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Reprogramming of energy metabolism as a driver of aging
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ABSTRACT
Aging is characterized by progressive loss of cellular function and integrity. It 

has been thought to be driven by stochastic molecular damage. However, genetic 
and environmental maneuvers enhancing mitochondrial function or inhibiting 
glycolysis extend lifespan and promote healthy aging in many species. In post-fertile 
Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase 
with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism 
from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and 
total of energy generation. As a result, energy-dependent physical activity and other 
cellular functions decrease due to unmatched energy demand and supply. In return, 
decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. 
This metabolic event is a determinant of aging, and is retarded by caloric restriction to 
counteract aging. In this review, we summarize these and other evidence supporting 
the idea that metabolic reprogramming is a driver of aging. We also suggest strategies 
to test this hypothesis

INTRODUCTION

Aging is hallmarked by the progressive loss of 
cellular function and integrity that eventually leads to 
vulnerability and death of organisms [1]. It lowers the 
quality of life, and is a potent risk factor for cancer, 
diabetes, and other prevalent diseases [2]. It has been 
long thought that age-dependent accumulation of 
stochastic damage of molecules drives aging [3]. Current 
evidence demonstrate that a programmed event of energy 
metabolism is a determinant of aging that can be modified 
to modulate aging [4].

AGING INVOLVES REPROGRAMMING 
OF ENERGY METABOLISM

Intermediary metabolism generates ATP from 
nutrients, providing energy for cellular function and 
maintenance. Alterations in energy metabolism are 

linked to the aging process and aging-associated diseases 
[5]. Substantial evidence has demonstrated that energy 
production progressively decreases with age in all 
organisms, mainly due to the decline in the function of 
mitochondria [6]. Aged organisms also exhibit disrupted 
homeostasis of carbohydrates, amino acids, and fatty 
acids [5], major biological fuels [7]. The exact alterations 
in energy metabolism that are associated with aging, their 
physiological impact, and their contribution to aging are 
unclear, impeding the understanding of aging mechanisms 
and the development of mechanism-based strategies to 
modulate aging. 

The decline in mitochondrial function with age 
has been attributed to the accumulation of stochastic 
damage to mitochondrial DNA [3], primarily by reactive 
oxygen species produced through the electron transport 
chain (ETC) during ATP production. Although oxidative 
damage of mitochondrial DNA accumulates with age 
[8, 9] and leads to reduced gene expression [10, 11], it 
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is inconclusive whether oxidative damage is the cause 
of aging-associated decline in mitochondrial function 
or aging [12, 13]. Recently, we have reported that the 
aging of C. elegans, a genetic model of aging that lives 
about three weeks, is highlighted by a progressive 
decline in cytosolic phosphoenolpyruvate carboxykinase 
(PEPCK-C) after the reproductive peak, and a reciprocal 
increase in pyruvate kinase (PK) [4]. While PK is an 
enzyme of glycolysis, PEPCK-C is a metabolic enzyme 
associated with longevity [4, 14, 15]. A key consequence 
of this metabolic event is the shunt of energy metabolism 
from oxidative metabolism to anaerobic glycolysis. In 
all aerobic species, ATP can be generated both in the 
presence and absence of oxygen. But 30-36 ATP can be 
generated from one glucose molecule through oxidative 
metabolism, while only 2 ATP are produced by anaerobic 
glycolysis [7]. As a result, reciprocal changes in PEPCK-C 
and PK with age reduce the efficiency of and total energy 
production [4]. 

How do changes in PEPCK-C and PK, two cytosolic 
enzymes, lead to decline in mitochondrial function? 
The core of energy metabolism is the tricarboxylic acid 
(TCA) cycle [7], a series of chemical reactions that 
oxidize carbohydrates, fats and proteins into carbon 
dioxide, generating NADH that is used by ETC to 
produce ATP. Moreover, the TCA cycle intermediates 
can be withdrawn from mitochondria to the cytosol, a 
process called cataplerosis. This supplies carbons for 
the synthesis of glyceride-glycerol, serine, and glucose, 
as well as metabolites derived from these chemicals 
[16]. Traditionally viewed as a rate-limiting enzyme of 

gluconeogenesis and glyceroneogenesis, PEPCK-C is a 
major cataplerotic enzyme that links the TCA cycle with 
the metabolism of carbohydrates, fatty acids, amino acids, 
and other metabolites [16]. At the biochemical level, the 
activity of PEPCK-C is correlated tightly with the flux 
of the TCA cycle but not gluconeogenesis [17]. At the 
organismal level, PEPCK-C is required for the integration 
of energy metabolism [18], and is critical for the 
homeostasis of glucose, fatty acids, amino acids and other 
related metabolites (see ref [16] for review). In C. elegans, 
PEPCK-C accelerates TCA cycle flux and promotes 
oxidative metabolism [4], likely via increased cataplerosis 
(Figure 1A). PEPCK-C also increases mitochondrial 
respiration and counteracts its decline with age. On the 
other hand, PK is a key glycolytic enzyme that greatly 
favors the conversion of phosphoenolpyruvate to pyruvate, 
promoting glycolysis [7]. During energy production, 
pyruvate either enters mitochondria for oxidation, or is 
converted to lactate by lactate dehydrogenase. PEPCK-C 
shunts glucose metabolism toward oxidation, reducing 
lactate production [4]. 

The reciprocal changes in PEPCK-C and PK 
with age, and their impact on oxidative metabolism 
and anaerobic glycolysis are likely conserved from C. 
elegans to humans. First, skeletal muscle of aging humans 
from 10s to 70s exhibits an aging-associated decrease 
in PEPCK-C activity, and increases in PK and lactate 
dehydrogenase that cannot be explained by alterations in 
numerical ratio of type I and type II muscle fibers with 
age [19]. In aged skeletal muscle and liver of mammalian 
animals, PEPCK-C mRNA is decreased and PK mRNA 

Figure 1: Models for aging-associated changes in energy metabolism and aging. A., “PEPCK-C pulls the strings”, schema 
illustrating a role of PEPCK-C in energy metabolism. B.-C., Schema illustrating the impact of the ratio of PEPCK-C over PK on energy 
metabolism and survival. Red, decrease; green increase. D.-E., Models for the role of reciprocal changes in PEPCK-C and PK in aging. 
These metabolic changes may also promote aging via reduced carbon supply from the TCA cycle, which is needed for various biosynthetic 
pathways. Direct evidence supporting this view, however, is currently lacking. Panels D-E were originally published in Journal of Biological 
Chemistry, Yuan, et al., Reciprocal changes in phosphoenolpyruvate carboxykinase and pyruvate kinase with age are a determinant of aging 
in Caenorhabditis elegans. J Biol Chem, 291: 1307-19. © the American Society for Biochemistry and Molecular Biology.
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is increased [20, 21]. Second, aging mammals including 
humans display decreased mitochondrial function and 
increased glycolysis in many tissues such as liver, skeletal 
muscle and brain [22-25], as well as elevated lactate in 
both tissues and serum [26]. Moreover, platelets of aged 
humans exhibit reduced ATP production by mitochondria, 
and increased ATP production by anaerobic glycolysis 
[27], which likely reflects aging-associated changes in 
energy metabolism of the whole body [27, 28]. 

RECIPROCAL CHANGES IN PEPCK-C 
AND PK PROFOUNDLY IMPACT AGING 
ORGANISMS

What are the physiological effects of reciprocal 
changes of PEPCK-C and PK with age? The decline in 
mitochondrial bioenergetics may subject aging organisms 
to a relative energy deficiency, although the PK-driven 
increase in glycolysis likely compensates for some 
of the reduced energy production. A deficit in energy 
supply reduces the function and integrity of many cells 
and tissues, hence the survival of organisms, due to 
unmatched energy demand and supply (Figure 1B). In 
support of this view, PEPCK-C promotes physical activity, 
fertility, autophagy, defense against osmotic and oxidative 
stresses, and many other energy consuming processes 
in various animal species [4, 14, 15, 29-34]. During the 
aging of C. elegans, decline in PEPCK-C is coupled with 
loss of physical activity, a major energy consumer [35], 
and genetically enhanced PEPCK-C preserves physical 
activity and extends lifespan in a dose-dependent manner 
[4]. Of note, PEPCK-C promotes physical activity to 
increase ATP turnover, AMP/ATP ratio (a key indicator of 
cellular energy demand), the activation of 5’ AMP kinase 
(AMPK, a major mediator of energy homeostasis activated 
by higher AMP:ATP ratio [36]), fuel oxidation, ATP 
content, and food intake, both acutely and chronically. 
Many of these effects of PEPCK-C on energy demand and 
supply, and cellular function and maintenance require the 
activation of AMPK [4]. 

In addition to decline in energy production, the 
following alterations in energy metabolism are predicted, 
based on the metabolic roles of PEPCK-C, PK, and the 
TCA cycle: 1) increase in synthesis and deposition of fats; 
2) disrupted homeostasis of glucose and amino acids; 
3) reduction in NAD+; and 4) reduction in biosynthesis 
associated with cataplerosis (Figure 1C).

Unlike glucose, fats can only be oxidized to produce 
ATP [7]. The reduction in oxidative metabolism with age 
would lead to decreased utilization of fats. On the other 
hand, increased PK activity and glycolytic flux in aged 
organisms should produce more pyruvate. In addition to 
being oxidized in mitochondria or converted to lactate, 
pyruvate can serve as a precursor of lipogenesis or 
gluconeogenesis. Because mitochondrial function is 
reduced, more pyruvate would be shunt to lipogenesis 

or gluconeogenesis. Indeed, aging involves a shift 
of fatty metabolism toward lipogenesis in mice [37] 
and accumulation of fats in all organisms including 
humans [38]. In mice, decline in PEPCK-C with age 
underlies aging-associated reduction in lipolysis and the 
coordinative down regulation of mitochondrial enzymes 
[39]. Indeed, aged mice over-expressing PEPCK-C 
exhibited less subcutaneous, visceral, and pericardial 
fat deposit than even younger control mice fed the same 
regular chow diet [31]

The shift of energy metabolism from oxidative 
metabolism to anaerobic glycolysis suggests that 
aged organisms demand more glucose as energy 
source. Consistent with this view, gluconeogenesis is 
elevated in aged yeast [40]. In aged mammals, basal 
gluconeogenic capacity and blood glucose produced 
through gluconeogenesis are increased [41], while hepatic 
incorporation of glucose to glycogen is decreased [42]. 
In contrast to gluconeogenesis, glucose uptake into 
skeletal muscle, brain and other energy consuming tissues 
decreases with age due to reduced insulin signaling [43], 
decreased insulin sensitivity [44], and reduced glucose 
transporters [45]. An increased demand and supply 
of glucose, while a reduction in usable glucose may 
contribute to the disrupted homeostasis of glucose in 
aged organisms [46]. Sarcopenia is the progressive loss 
of muscle in aging humans and animals [47]. The lost 
muscle mass, primarily proteins, results in increased 
alanine and glutamine in circulation [48]. A fate of these 
amino acids is to be oxidized in mitochondria. The shift 
of energy metabolism away from oxidative metabolism 
would reduce the disposal of these amino acids, and 
contribute to the disrupted homeostasis of amino acids in 
aged organisms [49]. 

Redox homeostasis is critical for cellular function 
and integrity [50]. Significantly, aging is accompanied 
by a progressive decline in intracellular NAD+ in species 
including humans [51, 52]. NAD+ is an essential cofactor 
for sirtuin, a deacetylase that promotes longevity and 
healthy aging [53]. It is also a necessary substrate for poly 
(ADP-ribose) polymerase [54], a critical enzyme in the 
DNA repair process [54-56]. Decreased NAD+ increases 
the vulnerability of cells to accumulation of DNA damage 
with age [57-59]. The breakdown of glucose to pyruvate 
consumes NAD+ [7]. NAD+ is regenerated through 
fermentation that converts pyruvate to lactate. Increased 
glycolytic flux in aged organisms would lead to increased 
consumption of NAD+. Insufficient regeneration of NAD+ 

could result in reduction in NAD+. 
The cataplerotic role of PEPCK-C has been 

recognized in cell proliferation [60], and adaptive response 
to stresses, such as acidosis [61], inflammation [62], and 
osmotic stress [30]. Under these circumstances, PEPCK-C 
supports the synthesis of ribose, glucose, steroid, and 
glycerol from amino acids and other non-carbohydrates. 
The released ammonia from the oxidation of amino 
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acids relieves acidosis. Likely, decline in PEPCK-C with 
age reduces cataplerosis and its related biosynthesis, 
contributing to reduced proliferation and increased 
vulnerability associated with aging. 

Most cancer cells exhibit the Warburg effect [63], 
higher glycolysis followed by lactate production, instead 
of lower glycolysis followed by oxidation. Type II 
diabetes is associated with metabolic changes paralleling 
the Warburg effect, including expression of genes involved 
in anaerobic glycolysis [64] and a decline in mitochondrial 
function [65]. Thus, the shift of energy metabolism from 
oxidative metabolism to glycolysis driven by reciprocal 
changes in PEPCK-C and PK with age may promote 
tumorigenesis and the prevalence of diabetes [66-68]. For 
example, metformin, the most commonly prescribed drug 
treating type II diabetes, may shunt energy metabolism 
toward oxidative metabolism and away from glycolysis to 
counteract cancers [68].

Collectively, the cataplerotic role of PEPCK-C acts 
as a major adaptor of energy metabolism, and a carbon 
valve for various biosynthetic pathways. Reciprocal 
changes in PEPCK-C and PK after the reproductive 
peak are a lead metabolic event associated with aging. 
This event re-patterns metabolism of aging organisms, 
decreases their cellular function and integrity, and 
promotes the onset of aging-associated diseases.

RECIPROCAL CHANGES IN PEPCK-C 
AND PK WITH AGE DETERMINE AGING

Evidence from mice and C. elegans demonstrate 
that reciprocal changes in PEPCK-C and PK with age 
determine aging. First, PEPCK-C counteracts loss of 
cellular function and integrity with age. Specifically, 
it extends fertility, retards aging-associated decrease 
in physical activity, a negative indicator of health span 
and lifespan [69], and enhances autophagic activity [4, 
14]. Autophagy is a cell repair mechanism that removes 
molecular wastes, and counteracts aging and aging-related 
diseases [70-73]. Second, PEPCK-C retards cellular 
senescence [4], assessed by the accumulation of molecular 
wastes such as lipofuscin and β-galactosidase [74, 75], 
and the expression of the proliferation restrictive marker 
cyclin kinase inhibitor [76]. Cellular senescence may 
contribute to aging [77]. Moreover, reciprocal changes in 
PEPCK-C and PK with age are necessary and sufficient to 
limit lifespan and fertility [4]. Last, PEPCK-C activity is 
correlated with lifespan, and its enzyme level predicts life 
expectancy [4]. 

Many effects of PEPCK-C on aging including 
lifespan extension require the activation of AMPK 
signaling and/or the inhibition of Target of Rapamycin 
(TOR) signaling [4]. AMPK and TOR signaling are two 
major molecular signals that control aging in species 
including mammals [78-80]. The beneficial impact of 
activation of AMPK and inhibition of TOR on lifespan 

necessitates autophagy [81-83]. Consistently, PEPCK-C 
enhances the activity of autophagy in aged C. elegans, 
and requires the expression of autophagic genes to 
promote longevity [4]. Interestingly, AMPK primarily 
drives catabolism that produces energy and promotes 
mitochondrial oxidation, and is a negative regulator of 
glycolysis [84]. On the other hand, TOR signaling is a 
cellular energy sensor of excessive nutrient and energy 
that upregulates PK and glycolysis [85]. The anti-aging 
effects mediated by TOR inhibition involve increased 
energy metabolism and oxidative phosphorylation 
complex [86-90]. 

In summary, reciprocal changes in PEPCK-C and 
PK with age are a determinant of aging. The mechanisms 
include disrupted energy homeostasis, as well as altered 
AMPK, TOR signaling, and autophagy. Consistently, 
mitochondrial bioenergetics and autophagic activity are 
preserved in fibroblasts of centenarians [91]. Intriguingly, 
declines in PEPCK-C and physical activity with age 
promote each other to limit reproductive life and lifespan 
[4] via a feedback mechanism [4, 14, 92, 93]. These 
observations indicate that a vicious cycle of reciprocal 
changes in PEPCK-C and PK, and decline in cellular 
function and integrity drives aging (Figure 1D). The 
causality between changes in metabolism and in cellular 
function and integrity is unknown, and is likely a “chicken 
and egg” dilemma.

RECIPROCAL CHANGES IN 
PEPCK-C AND PK ARE A COMMON 
DENOMINATOR OF AGING

Molecular signals, pharmacological reagents, 
appropriate environmental stresses, and calorie restriction 
(CR) extend lifespan and may also improve health in 
various species. Strikingly, most of these maneuvers either 
increase oxidative metabolism and energy production, 
inhibit glycolysis, or both. In addition to AMPK and 
TOR, insulin/IGF signaling (IIS) [94] and sirtuin [53] are 
molecular signals that affect lifespan. Reduced IIS [95-99] 
and sirtuin [51, 100-103] increase or stabilize PEPCK-C, 
promote oxidative metabolism, and inhibit PK and/or 
glycolysis.

Metformin is an indirect activator of AMPK, and 
rapamycin is an inhibitor of TOR signaling. Metformin 
[104, 105], rapamycin [106, 107] and inhibitors of 
glycolysis, such as D-glucosamine and 2-Deoxy-D-
glucose [108, 109], extend lifespan in many species 
including mammals. D-glucosamine and 2-Deoxy-D-
glucose increase mitochondrial respiration, and require 
AMPK to extend lifespan [108, 109], suggesting that a 
shunt of energy metabolism toward oxidative metabolism 
is critical for the observed lifespan extension. Besides 
pharmacological reagents, lower ambient temperature, and 
osmotic and oxidative stresses increase PEPCK-C and/or 
oxidative metabolism, and extend lifespan in C. elegans 
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and other lower organisms [16, 30, 110-112]. 
CR is the most robust intervention that extends 

lifespan and improves health in species ranging from yeast 
to non-human primates, via AMPK-TOR-autophagy axis 
[80-83]. CR increases PEPCK-C activity and oxidative 
metabolism while inhibiting PK activity and glycolysis 
in animals [15, 113-116]. In humans, CR increases 
mitochondrial biogenesis [117]. A plausible biological 
reason underling this metabolic shift is to promote efficient 
energy production and cataplerosis, in order to meet 
the energy [118] and biosynthetic [119-121] need under 
limited resources. Significantly, CR counteracts reciprocal 
changes in PEPCK-C and PK with age to elicit anti-aging 
effects including longevity in C. elegans [4]. On the other 
hand, physical activity, which extends life expectancy in 
humans [122], increases energy expenditure, PEPCK-C 
and mitochondrial function. Notably, both mice and C. 
elegans over-expressing PEPCK-C exhibited increased 
physical activity, ate more, weighed less, had extended 
fertility, and lived longer [4, 14]. Thus, energy balance, 
achieved by reduced “energy in” from CR, enhanced 
“energy out” from enhanced physical activity, or their 
combination, counteracts reciprocal changes in PEPCK-C 
and PK with age to retard aging.

In summary, reciprocal changes in PEPCK-C and 
PK activity with age, and the consequent shift of energy 
metabolism are a common denominator of aging. These 
alterations can be retarded by CR, CR mimetics, and other 
genetic and environmental factors to counteract aging via 
AMPK and TOR pathways (Figure 1E). 

CONCLUSIONS AND FUTURE 
PERSPECTIVE

Reciprocal changes in PEPCK-C and PK with 
age are likely part of a bigger reprogramming of energy 
metabolism that profoundly affects the physiology of 
aging organisms, thereby impacting the aging process. It 
is important to obtain a complete picture of changes in 
metabolism with age, and their influence on decline in 
cellular function, cellular senescence, lifespan, and other 
aging traits. Such investigation should focus on metabolic 
pathways moving carbons into and out of the TCA cycle, 
and those affecting the homeostasis of glucose, fats and 
amino acids. This is because both CR and an optimized 
ratio of macronutrients (carbohydrates, proteins and fats) 
without reduction in total calorie intake extend lifespan 
in mice [123-125], suggesting that alterations in these 
metabolic pathways have significant but complex impact 
on aging.

Evidence outlined here support the bioenergetics 
theory of aging [126, 127], which proposes that the 
decline in bioenergetics with age is the driver of aging. 
Specifically, the decline in bioenergetics with age is a 
pacemaker in the aging process, whereas other aging-
associated phenomena, such as the accumulation of 

reactive species and the decline in repair mechanisms, 
are secondary to the decline in bioenergetics. The sum of 
all these changes leads to loss of physiological function 
and eventually vulnerability and death of organisms. 
The bioenergetics theory of aging also hypothesizes that 
an unidentified primary genetic program (aging clock) 
controls the decline in bioenergetics. However, the 
presence of a vicious cycle between reciprocal changes 
in PEPCK-C and PK, and decline in cellular function and 
integrity indicates that a genetically programmed aging 
clock may [128] or may not [129-131] be needed for the 
decline in bioenergetics with age. For example, a quasi-
programmed hyperfunction, which has been proposed to 
be associated with development and have harmful impact 
on organisms, may start this vicious cycle without a 
genetically programmed aging clock; while the pace of 
this vicious cycle may be mediated by a genetic program. 
In either case, it is critical to understand the mechanisms 
underlying aging-associated changes in PEPCK-C and 
PK, which are currently unknown. Remarkably, PEPCK-C 
is acetylated in yeast [132] and human cells [133], and 
PEPCK-C acetylation leads to its degradation [100]. 
Sirtuin, which promotes longevity in many species, 
deacetylates and stabilizes PEPCK-C [100]. Deacetylation 
mediated by sirtuin shunts energy metabolism away from 
glycolysis and toward oxidative metabolism [134-137], 
promoting energy production [138]. Sirtuin expression 
and activity decrease with age [139, 140], and CR [141] 
and exercise [142] increase sirtuin to decrease protein 
acetylation. It will be interesting to examine if PEPCK-C 
acetylation is involved in its decline with age, if sirtuin 
slows this decline, and if sirtuin retards aging via altered 
PEPCK-C stability.

Last, enhancing PEPCK-C is sufficient to delay 
many key aging-associated metabolic and physiological 
changes and increase lifespan [4, 14, 15]. Thus 
interventions that sustain PEPCK-C represent a novel 
strategy to counteract aging. 
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