells (Fig. 7 C). Nevertheless, 

chromatin staining of Mcd1 after chromosome spreading revealed 

that cohesin remained bound to chromatin in wild-type cells (not 

depicted) but had dissociated from the chromosomes in nuclei 

of cdc55∆ cells that underwent anaphase (Fig. 7 D). Thus, sister 

chromatid separation and Mcd1 dissociation from chromosomes 

in cdc55∆ cells under morphogenesis checkpoint activation do not 

seem to correlate with separase-dependent cleavage of cohesin. 

Accordingly, the Mcd1 cleavage product was not detectable in 4X 

GAL1-CLA4t cdc55∆ cells undergoing anaphase in the presence 

of galactose, similar to 4X GAL1-CLA4t cells (Fig. S3, available 

at http://www.jcb.org/cgi/content/full/jcb.200609088/DC1), and 

Mcd1 disappeared from the nuclei of 4X GAL1-CLA4t cdc55∆ 

cells in anaphase (Fig. S3 E). Mcd1 displacement from chroma-

tin did not correlate with increased Mcd1 phosphorylation, which 

could instead be detected as electrophoretic mobility shift in no-

codazole-arrested cells (Fig. S3 D). It is interesting to note that 

SWE1 deletion in Cla4t-overexpressing cells caused rapid Pds1 

and Clb2 proteolysis, as well as appearance of the Mcd1 cleav-

age product, whereas Pds1 and Clb2 remained mostly stable upon 

deletion of CDC55 (unpublished data).

Unlike in cdc55∆ cells under morphogenesis check-

point activation, sister chromatid separation in nocodazole-

treated cdc55∆ cells was accompanied by Pds1 degradation 

Mcd1 cleavage, although with a delay compared with the 

spindle checkpoint–defective mad2∆ cells (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200609088/DC1). 

Figure 6. Inactivation of PP2ACdc55, but not 
of cohesin, allows nuclear division in the pres-
ence of morphogenetic defects. Strains with 
the indicated genotypes (ySP601, ySP818, 
ySP6236, ySP6241, and ySP6214) were ar-
rested in G1 by α-factor at 25°C and released 
at 37°C (time 0). Cells were analyzed at the in-
dicated times for DNA contents (not depicted), 
budding, sister chromatid separation, spindle 
formation/elongation, and nuclear division (A). 
Distances between separated chromatids were 
measured at time point 150 min (n = 180) 
with MetaMorph software.
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Therefore, PP2ACdc55 contributes to maintaining sister chromatid 

cohesion in nocodazole by impinging on the same targets of 

the spindle assembly checkpoint, as recently suggested by others 

(Yellman and Burke, 2006). In contrast, PP2ACdc55 likely prevents 

sister chromatid separation in G2 through a different mechanism.

Sister chromatid dissociation induced 
by lack of PP2ACdc55 does not require 
the Cdc14 phosphatase, Polo kinase, 
and condensin but can be reversed 
by topoisomerase II inhibition
PP2ACdc55 has recently been shown to prevent Cdc14 early ana-

phase release from the nucleolus through Net1 dephosphor-

ylation (Queralt et al., 2006). Cdc14 can in turn trigger Pds1 

proteolysis in nocodazole-arrested cells (Visintin et al., 1998), 

and this mechanism has been proposed to be responsible for 

the precocious dissociation of sister chromatids in nocodazole-

treated cdc55∆ cells (Yellman and Burke, 2006). We therefore 

asked whether Cdc14 was released from the nucleolus in cdc55∆ 

cells with morphogenetic defects and necessary for their on-

set of anaphase. Wild-type and cdc55∆ cells were arrested in 

G1 by α-factor and released in the presence of Lat-B. In situ 

immunostaining of Cdc14 showed that anaphase took place in 

cdc55∆ cells before Cdc14 release from the nucleolus (Fig. 8 A). 

In addition, analysis of cdc55∆ anaphase cells 150 min after 

release revealed that a high fraction of them (68.3%; n = 120) 

had undergone anaphase with Cdc14 in the nucleolus (Fig. 8 B), 

suggesting that premature Cdc14 release is not responsible for 

sister chromatid separation in these cells.

To test whether Cdc14 was required for the onset of anaphase 

in cdc55∆ mutants with morphogenetic defects, we inactivated 

Cdc14 in cdc24 cdc55∆ cells with the temperature-sensitive 

Figure 7. Lack of Cdc55 upon Cla4t over-
production allows anaphase in the absence of 
Mcd1 cleavage. Strains with the indicated ge-
notypes (ySP6249, ySP6250, and ySP6463) 
growing at 25°C were arrested in G1 by 
α-factor and released at 37°C (time 0). At the 
indicated times, cell samples were collected 
for FACS analysis (A); kinetics of budding, 
sister chromatid separation, and spindle for-
mation/elongation (B); Western blot analysis 
of TCA protein extracts (C); and chromosome 
spreads (D). Total extracts were immunoblotted 
with anti-HA antibodies to detect Mcd1-HA3 
(C). Chromosome spreads (D) were immuno-
stained with anti-HA antibodies (Mcd1-HA3) 
and mounted with DAPI to stain DNA. Arrows 
indicate anaphase nuclei.
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cdc14-3 allele. As a control for Cdc14 inactivation, we analyzed 

the subcellular localization of the Swi5 transcription factor, 

whose nuclear import in telophase is strictly dependent on its 

dephosphorylation by Cdc14 (Visintin et al., 1998). Cell cul-

tures of cdc24 cdc55∆ and cdc24 cdc55∆ cdc14-3 strains ex-

pressing a myc-tagged Swi5 protein were synchronized in G1 

by α-factor and released at 37°C to analyze, over time, budding 

kinetics, Swi5 localization, and nuclear division. Swi5 was cy-

toplasmic in both strains throughout most of the cell cycle. 

However, although it was imported into the nucleus of cdc24 
cdc55∆ telophase cells, it always remained in the cytoplasm 

of cdc24 cdc55∆ cdc14-3 cells, indicating that Cdc14 had been 

inactivated (Fig. 8 C). Lack of Cdc55 allowed a fraction of 

cdc24 cells to divide nuclei irrespective of Cdc14 function 

(Fig. 8 C), indicating that Cdc14 is dispensable for the onset 

of anaphase in these conditions. Accordingly, Cdc14 was also 

insuffi cient to promote sister chromatid separation in CLA4t-
overexpressing cells carrying the dominant TAB6-1 allele, which 

encodes a hyperactive Cdc14 variant with reduced affi nity to its 

inhibitor Net1 (Shou et al., 2001; Fig. 8 D).

Although we did not detect any increase in Mcd1 phos-

phorylation in cdc55∆ versus wild-type cells overproducing 

Cla4t (Fig. S3), it was still possible that PP2ACdc55 could prevent 

sister chromatid separation by counteracting the Cdc5-mediated 

phosphorylation of a small fraction of Mcd1 or other cohesin 

subunits. However, inactivation of Cdc5 with the cdc5-2 

temperature-sensitive allele did not prevent anaphase in cdc24 
cdc55∆ cells (Fig. 9 A), suggesting that Cdc5 is not required for 

this process.

Timely sister chromatid segregation, especially of ribo-

somal DNA and chromosome sequences far from centromeres, 

depends on condensin and DNA topoisomerase II (DiNardo 

et al., 1984; Holm et al., 1985; Bhalla et al., 2002; D’Amours 

et al., 2004; Sullivan et al., 2004). We therefore tested the ef-

fects of the temperature-sensitive ycg1-10 and top2-4 mutations, 

affecting condensin and DNA topoisomerase II, respectively, 

on the unscheduled anaphase of cdc24 cdc55∆ cells. Although 

inactivation of Ycg1 had no signifi cant effect, inactivation of 

topoisomerase II in cdc24 cdc55∆ top2-4 cells mostly pre-

vented anaphase (Fig. 9 A), suggesting that the presence of 

topological linkages prevents sister chromatid separation 

under these conditions. Consistently, the presence of the top
2-4 allele could partially rescue the cold sensitivity of cdc55∆ 

cells (Fig. 9 B), which is presumably due to unscheduled 

sister chromatid separation in the presence of morphoge-

netic defects.

We then asked whether morphogenetic defects could ar-

rest the cell cycle in a stage where topological linkages are not 

resolved, using an assay that allows detection of accumulation 

of catenated forms of a circular minichromosome (Koshland 

and Hartwell, 1987). Unlike top2-4 mutants, however, neither 

cdc24 (Fig. 9 C) nor GAL1-CLA4t cells (not depicted) accumu-

lated minichromosome topoisomers. Although we cannot ex-

clude the possibility that the behavior of natural chromosomes 

is different from that of minichromosomes, the delay of nuclear 

division caused by the morphogenetic checkpoint does not seem 

to be accompanied by lack of decatenation.

CDC55 overexpression delays sister 
chromatid separation independently 
of Pds1
If PP2ACdc55 acts as an inhibitor of sister chromatid separa-

tion, increasing its dosage might delay the onset of anaphase. 

We therefore introduced into the genome of otherwise wild-

type cells multiple copies of a galactose-inducible GAL1-
CDC55 construct. Parental and transformed strains growing 

in raffi nose were arrested in G1 with α-factor and released in 

the presence of galactose. We then monitored separation of 

the tetO array located 13 kb away from CEN5, as well as spin-

dle formation and elongation (Fig. 10). CDC55 overexpres-

sion did not affect bipolar spindle formation but delayed sister 

chromatid separation, nuclear division, and spindle elongation, 

Figure 8. Cdc14 is not required for nuclear 
division of cdc55𝚫 cells with morphogenetic 
defects. (A) Wild-type (wt; ySP3575) and 
cdc55∆ (ySP5068) cells were arrested in G1 
by α-factor at 30°C and released at 25°C in 
the presence of Lat-B (time 0). At the indicated 
times, cells were collected to determine the ki-
netics of budding, sister chromatid separation, 
nuclear division, and Cdc14 nucleolar export 
after in situ immunofl uorescence. Micrographs 
(B) show examples of cdc55∆ cells at 150 min 
after release. (C) cdc24 cdc55∆ (ySP6503) 
and cdc24 cdc55∆ cdc14-3 (ySP6499) cells 
expressing myc-tagged Swi5 were arrested in 
G1 by α-factor at 25°C and released at 37°C 
(time 0). Cells were analyzed at the indicated 
times for budding, spindle formation/elon-
gation, nuclear division, and Swi5 nuclear 
import. Pictures were taken at 150 min after 
release. (D) Strains with the indicated geno-
types (ySP5704, ySP5710, and ySP5893) 
were grown in YEPR at 30°C, arrested in G1 by 
α-factor, and released in YEPRG at 25°C (time 0), 
followed by scoring GFP dots to determine the 
kinetics of sister chromatid separation. 
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causing cells to accumulate in G2. This delay did not depend 

on functional securin, as PDS1 deletion did not accelerate the 

onset of anaphase in CDC55-overexpressing cells. High levels 

of Cdc55 delayed sister chromatid separation at both pericen-

tromeric and telomeric regions (unpublished data), suggesting 

that PP2ACdc55 prevents dissociation of sister chromatids along 

their length.

If PP2ACdc55 acted as anaphase inhibitor independently of 

securin, we could expect that simultaneous loss of Pds1 and 

Cdc55 might have additive effects, allowing precocious separa-

tion of sister chromatids during the unperturbed cell cycle. 

Indeed, concomitant deletion of CDC55 and PDS1 turned out 

to be lethal (unpublished data).

Discussion

The control of sister chromatid separation 
by the morphogenesis checkpoint
It has been well established that morphogenetic defects, such as 

lack of actin polarization or budding, cause a G2 arrest in bud-

ding yeast because of the inhibitory phosphorylation of Cdk1 

on tyrosine 19 by the Swe1 kinase (Lew, 2003). This inhibitory 

phosphorylation likely involves only a small pool of mitotic 

Cdks. In fact, the morphogenesis checkpoint arrests the cell cy-

cle after spindle formation, whereas complete inactivation of all 

mitotic Cdks by mutations or SWE1 overexpression prevents 

spin dle pole body separation and bipolar spindle assembly 

(Crasta and Surana, 2006). We show here that the morphogene-

sis checkpoint prevents sister chromatid separation indepen-

dently of securin because pds1∆ cells treated with Lat-A 

or overexpressing the dominant-negative CLA4t allele do 

not attempt anaphase. Our data also indicate that morpho-

genesis checkpoint activation does not delay separase asso-

ciation to securin and its nuclear import, which depends on Pds1 

phosphorylation by Cdks (Agarwal and Cohen-Fix, 2002; 

Uhlmann, 2003), consistent with only a minor pool of mitotic 

Cdks being inactivated under these conditions.

Inactivation of Mcd1 through the temperature-sensitive 

scc1-73 allele or its ectopic cleavage also turned out to be in-

suffi cient for anaphase and chromosome segregation under 

morphogenesis checkpoint activation, raising the possibility that 

either spindle function is compromised or residual cohesion 

persists on chromosomes after Mcd1 inactivation. Because in 

our assays spindle forces seem normal, we favor the second 

interpretation. Whether residual cohesion depends on other 

cohesin subunits or on other proteins remains to be established. 

Cohesin-independent chromatid linkages have been reported 

for repetitive sequences (D’Amours et al., 2004; Dynek and 

Smith, 2004; Sullivan et al., 2004), and a role for condensin in 

chromatid cohesion has been recently described (Lam et al., 

2006). Swe1-mediated phosphorylation of mitotic Cdks could 

prevent the release of these linkages in addition to inhibiting 

securin degradation. Although a direct role for mitotic Cdks in 

dismantling sister chromatid cohesion has not been reported so 

far, Cdks are required at different levels for Polo kinase activa-

tion, which in turn contributes to dissociation of sister chroma-

tids by phosphorylating the cohesin Mcd1 and enhancing its 

susceptibility to cleavage by separase (Alexandru et al., 2001). 

In addition, in higher eukaryotic cells Polo and Aurora B kinases 

promote the prophase pathway of cohesin dissociation from chro-

mosome arms that is independent of securin degradation and 

relies on phosphorylation of the SA2 cohesin subunit (Sumara 

et al., 2002; Hauf et al., 2005). In budding yeast, mitotic Cdks 

activate the Polo kinase through several mechanisms, including 

transcription (Spellman et al., 1998), phosphorylation (Mortensen 

et al., 2005), and inhibition of proteolysis (Zachariae et al., 

1998). It is therefore not surprising that Cdc5 activation is dra-

matically delayed in response to the morphogenesis checkpoint. 

Figure 9. Effects of Cdc5, condensin, and topoisomerase II inactivation on anaphase onset in the absence of Cdc55. (A) Strains with the indicated geno-
types (W303, ySP305, ySP6130, ySP6146, ySP6121, and ySP6105) were grown in YEPD at 26°C, arrested in G1 with α-factor, and released at 37°C 
(time 0). At different times, cells were collected to determine the kinetics of budding and anaphase after nuclear staining with propidium iodide. (B) Serial 
dilutions of strains with the indicated genotypes (W303, ySP5737, ySP5929, and ySP6066) were spotted on YEPD plates and incubated at 25°C for 2 d 
and at 16°C for 6 d. (C) Wild-type (wt), top2-4, and cdc24 cells carrying a minichromosome (YCp50) were arrested in G1 with α-factor and released for 
3 h at 37°C in the presence of nocodazole. Topological forms of plasmids isolated from these cells were examined by Southern blot after electrophoresis 
of total DNA in the presence of ethidium bromide using the 1.7-kb AmpR PvuI–BglII fragment of YCp50 as a probe. Purifi ed YCp50 DNA linearized with 
HindIII and uncut were run in parallel to defi ne the mobility of the various conformational forms.
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The failure to timely activate Cdc5 could contribute to the lack 

of sister separation in these conditions but cannot be the only 

culprit. In fact, Cdc5 inactivation leads to ineffi cient separation 

of telomeric regions but has no or little effect on that of centro-

meric and arm sequences (Alexandru et al., 2001). In addition, 

Cdc5 is not required for the onset of anaphase of cdc24 cdc55∆ 

cells. If the failure to separate sister chromatids when the mor-

phogenetic checkpoint is active were merely due to delayed 

Cdc5 activation, anaphase should be resumed by ectopic Mcd1 

cleavage, which we show not to be the case. Therefore, sister 

chromatid cohesion seems to be maintained by the morpho-

genesis checkpoint through a previously unanticipated mecha-

nism that does not depend only on securin stabilization and Polo 

kinase inactivation.

PP2ACdc55 and the control of sister 
chromatid separation
We find that inactivation of the protein phosphatase PP2ACdc55 

is sufficient to allow sister chromatid separation when the 

morphogenesis checkpoint is activated. Unlike upon dele-

tion of SWE1, which completely abolishes the cell’s ability 

to respond to morphogenetic defects, this is not achieved 

through switch off of checkpoint signaling, because lack of 

PP2ACdc55 activates by itself the checkpoint and induces Swe1 

stabilization by causing morphogenetic defects (Jiang, 2006). 

In agreement with a critical function for PP2ACdc55 in control-

ling sister separation when the morphogenesis checkpoint is 

 active, deletion of CDC55 turned out to be lethal for cla4 

and cdc12 mutants (unpublished data), whose morphogene-

sis defects are known to activate the checkpoint (Lew, 2003). 

Recently, PP2A bound to Rts1/B56, the other regulatory 

 subunit, has been found to protect centromeric cohesion dur-

ing mitosis and meiosis I, in both yeast and human cells 

(Kitajima et al., 2006; Riedel et al., 2006). In our experi-

mental conditions, PP2ARts1 seems to have only a minor role, 

perhaps restricted to centromeric regions, in preventing 

chromatid dissociation.

Cdc55 was previously implicated in maintaining sister 

chromatid cohesion in response to activation of the spindle 

assembly checkpoint (Minshull et al., 1996), suggesting that 

PP2ACdc55 acts as anaphase inhibitor in several conditions. 

However, in nocodazole-treated cdc55∆ cells, sister chroma-

tid separation is accompanied by Mcd1 proteolytic cleavage 

(Yellman and Burke, 2006; this study), whereas we could not 

fi nd evidence for such event in cdc55∆ cells undergoing ana-

phase in the presence of morphogenetic defects. In agree-

ment with our data, Cdc55 has recently been shown to prevent 

chromatid separation independently of securin degradation and 

Mcd1 cleavage in cells with telomeric DNA lesions (Tang and 

Wang, 2006).

How could PP2ACdc55 prevent sister chromatid separation 

in G2? For instance, it could regulate a pathway of cohesin re-

moval similar to the prophase pathway of higher eukaryotic 

cells, although so far Mcd1 cleavage by separase seems to be 

the only necessary and suffi cient event for cohesin removal 

from yeast chromosomes (Uhlmann, 2003). If PP2ACdc55 were 

to inhibit cohesin dissociation independently of Mcd1 cleavage, 

its inactivation could allow anaphase in the absence of separase. 

In contrast to recently published data (Tang and Wang, 2006), 

we fi nd that both the esp1-1 mutation (Ciosk et al., 1998) and 

Figure 10. CDC55 overexpression delays 
anaphase independently of securin. Wild-type 
(wt; ySP3575), GAL1-CDC55 (ySP5690), and 
GAL1-CDC55 pds1∆ (ySP5752) strains carry-
ing the tetO/tetR-GFP construct to detect peri-
centromeric sequences at chromosome V were 
grown in YEPR at 25°C, arrested in G1 by 
α-factor, and released in YEPRG at 25°C (time 0). 
Cells were analyzed at different times for DNA 
contents (histograms), budding, sister chroma-
tid separation, spindle formation/elongation, 
and nuclear division (graphs). Pictures show 
merged micrographs of tubulin (red) and DNA 
(blue) at 150 min. 
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overexpression of nondegradable Pds1 (Cohen-Fix et al., 1996) 

prevent cdc55∆ cells from undergoing anaphase (unpublished 

data), suggesting that separase is still required for sister chro-

matid separation in the absence of PP2ACdc55. It should be noted, 

however, that separase has additional functions that are unre-

lated to its role in Mcd1 cleavage (Sullivan et al., 2001; Stegmeier 

et al., 2002; Sullivan and Uhlmann, 2003; Papi et al., 2005). 

Interestingly, Cdc55 has recently been shown to interact physi-

cally with Esp1 and to prevent the early anaphase release 

of Cdc14 by causing dephosphorylation of its inhibitor Net1 

(Queralt et al., 2006). This raises the possibility that lack of 

PP2ACdc55 causes the unscheduled activation of Cdh1/APC, and 

thereby Pds1 degradation, by promoting Cdc14 release. Although 

this could partly explain the separation of sister chromatids in 

nocodazole-treated cdc55∆ cells, we show here that nuclear 

division of cdc55∆ cells when the morphogenesis checkpoint 

is active is independent of Cdc14 function, suggesting that 

PP2ACdc55 must have other roles, besides inhibiting Cdc14 dis-

sociation from Net1, before the onset of anaphase. Therefore, 

a more direct role of PP2ACdc55 in controlling sister chromatid 

separation in G2 must be invoked.

Putative targets of PP2ACdc55 
in the control of anaphase
The importance of PP2ACdc55 as anaphase inhibitor is under-

scored by the synthetic lethality of pds1∆ cdc55∆ double mu-

tants, where sister chromatid separation could be so premature 

as to cause lethal chromosome missegregation. In addition, 

CDC55 overexpression delays chromatid dissociation indepen-

dently of securin. In agreement with a crucial function as ana-

phase inhibitor, PP2ACdc55 phosphatase activity decreases at the 

onset of anaphase (Queralt et al., 2006).

An obvious candidate for being dephosphorylated 

by PP2ACdc55 to prevent sister chromatid dissociation was 

Mcd1, especially in light of recent data indicating that the 

other PP2A complex, PP2ARts1/B56, prevents precocious loss of 

centromeric cohesion by counteracting Mcd1 phosphorylation 

by Polo kinase (Kitajima et al., 2006; Riedel et al., 2006). 

However, as discussed above, PP2ACdc55 might target other 

proteins beside Mcd1. For instance, it could dephosphorylate 

other cohesin subunits and prevent cohesin unloading through a 

pathway analogous to the vertebrate prophase pathway. Despite 

the efforts, we could not detect any difference in the electro-

phoretic mobility of other cohesin subunits, such as Scc3 and 

Pds5, in cdc55∆ versus wild-type cells (unpublished data). 

Alternatively, PP2ACdc55 could regulate other chromatin-bound 

proteins, such as the condensin complex. It is worth mention-

ing that the human condensin HCP-6 interacts with and is 

dephosphorylated by PP2A bound to the B subunit (Yeong et al., 

2003). Finally, another putative target of PP2ACdc55 might be 

Esp1, which interacts physically with Cdc55 (Queralt et al., 

2006). Although separase has been proposed to down-regulate 

PP2ACdc55 activity, separase regulation of by PP2ACdc55 can also 

be envisaged.

In summary, a crucial role for PP2ACdc55 in maintaining sister 

chromatid cohesion in response to several stress conditions is 

emerging, making it a key factor for preserving genome stability. 

Mutations in Drosophila melanogaster PP2A B subunit, the Cdc55 

counterpart, cause chromosome segregation defects (Mayer-Jaekel 

et al., 1993), and mammalian PP2A is considered to be a principal 

guardian against malignant transformation (Janssens et al., 2005). 

Understanding the molecular mechanisms by which PP2ACdc55 

controls the onset of anaphase under different conditions might 

shed light on processes that prevent chromosome missegregation, 

which is intimately linked to tumorigenesis.

Materials and methods
Strains, media, and reagents
All yeast strains (Table S1, available at http://www.jcb.org/cgi/content/
full/jcb.200609088/DC1) were derivatives of or were backcrossed at 
least three times to W303 (ade2-1, trp1-1, leu2-3,112, his3-11,15, ura3, 
ssd1). Cells were grown in YEP medium (1% yeast extract, 2% bactopep-
tone, and 50 mg/l adenine) supplemented with 2% glucose (YEPD), 2% 
raffi nose (YEPR), or 2% raffi nose and 1% galactose (YEPRG). Unless other-
wise stated, α-factor, nocodazole, Lat-A, and Lat-B were used at 3 μg/ml, 
15 μg/ml, 0.1 mM, and 0.2 mM, respectively. For galactose induction of 
α-factor–synchronized cells, galactose was added half an hour before re-
lease. MET3-CDC20 cells were grown in synthetic medium lacking methio-
nine, whereas the MET3 promoter was shut off by resuspending cells in 
YEPD medium supplemented with 2 mM methionine.

Plasmid constructions and genetic manipulations
To clone CDC55 under the GAL1-10 promoter (plasmid pSP376), a BglII–PstI 
PCR product containing the CDC55 coding region and 140 bp of down-
stream sequence was cloned in the BamHI–PstI site of a GAL1-10–bearing 
YIplac211 vector. pSP376 integration was directed to the URA3 locus by 
BglII digestion. Copy number of the integrated plasmid was verifi ed by 
Southern analysis. CDC55, SWE1, PPH21, and PPH22 chromosomal dele-
tion were generated by one-step gene replacement (Wach et al., 1994).

Immunoprecipitations, kinase assays, and Western blot analysis
Immunoprecipitations were performed as described by Fraschini et al. 
(2001); lysis buffer was supplemented with 0.1% Triton X-100 (Fluka). 
Cdc5 kinase assays were performed according to Charles et al. (1998). 
For Western blot analysis, TCA protein extracts were prepared according to 
Fraschini et al. (1999). Nondenaturing protein extracts were prepared ac-
cording to Chiroli et al. (2003). Proteins transferred to Protran membranes 
(Schleicher and Schuell) were probed with 9E10 mAb for myc-tagged 
proteins, with 12CA5 or 16B12 mAb (Babco) for HA-tagged proteins, and 
with polyclonal antibodies against Clb2 and Swi6. Secondary antibodies 
were obtained from GE Healthcare, and proteins were detected by an 
enhanced chemiluminescence system according to the manufacturer.

Other techniques
Flow cytometric DNA quantitation, in situ immunofl uorescence, and chro-
mosome spreads were performed according to Fraschini et al. (1999). Nu-
clear division was scored with a fl uorescent microscope on cells stained 
with propidium iodide. Visualization of Tet operators using GFP was per-
formed as described in Michaelis et al. (1997). Catenation assays were 
performed according to Bachant et al. (2002). To detect spindle formation 
and elongation, α-tubulin immunostaining was performed with the YOL34 
monoclonal antibody (Serotec) followed by indirect immunofl uorescence 
using rhodamine-conjugated anti-rat antibody (1:100; Pierce Chemical 
Co.). Cdc14 immunostaining was performed with sc-12045 polyclonal 
antibodies (Santa Cruz Biotechnology, Inc.) followed by indirect immuno-
fl uorescence using CY3-conjugated anti-goat antibody (GE Healthcare). 
Immunostaining of myc- and HA-tagged proteins was done by incubation 
with the 9E10 mAb and 16B12 mAb (Babco), respectively, followed by 
indirect immunofl uorescence using CY3-conjugated goat anti–mouse anti-
body (GE Healthcare). Digital images were acquired on a fl uorescent 
microscope (Eclipse E600; Nikon) equipped with a charge-coupled device 
camera (DC350F; Leica) at 20°C with an oil 100× 1.3 NA Plan Fluor 
objective (Nikon), using FW4000 software (Leica).

Online supplemental material
Fig. S1 shows that Cdc5 protein levels and associated kinase are delayed 
in response to morphogenetic defects. Fig. S2 shows that mutations in the 
catalytic subunit of PP2A that impair its interaction with Cdc55 promote 
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nuclear division when the morphogenesis checkpoint is activated. Fig. S3 
shows that Mcd1 falls off chromatin but its proteolytic cleavage is unde-
tectable in cdc55∆ cells overexpressing Cla4t. Fig. S4 shows that sister 
separation in the absence of Cdc55 upon nocodazole treatment correlates 
with Mcd1 cleavage. Table S1 describes the genotypes of strains used in 
this work. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200609088/DC1.
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