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Abstract

OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B
cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central
defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal
center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we
have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain
promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and
have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow:
a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage.
The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated
the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is
deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative
regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice.
Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence
that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.
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Introduction

The development of B lymphocytes is under precise control by a

large number of transcription factors acting at distinct stages to

promote cellular differentiation, survival or proliferation. Critical

factors for early B cell specification and commitment are E2A,

early B cell factor 1 (EBF1) and Pax5 and other factors play

important roles at later stages (reviewed in [1–4]). OBF1 is a

transcriptional coactivator that is expressed predominantly in B

cells but also in activated T cells and forms a ternary complex with

the POU domain transcription factors Oct1 and/or Oct2 on

conserved octamer motifs (ATGCAAAT) of immunoglobulin (Ig)

and other target genes [5–9]. The OBF1 gene encodes a nuclear

isoform (p34) and also a cytoplasmic protein (p35) whose function

is unclear [10]. While it was initially thought that OBF1 is an

essential factor for Ig gene transcription [5], analysis of OBF1

deficient mice revealed that in B cells of these mice the level of

unswitched Ig m gene expression is normal [11–13], therefore

suggesting that this factor must have other target genes. Work

from several laboratories has shown that OBF1 has an important

function in late B cell development: ablation of OBF1 leads to

reduced splenic seeding by transitional B cells and to lower

numbers of recirculating B cells in the bone marrow [14,15].

Furthermore, OBF1 mutant mice have a severely impaired T cell

dependent (TD) humoral immune response with low levels of

isotype-switched secondary immunoglobulins (IgGs) and OBF12/2

follicular B cells fail to form germinal centers (GCs) [11,12,16,17].

This absence of GCs may be due in part to the impaired

expression of the Ets factor SpiB, which we showed to be a direct

target of OBF1 in B cells [18] and is itself important for GC

formation [19]. In a pure C57BL/6 genetic background OBF1 is

also crucial for marginal zone (MZ) B cells [20].

Although the first identified functions of OBF1 are found in the

periphery, increasing evidence suggests that this factor also plays a

significant role at early stages of B cell ontogeny. In the bone

marrow OBF1 promotes the survival of transitional B cells [14,15],

and is also critical for V(D)J recombination and transcription of a

subset of IgVk genes [21], thereby having an impact on the IgVk
repertoire [22]. In addition, when the OBF1 mutation is combined

with a mutation in the zinc finger transcription factor Aiolos, a
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severe reduction of the immature B cell pool in the bone marrow is

observed that defines a crucial function for OBF1 at the preB2 to

immature B cell transition [23,24]. Intriguingly, a recent study has

demonstrated that the cytoplasmic p35 isoform of OBF1 interacts

with the tyrosine kinase Syk, thus contributing to regulation of

preBCR signaling and preB cell proliferation [25].

Here we have generated transgenic mice expressing the nuclear

p34 OBF1 isoform in B cells under the control of the Ig heavy

chain variable (Ig VH) region promoter and m intron enhancer (Em).

Surprisingly, we observed that these mice have strongly reduced

numbers of follicular B cells in the periphery as well as of preB cells

in the bone marrow. In addition, these mice show defects in the

immune response elicited by follicular B cells, but have a normal

MZ B cell response. We present evidence that these defects are

due to the premature expression of OBF1 in early progenitors with

lymphoid and myeloid potential, the so-called EPLM cells, which

normally do not yet express this factor. Furthermore, we identified

a number of genes which are deregulated in the transgenic cells,

among which the negative regulators Id2 and Id3. Thus, strict

control of the level of OBF1 expression during the earliest stage of

B cell development is critical for the formation of a functional B

cell compartment.

Materials and Methods

Mouse strains and transgenic mice generation
The Em-VH-OBF1 construct contains a C-terminally HA

epitope-tagged human OBF1 cDNA under the control of the

murine Em enhancer coupled to the VH promoter from hybridoma

17.2.25. The Em enhancer was isolated as a 1 kb XbaI fragment

from plasmid 1–27 and the VH promoter was obtained as a 0.2kb

fragment from plasmid S-19; additional details of the construction

and nucleotide sequence are available upon request. Transgenic

mouse lines were obtained and bred in B6CF16C57BL/6 after

which they were intercrossed. All the presented analyses were done

with littermates of the different genotypes (WT or BCS). Animal

experimentation was carried out according to regulations effective

in the Kanton of Basel-Stadt, Switzerland as well as in accordance

with the FMI internal regulations under supervision of the FMI

Animal Committee. The mice were housed in groups of one to six

animals at 25uC with a 12:12 h light-dark cycle. They were fed a

standard laboratory diet containing 0.8% phosphorus and 1.1%

calcium (NAFAG 890, Kliba, Basel, Switzerland). Food and water

was provided ad libitum.

Splenic B cell purification
The splenic B cells were positively separated with CD19

microbeads following the manufacturer’s protocol (Miltenyi

Biotec).

Immunizations
To induce a T-independent antibody response, mice were

injected intravenously with 100 mg NIP-Ficoll. Sera were collected

from tail bleeding prior to and 10 days after immunization and

stored at 220uC.

To induce a T-dependent antibody response, mice were

injected subcutaneously with 50 mg alum-precipitated NIP-oval-

bumin or DNP-KLH. Sera were obtained from tail bleeding prior

to and 14 days after immunization and stored at 220uC.

ELISA
96-well microplates were coated over night at 4uC with DNP-

BSA or NIP-BSA (5 mg/ml in PBS). After extensive washing with

PBS the microplates were blocked for 1 hour with ELISA buffer

(4% BSA, 0.2% Tween20 in PBS). After extensive washing 3 times

serial dilutions of serum samples in ELISA buffer were incubated

for 2 hours at room temperature. The serum was removed by

extensive washing and alkaline phosphatase-labeled anti-IgM or

anti-IgG antibodies (1:2000, at room temperature for 2 hours)

were used as developing reagents. After washing, substrate buffer

(100 mg/ml nitrophenylphosphate, 0.1 g/l MgCl266H2O, 10%

diethanolamine pH 9.8) was used to reveal bound antibodies. The

plates were analyzed on an ELISA reader at 405 nm. All

antibodies were from Southern Biotech Associates (Birmingham,

AL). The antibody titers were determined by taking the dilutions

which correspond to three times the value of the background,

considering that it is in the linear phase.

Real-Time PCR
RNA was purified with the RNeasy Microkit (Qiagen)

according to the manufacturer’s instructions. cDNA was synthe-

sized with the Thermoscript Reverse Transcriptase Kit (Invitro-

gen). Quantitative real-time PCR (qPCR) was performed on an

ABI PRISM 7000 Sequence Detection System (Applied Biosys-

tems, Foster City, CA) using a SybrGreen-based kit from

Eurogene. Normalization was done by amplification of RNA

polymerase II (RPII) transcripts.

Primer sequences for qPCR:

OBF1-HA: 59-CAC TCT CTC TGT GGA AGG CTT TG-39

and 59-TTC TCA GCT CTA GAC GGC GTA GT-39

mOBF1: 59-CAC GCC CAG TCA CAT TAA AGA A-39 and

59-TGT GGA TTT TTG CCA GAG CAT-39

RPII: 59-TGC GCA CCA CGT CCA ATG ATA-39 and 59-

AGG AGC GCC AAA TGC CGA TAA-39

E2A: 59-GCA TGA TGT TCC CGC TAC CTG T-39 and 59-

ACC TTC GCT GTA TGT CCG GCT A-39

EBF1: 59-AGA TTG AGA GGA CGG CCT TTG T-39 and

59-TCT GTC CGT ATC CCA TTG CTG-39

PAX5: 59-AAT CGC TGA GTA CAA ACG CCA A-39 and 59-

TCC GAA TGA TCC TGT TGA TGG A-39

Id2: 59-TCT CCT CCT ACG AGC AGC AT-39 and 59-CCA

GTT CCT TGA GCT TGG AG-39

Id3: 59-ACG ACA TGA ACC ACT GCT ACT CG-39 and 59-

AGT GAG CTC AGC TGT CTG GAT C-39

Syndecan1: 59-GCG GCA CTT CTG TCA TCA AAG-39 and

59-GCT GTG TTC TCC CCA GAT GTT T-39

Immunofluorescent staining and flow cytometry (FACS)
analysis

FACS analysis was performed on a FACSCalibur (BD

Biosciences, San Jose, CA). Cell sorting was performed on a

MoFlo (DakoCytomation) or on a FACS Aria (BD Biosciences).

FITC-, PE-, APC-, or biotin-conjugated monoclonal antibodies

(mAb) specific for B220, CD3, CD4, CD5, CD8, CD11b, CD19,

CD21, CD23, CD25, CD43, CD45.2, CD117, IgM, and NK1.1

were purchased from Pharmingen (BD Biosciences), San Diego,

CA. Anti-CD117-APC was purchased from e-Bioscience (San

Diego, CA). Anti-CD93 (PB493/AA4.1), anti-IgM and anti-IgD

antibodies were purified from the hybridoma supernatant and

labeled with biotin in our laboratory by standard methods.

For EPLM cell sorting, erythrocyte-depleted bone marrow cells

were stained in IMDM 2% FBS with saturating concentrations of

anti-B220-FITC, anti-CD19-PE+anti-NK1.1-PE, anti-CD117-

APC and biotinylated anti-CD93 antibodies. After 30 min

incubation at 4uC, the cells were washed and resuspended in

PBS containing streptavidin-PE/Cy7. After a further 30 min at

4uC, the cells were washed, filtered and resuspended at ,26107

cells/ml in PBS 2% FBS before sorting.

Role of OBF1 in Early B Cell
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Intracellular FACS
After immunostaining of the surface markers, the cells were

fixed 10 min with 3% formaldehyde in PBS. The cells were then

permeabilized for 10 min with 0.1% Saponin in PBS. After

washing with 0.1% Saponin, the cells were incubated 30 min on

ice with FITC-coupled anti-HA antibody (Roche). FACS analysis

was performed after extensive washing with 0.1% Saponin.

EPLM cell culture
The OP9 mouse stromal cell line was maintained and expanded

in IMDM supplemented with 50 mM b-mercaptoethanol, 1 mM

glutamine, 0.03% w/v primatone (Quest, Naarden, The Nether-

lands), 100 U/ml penicillin, 100 mg/ml streptomycin, and 2%

FBS, as described before [26,27]. OP9 stromal cells were plated 2

days before the addition of sorted EPLMs and were c-irradiated

with 3000 rad at semi-confluency. The culture medium was then

replaced by fresh medium supplemented with 100 U/ml IL-7.

Limiting Dilution Assay
Sorted EPLMs from bone marrow of 3 mice were pooled and

plated on semi-confluent c-irradiated OP9 cells in flat-bottom 96-

well plates. Then fresh medium containing ,100 U/ml IL-7 was

added, and 48 replicates with increasing numbers of sorted

EPLMs were included. At days 10–14 of culture, all wells were

inspected using an inverted microscope. Wells containing colonies

of more than 50 cells were scored as positive. The frequency of

proliferation was calculated with the L-Calc software. The

horizontal line was set at 37% and the vertical lines give the

inverse of the frequency as the Poisson law.

Chimeric mice
5 C57BL/6 mice were irradiated with 9.5 Gy and 56106 bone

marrow cells (50% from C57BL/6 mice and 50% from BCS mice)

were injected intravenously. After one month, organ cell

suspensions were prepared by mechanical disruption, stained,

and subsequently analyzed by flow cytometry.

RNA preparation and hybridization to Affymetrix
Microarrays

Cells were FACS sorted and RNA was purified with the RNeasy

Microkit from Qiagen. Three individual mice per genotype were

used for the EPLM cell sorting. Three WT and four BCS mice

were individually used for the Large PreB cell sorting. Each

sample was processed independently and ultimately used for one

microarray. Total RNA (,50 ng) from each biological replicate

was reverse transcribed and labeled using the Affymetrix 2-cycles

labeling kit according to the manufacturer’s instructions. Biotiny-

lated cRNA was fragmented by heating with magnesium (as per

the Affymetrix instructions) and this fragmented cRNA was

hybridized to Mouse 430v2 GeneChips (Affymetrix, Santa Clara,

Calif.). Data were analyzed using Expressionist (Genedata AG).

The normalized data were subjected to a Student t-test (P,0.01)

and were required to have a median fold change of at least 2. The

microarray data has been deposited in Gene Expression Omnibus

(GEO) system under the accession number GSE12421.

Chromatin immunoprecipitation (ChIP)
ChIP was performed with 4.56107 Abelson B cells as described

(Bertolino et al., 2005). Immunoprecipitation was performed with

5 mg of monoclonal OBF-1 antibody C-20 (SC-955 X; Santa

Cruz). As a negative control, the chromatin was immunoprecip-

itated with rabbit IgG (Sigma). The samples were amplified using

Taq DNA polymerase using the following primers:

Id2: 59-TGA CAA AGA GCT TCC CAA GAG-39 and 59-

CAC GAC AGG TTT AGC GTG AA-39

Id3: 59-AGC ACT AGG GAG GCA GAT CA-39 and 59-AAA

ATC ATG GCC TTC AGT GC-39

Results

Mice overexpressing OBF1 have reduced numbers of
follicular B cells

OBF1 expression is largely B cell-restricted, and is modulated

during B cell development, with a first peak of expression in the

bone marrow at the preB stage and a second peak in germinal

center cells of immunized mice [17,28,29]. To define whether

tightly regulated expression of OBF1 is critical for B cell

development and/or function we generated transgenic mice

expressing an HA epitope-tagged OBF1 cDNA under the control

of an immunoglobulin variable heavy chain promoter and m heavy

chain enhancer (Fig. 1A). This promoter/enhancer combination

has been widely used to express transgenes at high level in B cells,

with expression starting already very early in B cell ontogenesis

[30–33]. The transgene was made in such a way that only the p34

nuclear isoform of OBF1[10] is expressed. In reporter assays with

transfected cells the human and the mouse OBF1 p34 proteins are

equally active and presence of a C-terminal HA tag does not

impair function (data not shown). Using this construct three

independent transgenic lines were obtained, hereafter called BCS

mice, which all exhibited the phenotype described below.

We first examined the peripheral B cell compartment by analyzing

splenic B cells with flow cytometry, using combinations of specific

antibodies. In the spleen, the newly formed, so-called transitional, B

cells are CD93+, whereas the mature B cells are CD932 [34]. The

mature B cell gate can be further subdivided into the sessile MZ B

cells (CD23low CD21high) and the follicular B cells (CD23high

CD21low). Unexpectedly, the BCS transgenic mice showed a strong

reduction in the number of splenic transitional and follicular B cells

(Fig. 1B, left). The increased relative percentage in the MZ gate by

FACS analysis is due to the reduction of the follicular B cell

compartment and not to an increase of MZ B cell number (Fig. 1B,

right). In line with this, total splenic cellularity is reduced about five

fold in BCS mice, with the numbers of B cells and T cells being

reduced about 7 fold and 2 fold, respectively (data not shown).

We then measured the level of secreted Igs in the serum of BCS

and wild type mice; as shown in Figure 1C, BCS mice have a

slightly but significantly, elevated total IgM level, while total IgG

levels are not altered. Furthermore, when specific IgG isotypes

were examined, no significant difference was observed between

BCS and WT mice.

We next monitored the immune response of MZ B cells in BCS

mice by injecting them with NIP-Ficoll and measuring the anti-NIP

IgM serum titers after 10 days. Indeed, this T-independent immune

response was robust in the BCS mice (Fig. 1D), although the basal

level of anti-NIP IgM was slightly higher than in the control mice.

The immune response of follicular B cells was also investigated by

injecting NIP-OVA subcutaneously and measuring the NIP-specific

anti-IgG serum titers 14 days later. In this case, this TD immune

response was found to be significantly weaker in the BCS than in the

control mice (Fig 1E). The impaired T-dependent immune response

was further confirmed by immunizing mice with DNP-KLH,

another TD antigen, and examining specific IgG serum titers at

different time points (Fig. 1F); in this case, a delayed and reduced

response in the BCS mice was also observed, in good agreement with

the observations presented above.

Next, western blot analysis was performed to investigate the

expression of the transgene in splenic B cells and in the thymus, as

Role of OBF1 in Early B Cell
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the promoter/enhancer combination used to drive the OBF1

cDNA can also be active in T cells [35]. Surprisingly, in splenic B

cells of BCS origin expression of the transgenic OBF1 protein was

not detected by either the anti-OBF1 or the anti-HA antibody,

suggesting that it may be very low (see also below). In contrast, in

WT splenic B cells bands corresponding to the p34 and p35 isoforms

of endogenous OBF1 were detected (Fig. 1G, lanes 3 and 4).

Moreover, in thymocytes from BCS, but not from WT mice,

transgenic OBF1 expression could be evidenced by both antibodies.

Since the OBF1 expressed from the transgene should be an HA-

tagged p34 protein, its expected size is marginally larger than that of

endogenous p35 and this is just what is observed (compare lanes 2

and 3). Together, the reduced follicular B cell numbers, the apparent

lack of OBF1 expression in mature B cells and the T dependent

immunodeficiency observed in BCS mice suggest the presence of a

defect at an early developmental stage in the bone marrow.

The decrease of splenic B cell populations is due to
impaired early B cell differentiation

To identify the cause of the reduced splenic B cell compartment

in BCS mice, the bone marrow B cell populations were

investigated by FACS analysis using a number of antibodies

allowing to define the early stages of B cell development. The

cellularity of the total bone marrow is reduced by about 10 % in

the BCS mice. Among the B220+ cells, the IgM negative and

positive gates contain the preB/proB cells and the immature/

mature B cells, respectively. Furthermore, within the IgM negative

cells, expression of c-kit and CD25 can be used to distinguish the

proB and the preB cells; in WT mice, the vast majority of CD25+

preB cells are small and quiescent and derive from large cycling

cells [36]. As shown in Figure 2A, BCS mice show a strong

decrease in the number of CD25+ preB cells, and a relative

increase in the proportion of the large preB cells. Furthermore, this

latter population has predominantly a high CD43 staining,

indicating that the impaired differentiation occurs within the large

preB cell stage, at the transition between CD43+ and CD432

(Fig. 2A, right panel). It results that all the downstream

populations, immature and mature recirculating B cells (B220+

IgM+), are strongly reduced in these mice.

Intracellular FACS analysis with an a-HA antibody was

performed to investigate the expression of the transgene during

B cell development. As shown in Figure 2B, transgenic OBF1

protein is well expressed until the large preB cell stage and is

gradually downregulated in cells that have passed this develop-

mental stage, resulting in a dramatic loss of expression in mature

splenic B cells in good agreement with the western blot data

presented in Figure 1G. Unlike the protein, the transgene RNA is

expressed from the earliest stage examined (EPLM, see below) and

its expression remains relatively constant throughout B cell

differentiation (Fig. 2C), including in splenic B cells (Fig. 2D),

indicating that the downregulation of OBF1 protein takes place at

the post-transcriptional level. In contrast, in WT mice endogenous

OBF1 RNA is not detectable in EPLMs and shows a low level of

expression in preB1 cells, followed by higher expression starting at

the large preB2 cell stage (Fig. 2C).

The EPLMs have a strong B cell commitment deficiency in
BCS mice

At a first glance the proB cell population (B220+ c-kit+) is normal

in the BCS mice. However proB cells form an heterogeneous

population, which in majority contains already committed B cells

(preB1: CD93+ CD19+), but also uncommitted progenitors of several

kinds, including NK1.1 positive cells and others. Within these

uncommitted progenitors a significant fraction of the cells are ‘‘early

precursors with lymphoid and myeloid potential’’, so-called EPLMs

(CD93+ CD192 NK1.12). These cells, while not committed yet to

the B cell lineage, under normal conditions preferentially become B

cells in vivo, are able to generate T cells under transplantation

conditions and also have the capacity to differentiate in vitro along the

myeloid pathway [26].

We therefore examined these populations and surprisingly

observed that the EPLMs are strongly increased in percentage and

number while the preB1 cell numbers are reduced in the BCS

mice, indicating an initial differentiation block at this stage already

(Fig. 3A). We then sorted EPLMs from WT and BCS mice and

tested their capacity to expand and differentiate in vitro under

culture conditions promoting B cell growth. As shown in Figure 3B,

the BCS EPLMs expand very slowly and their differentiation,

monitored by the appearance of CD19 expression, is significantly

impaired. Intracellular FACS analysis of the EPLM cultures

indicated that the cells that succeed to upregulate CD19 also

downregulate the OBF1 transgene (Fig. 3C), much like what had

been observed in early B cells progressing through developmental

stages in vivo. Next, limiting dilution assays (LDA) of EPLMs on

OP9 feeders were performed to compare, in EPLM cell

populations of WT or BCS origin, the frequency of precursors

capable of establishing a colony [27]. In this assay, the WT cells

showed a normal frequency (1/8), while the BCS cells had a

dramatically lower frequency (1/346; Fig. 3C). Together these

results demonstrate that the BCS cells are impaired in their B cell

commitment potential.

The differentiation block is intrinsic to B cells
The experiments presented so far demonstrate that enforced

OBF1 expression in EPLMs impairs their differentiation potential

and leads to a developmental block: only cells that successfully

Figure 1. Transgenic Em-VH-OBF1 mice are immunodeficient due to decreased numbers of follicular B cells. (A) Schematic of the
transgene consisting of an HA-tagged OBF1 cDNA under the control of the murine Em enhancer/VH promoter. The VH promoter fragment used
contains the conserved heptamer and octamer sites as well as the TATA box and the transcription start site. The 1 kb enhancer fragment contains all
the known regulatory elements of the Em enhancer. (B) FACS analysis of splenocytes. Single cell suspensions were stained with antibodies against the
indicated markers and representative dot plots are presented. Biotinylated anti-CD93 in combination with streptavidin-PE-Cy7, anti-CD19-APC, anti-
CD21-FITC and anti-CD23-PE antibodies were used. The transitional B cells are CD19+ CD93+, the mature B cells are CD19+ CD932; within the mature
cells, the MZ B cells are CD21+ CD23low and the follicular B cells are CD21low CD23+ (left). The absolute number of follicular and MZ B cells is presented
(right). Shown values are the mean percentage and absolute number, 6SE, of four individual mice. (C) Immunoglobulin level in unimmunized mice.
The level of total IgM, IgG, IgG1, IgG2a, IgG2b, and IgG3 were measured in unimmunized WT and BCS mice. (D) T-independent immune response. The
mice were immunized with NIP-Ficoll i.v. and serum antigen-specific IgM titers were analyzed by ELISA after 10 days; for each genotype, five mice
were analyzed. (E) T-dependent immune response. The mice were immunized with NIP-OVA and serum antigen-specific IgG titers were analyzed after
14 days. Five control and four BCS mice were used. (F) T-dependent immune response. The mice were immunized with DNP-KLH and serum antigen-
specific IgG levels were measured at day 0, 3, 5 and 8 after immunization. The histograms represent the mean6SE of three mice per genotype. (G)
Endogenous and transgenic OBF1 protein level in thymocytes and splenic B cells. OBF1, HA and Actin were detected by Western blot with
thymocytes and splenic B cells of the indicated genotype.
doi:10.1371/journal.pone.0004007.g001
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downregulate the transgene can differentiate normally along the B

cell pathway. To investigate whether the differentiation defect is

intrinsic to B cells, competitive chimera mice were generated. For

this, the bone marrow of BCS mice (CD45.2, aka Ly5.2) and

‘‘competitor’’ bone marrow from C57BL/6 mice (CD45.1, aka

Ly5.1) were mixed at a 50:50 ratio and used to inject into c-

irradiated mice having the same haplotype as the competitor

(CD45.1; Fig. 4A). The reconstituted mice were then sacrified one

month post-injection and analyzed. The developing T cell

compartment of the chimera mice was not affected, as seen by

examining the expression of CD4 and CD8 on thymocytes: for all

the developmental stages examined ca. 30% of the thymocytes

were BCS-derived. Likewise, in the spleen about 25% of the T

cells were of BCS origin. In contrast, the B cell compartment of

the BCS haplotype (CD45.2) was strongly impaired in the bone

marrow and also in the spleen, as had been initially observed in

the BCS mice (Fig. 4B). Indeed, the bone marrow of reconstituted

mice showed a clear block at the EPLM-preB1 transition, and the

chimerism percentage was found to be inverted just between these

two stages: 80% of the EPLMs, but only 10% of the preB1 cells,

were BCS-derived (Fig. 4C). These results demonstrate that the

differentiation deficiency is intrinsic to the B cells and not due to

the environment in the stroma.

The negative regulators Id2 and Id3 are OBF1 direct
target genes

To get an insight in the molecular origin of the differentiation

blocks caused by OBF1 overexpression, the transcriptome of

EPLM and large preB2 cells of each genotype was determined by

microarray analysis. The scheme for analysis of the microarray

data is depicted in Fig. 5A. We considered genes misregulated at

least 2 fold with a stringent P-value of 1%; with these criteria, 569

genes were deregulated in EPLMs and 287 in large preB2 cells,

with 40 genes overlapping between the two populations (Fig. 5B).

The genes common to EPLMs and large preB2 cells are presented

in Table 1.

All deregulated genes were then clustered in 9 expression

pattern families with the Expressionist program (Fig. 5C). The

cluster ‘‘a’’ is possibly the most interesting group, as these genes

are upregulated both in EPLM and large preB2 cells of BCS mice,

and are therefore putative OBF1 direct target genes. The top

upregulated genes in this cluster are presented in Figure 5D; based

on the gene ontology (GO) classification, the genes in cluster ‘‘a’’

are mainly involved in lymphocyte development and activation

(Fig. 5E). Furthermore, p53 signaling is also affected, as evidenced

by the deregulation of the Cyclin D2 and Gadd45b genes (Fig. 5E).

In addition, cluster ‘‘a’’ also contains the Id2 gene, which encodes

an inhibitor of the basic helix-loop-helix (bHLH) protein E2A.

Cluster ‘‘d’’, which corresponds to genes specifically deregulated in

EPLMs, is also particularly interesting, as it contains another Id

gene, Id3. Thus, Id2 and Id3 are both upregulated in EPLMs of

BCS mice and Id2 is also upregulated in BCS large preB2 cells.

The same gene can appear in different clusters (e.g. TCF12 in

clusters a and d), because different probes recognize different

forms of the corresponding gene transcript. However, the meaning

of these different transcripts is often not well understood.

We next examined the microarray data for the main transcription

factors critical for early development, such as E2A, Pax-5 or EBF1;

while E2A expression was similar in BCS and wild type cells,

expression of Pax-5 and EBF1 was significantly elevated in BCS

EPLMs (cluster ‘‘d’’). Finally, we found in cluster ‘‘i’’ the Syndecan1

gene, which is downregulated both in EPLM and large preB2 cells

(Fig. 5C). This gene, whose upregulation is often used as a marker for

plasma cell differentiation, has been reported earlier to show higher

expression at the surface of OBF12/2 B cells [37].

To validate these observations we set up quantitative reverse

transcriptase PCR reactions with RNA isolated from cells of

different developmental stages: EPLMs, preB1 cells, CD43 positive

or negative large preB2 cells and also small preB2 cells. As shown

in Figure 6, most of the microarray results could be verified in

these experiments. Id2 and Id3 were found overexpressed in

EPLMs expressing OBF1, and also to a lesser extent in large preB2

CD432 cells, the two stages where developmental blocks had been

identified. Pax-5 is upregulated in transgenic EPLMs and also

slightly downregulated in large preB2 CD432 cells. Furthermore,

BCS EPLMs show a ca. 5 fold upregulation of EBF1 and also a

robust upregulation of endogenous OBF1 expression; the latter

could be caused by the elevated EBF1 expression, as it has recently

been shown that this factor directly regulates OBF1 expression in

progenitors [38]. Furthermore, Syndecan1 is downregulated in all

the early B cell populations of the BCS mice (Fig. 6), further

confirming that it is negatively regulated by OBF1.

Since the Id2 and Id3 genes are in gene clusters corresponding

to putative OBF1 direct targets (Fig. 5C) we searched for potential

binding sites in their regulatory region, using the Transcription

Element Search System (TESS, http://www.cbil.upenn.edu/

cgi-bin/tess/tess). As presented in Figure 7B, the human and the

mouse Id2 and 3 genes contain several elements with homology to

the conserved octamer motif found in Ig promoters. Furthermore,

one of these elements is conserved in sequence and location

between the human and mouse Id2 promoter. Abelson cell lines

derived from BCS, WT and OBF12/2 mice were used to

investigate the interaction between OBF1 and the respective

octamer sites in the Id2 and Id3 promoters. As expected, the

Abelson cell line from BCS mice express strongly the transgenic

protein (Fig. 7A). Chromatin immunoprecipitation (ChIP) was

performed with an anti-OBF1 antibody and DNA fragments

encompassing the putative binding sites (depicted by red boxes in

Fig. 7B) were amplified by PCR. As shown in Figure 7C, OBF1

was found to interact with the Id2 and Id3 promoters in BCS and

also in WT cells, but not in OBF1 deficient cells. Furthermore,

Figure 2. Enforced expression of OBF1 impairs B cell differentiation at the earliest stage. (A) FACS analysis of bone marrow cells. B cells
were labeled with an anti-B220-APC antibody and the stages of differentiation were identified with anti-c-kit-PE, biotinylated anti-CD25 in
combination with streptavidin-PE-Cy5.5, anti-CD43-PE, and anti-IgM-FITC. The CD43 expression profile is shown specifically for the large preB2 cells
(upper right). Representative dot plots are shown and the histogram with the cell numbers presents the mean6SE in the different fractions based on
three individual mice of each genotype. (B) Intracellular expression of the transgenic OBF1 protein was detected with an anti-HA-FITC antibody in
combination with various B cell stage-specific antibodies: In the bone marrow proB cells were detected with anti-B220-APC and anti-c-kit-PE, preB2
cells were labeled with anti-B220-APC together with biotinylated anti-CD25 combined with streptavidin-PE-Cy5.5 and further discriminated for size;
splenocytes were labeled with anti-B220-APC, together with either biotinylated anti-IgM or anti-IgD in combination with streptavidin-PE-Cy5.5. (C)
qPCR of endogenous and transgenic OBF1 RNA from the indicated bone marrow cell populations; the EPLM and preB1 populations were identified
and isolated as described in Figure 3. The histograms represent the mean6SE of three individual mice for the EPLM and preB1 cells and two
individual mice for the large and small preB2 cells. (D) qPCR of endogenous and transgenic OBF1 RNA from splenic B cells. The histogram represents
the mean6SE of two individual mice.
doi:10.1371/journal.pone.0004007.g002
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additional analysis also identified octamer-like motifs in the EBF1

promoter and preliminary ChIP assays demonstrated OBF-1

binding in BCS but not in WT Abelson cells (data not shown).

Discussion

Here we present evidence that overexpressing OBF1 at a very

early stage of B cell ontogeny is deleterious for B cell development.

This misregulated expression pattern of OBF1 ultimately has a

dramatic impact on mature B cells in the spleen, as the mice have

an impaired T-dependent immune response accompanied with a

strong reduction of follicular B cells (Fig. 1Band E, F). This

immunodeficiency is likely due to the reduced number of follicular

B cells, since the T-independent immune response is not impaired

(Fig. 1C). Surprisingly, the number of marginal zone B cells is not

affected despite the B cell developmental block in the bone

marrow and the decrease in splenic immature B cells. One

explanation might be that the transitional B cells entering the

spleen first repopulate the MZ compartment and then the follicles,

and are in sufficient number to fill the MZ. This hypothesis is

supported by the earlier observation that the MZ compartment is

normal in several other lymphopenic mutant mice such as IL-72/2

mice [39] or Lambda52/2 mice [40]. Furthermore, the response to

immunization with NIP-Ficoll, which is known to be dependent on

the MZ B compartment [41], is also normal in BCS mice. Thus,

by these two criteria the follicular and MZ B cell compartment are

differentially affected by the presence of the transgene. The total

IgM level in unimmunized BCS mice was higher than in the WT

mice suggesting that it could be the cause for the high NIP specific

IgM background (Fig. 1C). In fact, the number of B1b B cells is

increased in the peritoneal cavity of BCS mice (Figure S1), which

could contribute to explain the higher IgM level in these mice. On

the other hand the total IgG level, as well as specific IgG isotypes,

were not altered in unimmunized BCS mice (Fig. 1C). The

transgene is expressed in the thymus at the protein level, but

surprisingly not in splenic B cells; this suggests that the cause for

the decreased number of immature and follicular B cells is

localized at an earlier B cell developmental stage in the bone

marrow (Fig. 1G). OBF1 was recently reported to also function in

determining T helper cell polarity[42]. Therefore, the elevated

OBF1 expression in thymocytes might influence TD antibody

responses; however, it is worth noting that T cell development and

the numbers of CD4 and CD8 T cells in the thymus are not

affected by the transgene (data not shown).

Investigation of the bone marrow, which is the site of early B

cell development, allowed to identify the cause of the reduced

splenic B cell numbers. A first block was detected between the

EPLM and the preB1 cell stage. In the normal situation, EPLMs

are mostly committed to the B cell lineage [26] and do not yet

express OBF1 (Fig. 2C). However, enforcing expression of OBF1

in this population induces an accumulation of EPLMs with a

strong B cell commitment deficiency (Fig. 3). Indeed, the cells that

succeed to pass this developmental block downregulate the

transgene post-translationally, indicating that the level of OBF1

has to be low at this stage for proper B cell differentiation. OBF1 is

known to be regulated at the protein level in mature B cells,

potentially through interaction with the Ring finger protein SIAH

[43,44]. Our results suggest that the OBF1 protein level may also be

modulated in early B cells, at least in the case of the transgenic mice

described here. Whether this modulation of OBF1 protein levels is

mediated by SIAH, or by other mechanisms, is not known.

Remarkably, in vitro cultures of EPLMs showed that premature

expression of OBF1 in this cell compartment severely impairs their

proliferation and differentiation potential (Fig. 3). This is in stark

contrast to the effect observed in OBF1 deficient IL-7 dependent

pro-preB cells: in this case, cellular proliferation is markedly

improved in comparison to WT cells [25] and data not shown).

Thus, in very early B cells OBF1 appears to antagonize cell

proliferation and fine regulation of its expression level may be used to

set a regulatory threshold. A second differentiation block was also

observed after the large preB2 (CD43+) cell stage. It is not clear

whether this is directly due to the increased expression of OBF1 in

the preB cells, or whether this is a secondary effect whose origin is in

the EPLMs. Generation of mice overexpressing OBF1 starting at the

preB1 or preB2 stage might allow to address this point.

Mixed bone marrow chimera mice could fully recapitulate the

initial phenotype and confirmed that the differentiation defect is

intrinsic to the BCS B cell precursors (Fig. 4). When a 1:1 mix of

WT and BCS bone marrow was injected into irradiated mice, we

observed that about 40% of the thymic developing T cells were of

BCS origin and in the spleen the proportion was still about 25%.

In striking contrast, the BCS-derived B cell compartment was

underrepresented and contained only a few percent of mature B

cells in the spleen. Furthermore, a strong developmental block was

evident in the bone marrow with a dramatic accumulation of

EPLMs accompanied with a deficit to progress to the preB1 stage.

How the deregulated expression of OBF1 in the early EPLM

compartment leads to the defects described here is not understood

yet. As a first attempt to address this question, we have analyzed

the transcriptome of EPLM and large preB2 cells in WT or BCS

mice (Fig. 5). We found significantly more genes misregulated at

the EPLM stage than at the large preB2 cell stage and relatively

little overlap between the two sets of genes. However, several of

the main transcription factors and known regulatory molecules of

early B cell differentiation were either not affected or rather

expressed at a slightly higher level in the BCS-derived EPLMs. For

example, the helix-loop-helix factor E2A is expressed at a normal

level, while EBF1 and Pax5 are both upregulated (Fig. 6).

Generally our results point to the critical importance of

maintaining proper regulation of OBF1 expression during early

B cell differentiation. So far, relatively little is known about how

the OBF1 gene is regulated and the DNA sequences controlling its

cell-specific and temporal expression have not been delineated yet.

A functionally important cAMP response element (CRE) binding

site has been identified in the proximal OBF1 promoter [45] but it

can not explain the regulated B cell-specific expression of this gene

Figure 3. Differential block after the EPLM cell stage and impaired B cell commitment. (A) Detailed FACS analysis of the proB cell
compartment in the bone marrow. ProB cells were detected by labeling bone marrow cells with anti-B220-FITC and anti-c-kit-APC. The proB cell gate
was then subdivided into EPLM and preB1 cells on the basis of staining with anti-CD19-PE/anti-NK1.1-PE and biotinylated anti-CD93 in combination
with streptavidin-PE-Cy7 (left). The cell number of the different bone marrow populations is presented in the histogram with the mean6SE of three
individual mice (right). (B) In vitro culture of EPLMs on OP9 feeders. 10’000 EPLMs from pooled mice (n = 3) were plated on OP9 feeders in a 24 well
microplate. Cell number and percentage of cells positive for CD19 expression were determined at the indicated times. The graphs represent the
mean6SD from 2 independent samples per time point. (C) Expression of CD19 in cultured EPLMs was determined at day 11 by staining with anti-
B220-APC and anti-CD19-PE; expression of the transgene was examined by additional intracellular staining with anti-HA-FITC (lower part). (D) LDA for
B cell commitment of EPLMs cultured on OP9 feeders. WT or BCS EPLMs were cultured at increasing dilutions and the number of positive wells was
determined under an inverted microscope after 11 to 14 days.
doi:10.1371/journal.pone.0004007.g003
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and in transfection experiments the OBF1 promoter does not

appear to be clearly B cell-specific [46]. Interestingly, EBF1 has

been very recently identified as a potentially direct regulator of

OBF1 expression in progenitors [38]. As shown here, OBF1 is co-

expressed from the preB1 stage onwards together with transcrip-

tion factors like EBF1 that drive B cell commitment (Fig. 2C and

Fig. 6). However, in the BCS mice the OBF1 transgene is

expressed already before EBF1 and this altered sequence of

expression compromises the development of the proB cells. In fact,

the elevated level of endogenous OBF1 expression in EPLMs of

Figure 4. The differentiation block is intrinsic to B cells. (A) The experimental strategy for the mixed bone marrow chimera is depicted. (B)
FACS analysis of thymus, bone marrow and spleen of reconstituted mice. Thymocytes were stained with anti-CD4-FITC and anti-CD8-PE. Bone
marrow B cells were stained with anti-B220-PE and anti-IgM-APC. Splenocytes were stained with anti-CD3-PE and anti-CD19-APC. In addition, cells of
BCS origin were stained with an anti-CD45.2 (Ly5.2) conjugated to either APC or FITC. (C) Percentage of chimerism in the thymus, the bone marrow
and the spleen. The EPLM and preB1 cells were analyzed using anti-B220-FITC, anti-CD19-PE, anti-NK1.1-PE, anti-cKit-APC and biotinylated anti-
CD45.2 combined with streptavidin-PE-Cy7 antibodies. BM, bone marrow. DN, double negative cells; DP, double positive; SP4, single positive CD4+;
SP8, single positive CD8+. Imm. B, immature B cells; Rec. B, recirculating B cells.
doi:10.1371/journal.pone.0004007.g004
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Figure 5. Microarray analysis of EPLM and large preB2 cells. (A) Scheme for analysis of the microarray data. (B) Venn diagram representing
the genes that are misregulated at least 2 fold with a P value of 0.01 in EPLM and large preB2 cells. (C) Gene clustering. The deregulated genes were
clustered in 9 families according to their expression patterns. (D) Top upregulated genes from the cluster ‘‘a’’ with the upregulation level monitored
in EPLM cells. (E) Gene Ontology (GO) terms in the cluster ‘‘a’’.
doi:10.1371/journal.pone.0004007.g005
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BCS mice may be a direct consequence of the EBF1 upregulation

(Fig. 6), in agreement with the findings of Zandi et al. (2008).

However, although EBF1 and Pax5 are misregulated in BCS-

derived EPLMs, this does not explain the observed B cell

commitment defect, as enforced expression of these genes favours

B cell differentiation [47,48]. Interestingly, EBF1 showed the same

pattern of expression as Id2 and Id3 in EPLM cells from BCS mice.

The EBF1 promoter also contains conserved octamer sequences,

and preliminary results suggest that they can be targeted by OBF1.

Therefore the EBF1-OBF1 axis constitutes a positive feedback

loop, as OBF1 is itself an EBF1 target gene. The upregulation of

EBF1 in BCS mice may also be explained by the upregulation of

Pax5 in EPLM cells, which was recently reported to activate the

proximal promoter of EBF1 (Roessler et al., 2007).

The Id2 and Id3 genes were both found deregulated in the

microarray as well as in the qPCR validation experiments (Figs. 5

Table 1. List of the genes that are deregulated both in EPLMs and preB1 cells of BCS origin; the cluster corresponding to their
expression pattern (Fig. 5C) is indicated.

Accession number Name, description Cluster

1427670_a_at Transcription factor 12 a

1445093_at Transcription factor 12 a

1417168_a_at ubiquitin specific peptidase 2 a

1417336_a_at synaptotagmin-like 4 a

1417460_at interferon induced transmembrane protein 2 a

1417976_at adenosine deaminase a

1418294_at erythrocyte protein band 4.1-like 4b a

1418406_at phosphodiesterase 8A a

1418507_s_at suppressor of cytokine signaling 2 a

1419028_at cyclic AMP-regulated phosphoprotein, 21 a

1425553_s_at huntingtin interacting protein 1 related a

1426755_at cytoskeleton-associated protein 4 a

1448390_a_at dehydrogenase/reductase (SDR family) member 3 a

1449109_at suppressor of cytokine signaling 2 a

1460651_at linker for activation of T cells a

1432886_at RIKEN cDNA 5730488B01 gene a

1459847_x_at glial cell line derived neurotrophic factor family receptor alpha 2 a

1452985_at uveal autoantigen with coiled-coil domains and ankyrin repeats a

1456772_at neutrophil cytosolic factor 1 b

1434248_at protein kinase C, eta c

1439494_at solute carrier family 5 (sodium/glucose cotransporter), member 9 d

1445169_at gb:BM232503 /DB_XREF = gi:17867773 /DB_XREF = K0324B04-3 d

1446294_at Transcribed locus d

1421908_a_at transcription factor 12 d

1439619_at transcription factor 12 d

1449455_at hemopoietic cell kinase d

1429001_at pirin d

1458802_at human immunodeficiency virus type I enhancer binding protein 3 e

1434572_at histone deacetylase 9 f

1423104_at insulin receptor substrate 1 h

1416762_at S100 calcium binding protein A10 (calpactin) h

1456642_x_at S100 calcium binding protein A10 (calpactin) h

1418102_at hairy and enhancer of split 1 (Drosophila) h

1419481_at selectin, lymphocyte i

1433741_at CD38 antigen i

1452679_at tubulin, beta 2b i

1447807_s_at pleckstrin homology domain containing, family H (with MyTH4 domain) member 1 i

1455646_at RIKEN cDNA 2010004M13 gene i

1415943_at syndecan 1 i

1437279_x_at syndecan 1 i

doi:10.1371/journal.pone.0004007.t001
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Figure 6. qPCR analysis of early B cell populations. Quantitative RT-PCR analysis of E2A, EBF1, Pax5, endogenous OBF1, Id2, Id3 and Syndecan1
expression in the indicated cell populations. The histograms represent the mean6SE of three individual mice for the EPLM and preB1 cells and two
individual mice for the large and small preB2 cells.
doi:10.1371/journal.pone.0004007.g006
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Figure 7. OBF1 can bind to the Id2 and Id3 promoter. (A) OBF1 protein level in Abelson (Abl) preB cell lines of different genotypes. PreB cell
cultures were established from fetal livers by transformation with the Abelson murine leukaemia virus. Murine OBF1, human OBF1 and Actin were
detected by Western blot with protein extracts from the indicated cells. (B) Octamer-like sites in the mouse Id2 and Id3 promoter. The relative
locations of the motifs with respect to the translation start codon are as follows: mouse Id2: 2835, 22068; human Id2: 21048, 21067; mouse Id3:
22200; human Id3: 2760, 22518. (C) Chromatin immunoprecipitation assay with the Id2 and Id3 promoters. ChIP using anti-OBF1 antibody was
performed from the BCS, WT and OBF12/2 Abl cell lines and promoter DNA was amplified as depicted by the red boxes in Fig. 7C.
doi:10.1371/journal.pone.0004007.g007
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and 6); in particular, elevated expression was found in EPLMs and

also in large preB2 cells, which are just the stages were the

developmental blocks have been observed in BCS mice in vivo.

Expression of Id3 has been reported to be repressed by OBF1 in a

preB cell line expressing an inducible OBF1-ER fusion protein

[42]; the reason for this difference is not clear, but might be due to

differences between the expressed proteins (OBF1 vs OBF1-ER

fusion) or between the cells examined. The identification of several

motifs with homology to the octamer site in the Id2 and Id3

promoters suggested that these genes could be direct OBF1 targets

and chromatin immunoprecipitations showed that OBF1 can

indeed bind to these octamer sites (Fig. 7). Generally Id proteins

have been found to antagonize the activity of bHLH proteins, and

in particular of E2A. Several previous studies have shown that low

levels of Id proteins are necessary to allow E2A to drive B cell

commitment [49,50]. In line with this, constitutive expression of Id

proteins downstream of the preB1 stage was found to impair B cell

development, indicating that Id downregulation is critical for B

cell ontogeny [51]. Furthermore, it was also reported that Id3

inhibits the growth and survival of B lymphocyte progenitors [52].

These observations therefore suggest that elevated expression of

Id2 and Id3 could result in a differentiation block at the EPLM

and large preB2 cell stage, as seen in the BCS mice.

Finally, Syndecan1 is a plasma cell marker whose in vivo function

is not clear yet. However, Syndecan1 was reported previously to

be upregulated on the surface of OBF12/2 splenic B cells [37] and

our microarray analysis of OBF12/2 mice showed that Syndecan1

is upregulated also at the mRNA level (data not shown).

Interestingly, we found here that Syndecan1 expression was

strongly downregulated in all the early B cell populations of the

BCS mice (Fig. 6), indicating that there is a negative correlation

between OBF1 and Syndecan1 expression. Thus, Syndecan1

represents a novel OBF1 target gene.

Supporting Information

Figure S1 (A) FACS analysis of the spleen and peritoneal cavity.

B cells were labeled with an anti-CD19-PE antibody. The B2 cells

were stained with anti-CD23-FITC. The B1a cells were stained

with anti-CD5-FITC antibody or with anti-CD11b-FITC anti-

body. (B) B1, B1a, B1b and B2 B cell populations in the spleen and

peritoneal cavity. The B2 and MZB/B1 B cells are CD19+CD23+
and CD19+CD23- populations respectively. The B1a and B1b B

cells are CD19+CD5+ and CD19+CD23-CD5- populations

respectively. The histograms represent the mean6SD of three

individual mice per genotype.

Found at: doi:10.1371/journal.pone.0004007.s001 (2.58 MB EPS)
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