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ABSTRACT

Background: Timely identification of medication administration errors (MAEs) promises great benefits for miti-

gating medication errors and associated harm. Despite previous efforts utilizing computerized methods to mon-

itor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study,

we developed a real-time MAE detection system and evaluated its performance prior to system integration into

institutional workflows.

Methods: Our prospective observational study included automated MAE detection of 10 high-risk medications

and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children’s Hospital Medical Cen-

ter during a 4-month period. The automated system extracted real-time medication use information from the in-

stitutional electronic health records and identified MAEs using logic-based rules and natural language process-

ing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of

patient exposure to potential harm. System performance was validated using a physician-generated gold stan-

dard of MAE events, and results were compared with those of current practice (incident reporting and trigger

tools).

Results: Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Com-

pared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3%

to 85.3% (P¼ .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to re-

duce patient exposure to harm, from 256 min to 35 min (P< .001).

Conclusions: The automated system demonstrated improved capacity for identifying MAEs while guarding

against alert fatigue. It also showed promise for reducing patient exposure to potential harm following MAE

events.
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BACKGROUND AND SIGNIFICANCE

A medication error is a mistake in a treatment process that leads to,

or has the potential to lead to, harm to a patient.1 Medication errors

can occur in one or multiple phases of the medication process: order-

ing, transcription, dispensing, administration, and monitoring.2

Medication administration errors (MAEs), which are discrepancies

that occur between the medication intended by a prescriber and the

medication received by a patient, can directly harm patients. Despite

a long-term effort to reduce medication errors by implementing

state-of-the-art health information technologies such as electronic

health records (EHRs), computerized physician order entry, smart

infusion pumps, and barcode medication administration (BCMA)

systems,3–8 MAEs remain common in health care settings. As indi-

cated by a recent systematic review of 91 studies, approximately

20% of hospital errors were MAEs, a significant proportion of

which were associated with harmful effects such as adverse drug

events.9,10

Timely identification of MAEs and early mitigation promise

great benefits for reducing the risk of patient exposure to potential

harm. Several approaches have been developed to detect medication

errors, including MAEs. These approaches either: (1) gather medica-

tion error information via reported incidents from institutional data-

bases,11,12 (2) use trigger tools to identify medication-related

problems that have caused patient harm,13–18 or (3) develop com-

puterized algorithms to monitor the medication process and alert

clinicians to potential medication errors.4–6,19–32 Although incident

reporting and trigger tools are the most frequently implemented

approaches for medication error detection, they are suboptimal for

detecting all error types and events.33,34 Incident reporting only cap-

tures a small fraction of errors, due to clinician reporting attitudes

and behaviors.35,36 Trigger tools have demonstrated improved sensi-

tivity in identifying errors compared to incident reporting, but

implementing them requires manual chart review and is therefore re-

source-intensive.16 In addition, the triggers usually have low positive

predictive values (PPVs), which could cause alert fatigue, affecting

clinicians’ responsiveness.37,38 Incident reporting and trigger tools

rely on the clinician’s awareness of specific symptoms, abnormal

laboratory test results, or antidotes to medications, which could pre-

clude timely mitigation of patient exposure to potential harm.33

Taking advantage of recent advances in health information

technologies, a variety of computerized algorithms have been devel-

oped to monitor the medication process and prevent medication

errors.4–6,19–32 A significant effort has been made to reduce errors

during the ordering phase using overdose alerts.19–21,28–32 Most of

the alerts are implemented with a static formula based on a combina-

tion of ordered dose and patient variables (eg, weight).39 The simple

algorithms could not capture MAEs that require dynamic reconcilia-

tion between administrations, orders, and adjustments from clinician

communication. By utilizing barcoding technology, BCMA systems

verify details of in-hand medications (ie, correct patient, drug, dose,

route, and scheduled time) with medication orders before adminis-

tration.4–6 The literature suggests a beneficial role for BCMA in re-

ducing medication errors such as wrong patient and wrong dose

errors.40,41 Nevertheless, BCMA systems cannot eliminate all MAEs,

particularly those that occur with continuous intravenous medica-

tions, where frequent dose adjustments based on laboratory results

and patient status occur and do not involve barcode scanning.41–43

Recent studies also report high rates of false positive alerts using a

BCMA system, which could contribute to alert fatigue and increase

workarounds during medication administrations.44,45 Although

BCMA has been widely adopted and a small number of dose alert

systems have been integrated into clinical environments to facilitate

real-time error prevention,4–6,19,21,28,29 few have measured the im-

pact on harm mitigation subsequent to medication safety events.8,46

As described in our earlier research,25,26 rather than using static

formulas and barcoding technology, we developed a set of comput-

erized algorithms to analyze dynamic EHR content to identify

MAEs. However, these technologies were tested on retrospective

data to identify errors, preventing assessment of their impact on ac-

tual patient harm.

OBJECTIVE

To address the barriers and knowledge gaps pertaining to MAE de-

tection, we augmented the algorithms from our earlier studies with

advanced information technologies and developed a real-time MAE

detection system.25–27 The algorithms were refined for real-time as-

sessment that could be integrated into clinical environments and

used to prevent ongoing errors. This study sought to prospectively

evaluate the system prior to its integration into institutional work-

flows. Our specific aims were: (1) to develop an automated system

that utilizes comprehensive EHR information to detect dosing-

related MAEs in real time, (2) to prospectively evaluate the system

performance in an urban level 4 neonatal intensive care unit (NICU)

prior to clinical integration, and (3) to estimate the system’s poten-

tial to mitigate MAE harm for neonatal patients. The study is the

first known investigation of a real-time MAE detection system on

mitigation of medication safety events.8 Our long-term objective is

to develop an automated system that will achieve a more effective

and generalizable framework for mitigating MAEs in health care

institutions.

DATA AND METHODS

Setting and study population
The NICU is a complex, often chaotic environment, with frequent

medication administrations and adjustments for critically ill

patients.47,48 In particular, NICU patients are more likely to be ex-

posed to potential harm after MAE events.49 For these reasons, we

focused on automating MAE detection for neonatal patients admit-

ted to the NICU at Cincinnati Children’s Hospital Medical Center

(CCHMC). The study period was between January 1, 2017, and

April 30, 2017, representing a total of 3462 patient days. Approval

for this study was given by the CCHMC Institutional Review Board

(study ID: 2013-4241), and a waiver of consent was authorized.

CCHMC houses a level 4 NICU that provides the highest level

of neonatal intensive care for complex and critically ill newborns.

The institution utilizes a fully computerized commercial EHR sys-

tem (Epic Systems Corporation, Verona, WI, USA). Additional

NICU safety interventions in place include the use of computerized

provider order entry with embedded clinical decision support, a

BCMA system, smart infusion pump technology with a customized

neonatal library of medications, daily prescription review by dedi-

cated NICU pharmacists, and clinical guidelines for high-risk

medications.

We focused on reconciling 10 high-risk continuous intravenous

infusions and medications prescribed to NICU inpatients: total par-

enteral nutrition (TPN), lipids, intravenous fluids (IVF), insulin, mor-

phine, fentanyl, milrinone, vasopressin, dopamine, and epinephrine.
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Continuous intravenous infusion has a higher risk and severity of er-

ror than other medication administrations.50,51 In particular, its

administrations usually span multiple nursing shifts and involve com-

plex dosage adjustments that are not captured by in-place interven-

tions such as BCMA.

We planned to detect dosing-related errors, which are the most

common MAEs in the NICU environment.47,52,53 A dosing-related

MAE was defined as any discrepancy between the medication dose

or infusion rate administered to a patient and the dose/rate

prescribed by physicians during patient care.

Study design
We performed a prospective observational study of an automated

system designed to detect MAEs in the NICU and notify providers

of MAE events in real time. The system consisted of 4 custom-

developed software modules: detector, notifier, reporter, and

learner. Figure 1 diagrams the overall processes, and the details of

each process are provided below.

Extraction of medication use information

The system first extracted medication use information in real time

with a set of EHR-based application programming interfaces (step

1). The information included: (1) medication orders that docu-

mented medication doses (or infusion rates) prescribed to patients,

(2) structured order modifications that adjusted the original doses/

rates via computerized physician order entry, (3) medication admin-

istration records (MARs) that documented actual doses/rates admin-

istered to patients, and (4) free-text orders communicated from

physicians to nurses that delivered complex dose/rate adjustments

during patient care. The free-text communications were parsed with

a set of regular expression-based natural language processing (NLP)

algorithms to identify discrete dose/rate changes.25,26

MAE detection

Given the extracted information, the detector module identified dis-

crepant doses/rates between MARs and other data sources using a

set of logic-based rules (step 2). The detector was built upon our ear-

lier research on MAE detection, where the logic-based rules were ab-

stracted from standard care practices, refined by neonatologists, and

implemented by programmers.25–27 Figure 2 illustrates an example

of the chronological ordering of extracted EHR data and an MAE

identified by the detector. By analyzing the dynamic EHR informa-

tion, the detector determined the latest dose/rate prescribed to a pa-

tient and matched it with an MAR dose/rate. If a discrepancy was

identified, the module would trigger an MAE event with a summary

and suggestion. For the purposes of our study, medication adminis-

trations based on verbal orders were considered errors if appropriate

electronic orders were not placed within 30 min of medication

changes. The 30-min time frame was deemed to be acceptable for

clinicians to enter an order in the EHR to cover verbal adjustment.

To accommodate the delayed electronic orders, we delayed the algo-

rithm processing on each medication administration for 30 min.

Real-time notification and error prevention

The notifier module was implemented with the Skype for Business

messaging platform (Microsoft Corporation, Redmond, WA, USA)

to deliver MAE information (step 3).54 Figure 3 illustrates an exam-

ple notification that was sent to a clinician investigator’s working

iPhone in real time. The platform and device were chosen because

they were widely available and familiar to the majority of clinicians.

The institution developed adequate Health Insurance Portability and

Accountability Act compliance programs, including a Business Asso-

ciate Agreement with Microsoft, to assure the delivery of patients’

protected health information using Skype for Business. The mobile

devices were under the institutional mobile device management
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procedures and policies that implemented industry standard best

practices.

The ultimate goal for the system is that clinicians, after investi-

gating the message, will determine whether the event is a true MAE.

If so, they will take appropriate action immediately (eg, communi-

cate with bedside nurses and correct orders; step 4). They will also

send decisions (eg, if an event is a clinical error, documentation is-

sue, or false positive alert) to the reporter module (step 5), which

will generate case reports for manual inspection and system im-

provement (step 6). In this preclinical study, notifications were sent

to study investigators directly for evaluation. There was no direct in-

teraction between study investigators and bedside nurses.

Periodic manual review and system improvement

Using the case reports, study investigators periodically inspected

detected MAE events during which patients were potentially at risk

for harm (step 7). Their feedback was fed into the learner module to

adjust system parameters (eg, revising regular expressions to im-

prove dose detection from free-text narratives; step 8).

Gold standard MAE events
During the study period, 2 board-certified pediatric physicians on

the research team (including one neonatologist) chart reviewed the

use of all 10 targeted medications/infusions to identify MAEs. Dif-

ferences between the physicians’ decisions were resolved during ad-

judication sessions. Interrater reliability was calculated using

Cohen’s j to define the agreement.55 After consensus sessions, the

physicians analyzed and classified each MAE event into 1 of 2 cate-

gories: (1) documentation issue, in which the correct dose was very

likely given but the clinicians did not follow standards of practice in

documenting the medication use (eg, placing an electronic order af-

ter a prolonged period of time following the corresponding verbal

order), or (2) clinical error, in which a wrong dose was actually ad-

ministered. For each MAE event, the neonatologist also categorized

the associated harm using the National Coordinating Council

(NCC) for Medication Error Reporting and Prevention Index.56 If

the errors represented documentation issues, they were categorized

as category A for their potential to cause harm. All other errors were

considered to be at least category C, given that all medications

reached patients. If medication doses administered were 2 times

greater or lower than the prescribed doses, they were considered cat-

egory D errors that required increased monitoring to assess for pa-

tient harm. The MAE events adjudicated by the physicians, along

with their harm categorization, served as a gold standard set to eval-

uate system performance.

Baseline: standards of practice
The institution utilizes 2 approaches to monitor patient safety

events: incident reporting and a trigger tool. Incident reports were

collected through voluntary reporting using Risk MonitorPro (RL

Solutions, Cambridge, MA, USA).57 The reports were submitted by

employees using an intranet link or directly through the EHR user

interface. Each report described incident type, incident date, patient

name and medical record number, clinical unit, contributing factors,

immediate actions taken, harm assessment, and a brief description

of the event. The trigger tool has been a stable program at CCHMC

for >10 years.18 The patient charts containing any triggers of spe-

cific events in the trigger catalog (eg, naloxone administration for

opioid overdose) were investigated manually to identify errors. In

this study we used all MAE events documented in NICU-specific in-

cident reports and the trigger tool evaluations as a baseline (denoted

Icon Legend
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9/7/11 14:55 TPN order 10 ml/hr 10 ml/hr 10 ml/hr

9/7/11 18:30 MAR 10 ml/hr 10 ml/hr Rate = Order Rate

9/8/11 8:07
Physician to nurse 

communication
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3 ml/hr 10-3=7 ml/hr

9/8/11 9:59 MAR 7 ml/hr 7 ml/hr Rate = Communication Rate

9/8/11 10:00 MAR 7 ml/hr 7 ml/hr Rate = Communication Rate

9/8/11 12:33 TPN order 12.1 ml/hr 12.1 ml/hr 12.1 ml/hr

9/8/11 13:41 MAR 7 ml/hr 7 ml/hr Rate Error

9/8/11 19:40 Order modification 11 ml/hr 11 ml/hr 11 ml/hr

9/8/11 19:50 MAR 11 ml/hr 11 ml/hr Rate = Order Rate

Figure 2. An example of chronological ordering of the medication use data and an error identified by the system.

Below are the details of the potential error. Please review the

full medication order and MAR documentation to determine if

it is a true error.

otherwise.

-----------------------------------------------------

TPN-Error Notification (Rate-Error)

******LAST ORDER INFO******

MEDICATION NAME: TPN Neonatal Continuous

ORDER MED ID: 1234567

ORDER INST: 09-08-2011 12:33:00

ORDER RATE: 12.1 mL/hr

ORDER INSTRUCTION: Please see feeding order for TPN

dial down rates.

ORDER COMMENT: Do not dispense.

******LAST ORDER ADJUSTMENT INFO******

ORDER TYPE: Physician Communication

ORDER PROC ID: 1234568

ORDER INST: 09-08-2011 08:07:00

ORDER COMMENT: Please wean TPN down by 3 mL/hr.

******MAR INFO******

CSN: 800000000

BED NUMBER: B4D01A

MEDICATION NAME: TPN Neonatal Continuous

ORDER MED ID: 1234567

MAR TIME: 09-08-2011 13:41:00

MAR INFUSION RATE: 7 mL/hr

-----------------------------------------------------

09-08-2011 14:20:03 Notification Time

Medication

Administration

Information

Latest Dose

Adjustment

Medication Order

Information

Error Type

Figure 3. An example of real-time notification sent by the system. The arrows

highlight the MAE event, the latest medication order and adjustment details,

and the corresponding medication administration shown in Figure 2.
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by BASELINE) to simulate the standards of practice used by the

institution.

Experiments
Evaluation setup

After the development phase, the MAE detection system was mi-

grated to a production environment. As part of our preclinical test-

ing process, we performed an observational study without the

clinically integrated intervention (ie, without step 4, intervention, in

Figure 1). We also suspended the system improvement process (step

8) so that no manual customization was made to overfit the evalua-

tion. The objective was to evaluate the system comprehensively be-

fore it was deployed in clinical practice. We compared system

notifications against the gold standard MAE events to assess system

performance. The primary outcome was to demonstrate that using

the automated system would detect dosing-related MAEs more ac-

curately and efficiently compared to the current standards of prac-

tice (BASELINE).

Evaluation metrics

We adopted 4 customary evaluation metrics to assess system perfor-

mance: PPV, sensitivity (SEN), negative predictive value (NPV), and

specificity (SPEC).58,59 The metrics were calculated in aggregate and

for each medication. We also evaluated expected mitigation of expo-

sure to potential harm following a clinical MAE event with the

automated system. In the current standard of care, the time of expo-

sure is calculated between the MAR time of erroneous dose/rate

administration and time of a documented clinician correction. In re-

gard to the automated system, it was calculated between the MAR

time and the time when an MAE notification occurred, assuming a

clinician could respond immediately upon receiving an MAE mes-

sage. An example calculation of time for exposure is presented in

Figure 4. If an MAE was missed by the system (false negative), the

time of exposure was identical to that without the system.

RESULTS

Descriptive statistics of the dataset
Table 1 presents descriptive statistics of the medication use data.

The physicians reviewed 10 104 MARs for 5971 medication orders

during the study period and identified 116 MAEs (1.15% MAE

rate). The overall interrater reliability was 82.9%, indicating good

agreement on the MAE decision. Among the targeted medications/

infusions, epinephrine had the highest MAE rate, followed by TPN,

IVF, morphine, and lipid. Five medications had no associated

MAEs. The frequency of dose adjustments varied between

medications/infusions during patient care. In particular, most adjust-

ments for TPN, lipid, and IVF were delivered via free-text communi-

cation from physician to nurse. We observed a moderate positive

Without MAE notification = Order modification time MAR time = 359 minutes

With MAE notification = Notification time MAR time = 39 minutes

Time of Exposure to Potential Harm

Time Stamp Source

Latest Prescribed 

Rate Determined 

by the System

Administered 

Rate
Algorithm Output

9/7/11 14:55 TPN order 10 ml/hr

9/7/11 18:30 MAR 10 ml/hr Rate = Order Rate

9/8/11 8:07
Physician to nurse 

communication
10-3=7 ml/hr

9/8/11 9:59 MAR 7 ml/hr Rate = Communication Rate

9/8/11 10:00 MAR 7 ml/hr Rate = Communication Rate

9/8/11 12:33 TPN order 12.1 ml/hr

9/8/11 13:41 MAR 7 ml/hr Rate Error

9/8/11 14:20 MAE Notification

9/8/11 19:40 Order modification 11 ml/hr

9/8/11 19:50 MAR 11 ml/hr 11 ml/hr Rate = Order Rate

Figure 4. An example calculation of exposure time with and without automated MAE detection. The calculation is based on the MAE event shown in Figures 2

and 3.

Table 1. Descriptive statistics of the medication use data

Medication/infusion No. of

patients

No. of

encounters

No. of

orders

No. of

MARs

No. of

MAEs

MAE

rate (%)

No. of dose adjustments

per MAR, n (%)

Epinephrine 21 21 47 296 9 3.04 0.68 (13)

TPN 112 114 2543 3904 79 2.02 0.89 (100)

IVF 209 215 772 2140 23 1.07 0.91 (79)

Morphine 51 51 153 870 2 0.23 0.21 (0)

Lipid 112 114 2422 2723 3 0.11 0.02 (96)

Vasopressin 4 4 11 68 0 0.00 0.60 (5)

Milrinone 8 8 8 57 0 0.00 0.00 (0)

Insulin 3 3 5 7 0 0.00 0.43 (0)

Dopamine 2 2 4 9 0 0.00 0.33 (0)

Fentanyl 3 3 3 30 0 0.00 0.30 (0)

Total 213 219 5971 10 104 116 1.15

The number in parentheses represents the percentage of dose adjustments delivered via free-text clinician communication.
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correlation between error rate and number of dose adjustments

(Pearson’s correlation¼0.65).60

Performance of MAE detection
Table 2 shows the system performance in aggregate and for each

medication. During the study period, the BASELINE system identi-

fied 111 medication safety events for NICU patients, 34 from inci-

dent reporting and 77 from the trigger tool. Only 5 events were

related to dosing errors of the targeted medications, 4 for TPN and

1 for morphine. The overall performance of the BASELINE was

100.0%/4.3%/98.9%/100.0% (PPV/SEN/NPV/SPEC).

The automated MAE detection system achieved an overall SEN

of 85.3% and PPV of 78.0%. The SEN was >75% across all medi-

cations/infusions except lipid and morphine, where one lipid and

one morphine MAE each was missed. The improvements of SEN

over the BASELINE were statistically significant (P¼0.009 with

paired t-test). The system achieved 100% PPV for the majority of

the medications/infusions and >75% for those with frequent dose

adjustments (epinephrine, TPN, and IVF). However, there was a

very high negative correlation between PPV and number of free-text

dose adjustments (Pearson’s correlation¼�0.94).

Harm categorization and estimated mitigation
Table 3 presents harm categories of the gold standard MAEs and the

associated causes. Approximately 72% of the MAEs were clinical

errors that reached patients (categories C and D). According to phy-

sician chart review, none resulted in detectable clinical action. How-

ever, 15 MAEs (13%) involved substantial overdose or underdose,

potentially necessitating monitoring for harm (category D). The au-

tomated MAE detection system identified 85% of category A, 84%

of category C, and 100% of category D errors.

Figure 5 illustrates the time of exposure to potential harm with

and without automated MAE detection. The automated system

could have potentially reduced time of exposure by 40% for IVF

and >50% for the other medications/infusions. In aggregate, it

could have potentially reduced the median exposure time from 256

to 35 min (P< .001 with paired t-test).

Classification of system errors
To identify challenges with detecting MAEs, we performed error

analysis for the automated system by comparing all MAEs identified

by the system to the gold standard evaluation. The system made

Table 2. Performance of the BASELINE and the automated medication administration error detection system

System performance (%)

Medication/infusion algorithm BASELINE Automated MAE detection

PPV SEN NPV SPEC PPV SEN NPV SPEC

Epinephrine 100.0 0.0 97.0 100.0 87.5 77.8 99.3 99.7

TPN 100.0 5.1 98.1 100.0 76.8 83.5 99.7 99.5

IVF 100.0 0.0 98.9 100.0 76.7 100.0 100.0 99.7

Morphine 100.0 50.0 99.9 100.0 100.0 50.0 99.9 100.0

Lipid 100.0 0.0 99.9 100.0 100.0 66.7 100.0 100.0

Vasopressin 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Milrinone 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Insulin 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Dopamine 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Fentanyl 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Total 100.0 4.3 98.9 100.0 78.0 85.3 99.8 99.7

Bold numbers indicate the best results.

Table 3. Medication administration error harm categorization comparing physician and automated MAE detection counts

NCC Medication Error Index and causes

Medication/infusion Category A Category C Category D

Documentation issue Overdose Underdose Substantial overdose Substantial underdose

Epinephrine 7 (5) 0 0 2 (2) 0

TPN 19 (16) 22 (18) 32 (27) 6 (6) 0

IVF 7 (7) 3 (3) 6 (6) 3 (3) 4 (4)

Morphine 0 0 2 (1) 0 0

Lipid 0 1 (1) 2 (1) 0 0

Total 33 (28) 26 (22) 42 (35) 11 (11) 4 (4)

NCC Medication Error Index: Category A: circumstances or events that have the capacity to cause error; category C: an error occurred that reached the patient

but did not cause patient harm; category D: an error occurred that reached the patient and required monitoring to confirm that it resulted in no patient harm.

The numbers outside the parentheses represent errors detected through physician review, and the numbers in parentheses represent errors captured by the auto-

mated MAE detection system.

Substantial overdose: the administered dose was 2 times great than the prescribed dose; substantial underdose: the administered dose was 2 times lower than

prescribed dose.
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45 errors (28 false positives and 17 false negatives), which were

grouped into 6 categories, shown in Table 4.

DISCUSSION

Although used in current practice, incident reporting and the trigger

tool captured only 4.3% of MAE events in the gold standard evalua-

tion. These technologies are therefore suboptimal for detecting med-

ication errors related to doses administered, which is consistent with

the findings of others in the literature.33,34 Compared with the

BASELINE, the automated MAE detection system showed good ca-

pacity for identifying MAEs and achieved statistically significant im-

provement in sensitivity. One strength of the system over existing

technologies such as BCMA is its ability to analyze the large number

of dose adjustments made during dynamic medication processes (eg,

the frequent changes in TPN and IVF). The frequent adjustments

represent times when clinicians are more likely to make errors, as

evidenced by the positive correlation between dose adjustment and

MAE rate. The 78.0% PPV achieved by the system suggests that for

every 10 error notifications, 2 were false positive alarms. Compared

to recent dose alert systems that reported <18% PPV in real-time

settings,28,29 the signal-to-noise ratio in our system holds promise

for guarding against alert fatigue. Indeed, the system triggered ap-

proximately one error notification per day for all medications in ag-

gregate during the study period, suggesting a minimal increase in

staff workload for a potentially large safety benefit.

The automated system detected 86.7% of clinical errors that

reached patients (Table 3). Importantly, it captured all rare but sub-

stantial dosing errors, for which early recognition is most critical. By

leveraging real-time messaging technology, the system has the poten-

tial to reduce harm exposure significantly for all medications, and

the most substantial reductions were realized for long-time intrave-

nous medications/infusions such as TPN and lipid.

Error analysis, challenges, and future work
The error analysis uncovered several limitations of the automated

system (Table 4). Most of the false negative errors were due to the

lack of override rules between different data sources (ie, orders,

structured order modifications, and clinician communications; cate-

gory 1 in Table 4). If such override rules were implemented, mean-

ing that a dose administered would be preferentially matched with

the most recent dose adjustment from any source, the system could

trigger a lot of false positive alarms, because an adjustment (eg,

from clinician communication) could be placed in advance for future

administrations. On the other hand, the system only implemented

override rules within the same data source to reduce false positives,

but it missed a number of real errors. In the next development phase,

we will allow overriding between data sources but will also imple-

ment more granular rules to detect dose adjustments for future

administrations. In some events, multiple dose adjustments were

filed in a short time window, which confused the system and caused

false positive alarms (category 2). To improve the robustness of the

system, additional rules will be implemented to reconcile all infor-

mation within a time window around an administration.

Another set of errors (29%) was caused by missing real-time

feeding rates in the collected EHR information (category 3). Physi-

cians usually specified total infusion rates that combined TPN (or

IVF) with enteral feeding rates. This allowed a total fluid rate to be

delivered as feedings were advanced. Because the current system

relies on feeding rates documented by clinicians, it triggered several

false positive alarms when the feeds were titrated over a long period

of time without updated feeding information. To mitigate this docu-

mentation issue, project planning is in progress to integrate real-

time feeding information directly from smart infusion pumps.

Finally, approximately 27% of the errors were caused by the sys-

tem’s NLP component (categories 4–6). Although the component

was equipped with a large set of regular expressions that have been
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Figure 5. Median time window for exposure to harm with and without auto-

mated MAE detection.

Table 4 False positive/negative errors made by the automated MAE detection system

Error sources Causes of errors identified by the chart review Error

FP FN

Logic rules The system matched an administered dose with one data source (eg, order dose or dose adjustment

from clinician communication), while physicians considered it an error because it did not match

dose adjustments from other sources that were filed more recently.

1 14

Multiple dose adjustments were filed in a very short time window, but the system only reconciled

with the one closest to the administration time.

4 1

EHR information The system relied on enteral feeding rates documented by clinicians, which caused errors when the

rates were not updated.

12 1

NLP component The NLP component captured wrong information in free-text communication (eg, considered

“7 mL” a dose adjustment in “Please check a bladder pressure with 7 mL’s of normal saline”).

5 0

The system missed temporal information in free-text communication (eg, “please run new TPN at

7.9 mL/h” implied that the adjustment was for future administrations rather than the current one).

4 0

The NLP component missed dose information in free-text communication (eg, missed “8 mL/h” from

the clinician communication “IVþNG¼ 8 mL/h”).

2 1

FP: false positive; FN: false negative.
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validated in our earlier studies,25,26 it failed to identify correct infor-

mation when the free-text communication contained similar medica-

tions (category 4) or temporal expressions (category 5). The errors

suggest the limitation of our regular expression-based NLP, which

could impact the system’s scalability at other institutions with po-

tentially different documentation workflow and style. However, this

issue could be mitigated via the system’s learner module (step 8 in

Figure 1), which is designed to accommodate new NLP expressions

actively during periodic system improvement.

One limitation of our study is that we assumed error correction

occurred at the time of notification and we did not add additional

time for the health care team to assess and intervene. Consequently,

Figure 5 provides a best-case scenario of the improvement our inter-

vention could achieve in mitigating harm exposure. Because the

study did not involve direct interaction with bedside nurses (step 4

in Figure 1), whether the harm would reach a patient at the time of

notification or whether the health care team being notified would

act in a timely manner remain to be seen. To take the next step, we

will deploy the system in clinical practice, which will allow assess-

ment of a more realistic performance of the proposed intervention.

Second, our study only reported the system performance in a specific

clinical environment at a single institution. To address this limita-

tion, we have initiated evaluations on more diverse patient popula-

tions at our institution (eg, pediatric intensive care unit) and others.

As a final limitation, we allowed a 30-min time delay in our algo-

rithms and notifications to accommodate verbal orders. This delay

limits a clinician’s response time and subsequently the system’s capa-

bility in harm mitigation. However, as demonstrated in Figure 5, the

current time windows of harm exposure are long (between 50 and

1100 min for different medications). As such, significant gain can

still be realized despite this limitation.

CONCLUSION

In this study we designed and evaluated an automated system for

real-time MAE detection. In a gold standard–based prospective eval-

uation in a NICU environment, the system demonstrated good ca-

pacity for identifying MAEs while guarding against alert fatigue. In

particular, the system could significantly reduce patients’ exposure

to potential harm following MAE events. Consequently, we hypoth-

esize that the automated MAE detection system, once fully

deployed, holds great potential to significantly mitigate medication

safety events among neonatal patients.
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