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Abstract: Over 90% of prostate cancers over-express prostate specific membrane antigen (PSMA)
and these tumor cells may be accurately targeted for diagnosis by 68Ga-PSMA-positron emission
tomography/computed tomography (68Ga-PSMA-PET/CT) imaging. This novel molecular imaging
modality appears clinically to have superseded CT, and appears superior to MR imaging, for the
detection of metastatic disease. 68Ga-PSMA PET/CT has the ability to reliably stage prostate cancer
at presentation and can help inform an optimal treatment approach. Novel diagnostic applications of
68Ga-PSMA PET/CT include guiding biopsy to improve sampling accuracy, and guiding surgery
and radiotherapy. In addition to facilitating the management of metastatic castrate resistant prostate
cancer (mCRPC), 68Ga-PSMA can select patients who may benefit from targeted systemic radionuclide
therapy. 68Ga-PSMA is the diagnostic positron-emitting theranostic pair with the beta emitter
Lutetium-177 PSMA (177Lu-PSMA) and alpha-emitter Actinium-225 PSMA (225Ac-PSMA) which
can both be used to treat PSMA-avid metastases of prostate cancer in the molecular tumor-targeted
approach of theranostic nuclear oncology.
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1. Introduction

Gallium-68-prostate specific membrane antigen (68Ga-PSMA) positron emission tomography/
computed tomography (PET/CT) imaging is revolutionizing the management of prostate cancer since
its advent in 2013 [1]. Within 1 year, centers in every state in Australia were performing 68Ga-PSMA
PET/CT and in less than 4 years, this form of targeted molecular imaging is not only being incorporated
into routine clinical management of prostate cancer patients serviced by 40 centers country-wide, but
arguably has become the standard of care throughout Australia in the diagnosis, selective staging and
monitoring of therapeutic response of prostate cancer. Apart from the significantly higher diagnostic
sensitivity that 68Ga-PSMA PET/CT offers, it also constitutes the diagnostic complementing the
177Lutetium-PSMA [2] and more recently the 225Actinium-PSMA [3], theranostic pairs, both currently
being investigated for the therapy of metastatic castrate resistant prostate cancer (mCRPC). Why and
how did this revolutionizing phenomenon occur in Australia and what significance does it have for
oncological clinical practice throughout the world?

Australia has a record of early adoption of novel imaging technology. Within 4 months of
Roentgen’s discovery of X-rays in Germany in November 1895, Walter Drowley Filmer, an amateur
scientist and electrician, used X-rays to localize a foreign object within a patient in Newcastle,
New South Wales [4]. The introduction of CT scans took a little longer with Australia waiting
2 years from the installation of the first whole body CT scanner at Northwick Park Hospital in London
in 1975 [5] to the installation of the first CT scanner in a Sutherland hospital in Sydney [6]. The first
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human magnetic resonance imaging (MRI) scan was performed in 1977 and in 1986 the first MRI was
installed in the private sector, in Sydney [7].

Cancer is a molecular disease and the advent of theranostic nuclear oncology is supplanting the
traditional anatomic and functional imaging approaches typified by CT and MRI. Cancer is a disease of
uncontrolled growth and proliferation whereby cells have escaped the body’s normal growth control
mechanisms and have gained the ability to divide indefinitely. It is a multi-step evolutionary process
that requires the accumulation of multiple genetic changes over time. Cell-signaling pathways, both
external, and internal, are altered, driving the proliferation of neoplastic cells. We are beginning to
understand the underlying genomics and proteomics underpinning neoplastic transformation and are
now altering our treatment strategies to target and mitigate the changes driving tumor growth and
development. Thus the assessment of molecular receptors such as human epidermal growth factor
receptor 2 (HER2) in breast cancer and epidermal growth factor receptor (EGFR) in non-small cell
lung cancer is now routine to guide treatment regimens [8]. The overexpression of PSMA in prostate
cancer, which in cell lines has been demonstrated to increase angiogenesis, and enhance metabolism
of polyglutamated folates and uptake of monoglutamated folates, thus imparting a proliferative
advantage [9], may be similarly exploited.

Despite the move toward molecular diagnostics, our clinical imaging paradigms for diagnosing
cancer and for monitoring cancer therapy have largely remained at the anatomical rather than the
cellular or molecular level. We continue to use Response Evaluation Criteria in Solid Tumors (RECIST)
criteria [10] based on anatomical size for monitoring treatment response even though, as we now
appreciate, measurement of tumor diameter is at best a crude instrument for understanding what is
happening at a cellular level within the tumor.

Prostate cancer is one of the leading causes of morbidity and death in the Western world. It is
the second most common cancer in men worldwide [11]. With the aging population more men are
being diagnosed with prostate cancer, as has been demonstrated in the UK with a 44% increase in
prostate cancer incidence rates since the early 1990’s [12]. In Australia and the UK, more men now
die from prostate cancer each year than women die of breast cancer [13]. Unlike in breast cancer and
other tumor types such as colon cancer, there is no well-defined screening program for prostate cancer
apart from the somewhat controversial use of prostate specific antigen (PSA) as a potential screening
tool [14–16]. Also, unlike the major advances seen with treatments in breast cancer and colon cancer
relatively little progress has been made in patients with prostate cancer which has spread beyond the
confines of the prostate gland at the time of surgery. The failure rate after primary therapy for prostate
cancer is between 20–60% of patients treated [17,18] and the 5-year survival in patients presenting
with high volume metastatic disease is less than 30% [19].

The mainstays of diagnostic investigations for over 30 years have been physical examination
(i.e., the digital rectal examination—DRE), blood investigation in the form of PSA and biopsy, be it
trans-rectal, trans-perineal, blind or image-directed. Imaging investigations, predominantly CT and
more recently MRI, and in particular multiparametric MRI, have contributed additional value to the
diagnostic algorithm [20,21]. Occasionally bone scintigraphy with technetium-99 based compounds
may allude to, or increase the likelihood of, a diagnosis of prostate cancer, particularly in the setting
of an incidental high PSA result in an otherwise unsuspecting patient. Ultimately, the diagnosis is
established by pathological confirmation, most commonly from prostatic biopsy, but occasionally from
biopsy material obtained from extra-prostatic metastatic deposits.

Diagnosis by DRE, PSA and anatomical imaging has a number of flaws. The positive predictive
value of DRE, in settings of low PSA, has been shown to be 5–30% [22]. DRE not only misses a number
of clinically important prostate cancers but also has a high false positive rate [23]. PSA is a non-specific
blood marker and may be raised in non-malignant clinical scenarios such as prostatitis and benign
prostatic hypertrophy. Furthermore, a low PSA does not necessarily exclude the presence of prostatic
malignancy [24]. Anatomical imaging with CT has poor sensitivity and specificity within the prostate
gland itself and has been used predominantly to stage the disease after a diagnosis has been made.
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CT may show the evidence of metastatic spread to pelvic lymph nodes, or the seminal vesicles, and
occasionally demonstrates sclerotic deposits characteristic of the osseous metastases from prostate
adenocarcinoma. Unfortunately, CT can only give a suggestion of potential metastatic disease based on
changes to anatomy, particularly with regard to size, rather than giving information germane to actual
tumor involvement of a tissue. This limitation in early stage disease is well documented. A recent
meta-analysis of 24 studies showed an acceptable specificity of 82% for lymph node diagnosis but an
unacceptable sensitivity of only 42% with CT [25].

Multiparametric MRI is being utilized with increasing frequency worldwide due to its higher
sensitivity, specificity and predictive value in assessing the prostate gland [21,26]. Apart from
detecting changes in prostatic architecture and anatomy, this technique gives insights into potential
malignant transformation via parameters such as diffusion restriction. The use of multiparametric
MRI also appears to be increasing the proportion of clinically relevant diagnosed prostate cancers [27].
This technique is also more accurate than CT in assessing the lymph nodes within the pelvis [28].
However MRI, although a major step forward, is limited by issues such as claustrophobia, cost and the
field of view limited usually to the pelvis alone.

In the 1990’s attempts were made to specifically target tumor characteristics with molecular
imaging techniques based upon single photon emission computed tomography (SPECT) and positron
emission tomography (PET). The objective was to improve the accuracy of detecting prostate cancer
at an earlier time point than with anatomical imaging techniques such as CT. Prostate cancer cells
overexpress a surface marker known as Prostate Specific Membrane Antigen (PSMA). Antibodies were
initially developed, followed by peptides, to target this antigen as the basis for prostate cancer specific
molecular imaging agents.

PSMA is a 750-amino acid transmembrane protein. In benign prostatic tissue, it is found
within the apical epithelium of secretory ducts. While the physiologic role of PSMA in the prostate
remains unclear, its enzymatic role is in the cleavage of α-linked glutamate from N-acetylaspartyl
glutamate and γ-linked glutamates from polyglutamated folates [9]. During malignant transformation
PSMA is translocated to the luminal surface of the ducts [29]. There an overexpression is seen.
This overexpression has not been found in benign disease such as prostatic hyperplasia [30].
Several functions, including roles in cell migration, cellular nutrition, transport, and signal transduction,
have been ascribed to PSMA [31]. Once a ligand binds to the PSMA protein it is internalized into
the cell. However, PSMA is not prostate specific as receptors are found within lacrimal and salivary
glands, the kidneys, small intestine, liver and spleen [32]. It is also expressed in tumor associated
angiogenesis, and has been described in other tumors, such as glioblastoma, thyroid cancer, gastric,
breast, renal and colorectal cancers [32].

Despite its presence in other tissues, PSMA has been found to be an excellent agent for targeted
imaging and therapy. It is overexpressed one-hundred to one thousand-fold in 95% of prostate
cancer cells [32]. The PSMA-ligand complex is internalized after binding via clathrin coated pits and
endosome accumulation [33], which leads to enhanced retention important for both image quality and
therapeutic efficacy. PSMA expression appears to correlate with advanced disease, castrate resistant
disease, Gleason score and PSA level [34,35].

A variety of monoclonal antibodies (mAb) have been developed targeting both the intracellular
and extracellular epitopes of PSMA. The typical issues related to antibodies, such as long circulating
half-life, background activity and poor target tissue uptake have impeded commercial development of
antibody based imaging and therapeutic agents. Despite this, two mAb variants have demonstrated
high affinity, and specific and efficient targeting in vivo. These include the murine mAb 7E11, which
binds an intracellular domain of PSMA, and the humanized mAb hJ591, which binds to an extracellular
domain of PSMA [36]. 111Indium-7E11 has been investigated clinically as a SPECT imaging agent
for recurrent and metastatic prostate cancer [37,38] (111In-7E11, ProstaScint™). The therapeutic
concomitant 90Yttrium radiolabelled conjugate has also been studied [39]. But the high myelotoxic
rate seen with the Y-90 conjugate also limited further development. Improvements in other imaging
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modalities and the overall poor sensitivity has lead to the virtual demise of ProstaScint™ as an imaging
tool in most parts of the world. The J591 mAb has been clinically investigated for PET/CT imaging as
89Zr-hJ591 [40] and for therapy as 177Lu-hJ591 [41] and clinical development of radioimmunotherapy
of mCRPC continues.

Small molecule PSMA-peptide inhibitor (also known as ligand) molecules have been developed
which show high binding and these are the mainstay of current PSMA imaging techniques.
Several PSMA ligands, differing slightly in chemical structure, are commercially available. Three peptide
ligands have become the dominant agents in clinical use; one of these may be labelled only with 68Ga,
while two may be labelled with either 68Ga or 177Lu, allowing, where desired, a theranostic approach
to prostate cancer. A rational approach has underpinned the development of these agents, with PSMA
affinity (and therefore tumor uptake) and rapid blood clearance being key parameters targeted.

Glu–NH–CO–Lys–(Ahx)–[68Ga-HBED-CC] (HBED CC: N,N′-Bis(2-hydroxy-5-(ethylene-beta-
carboxy)benzyl)ethylenediamine N,N′-diacetic acid (known also as 68Ga-PSMA-11) is perhaps
the most widely used agent for prostate cancer PET/CT imaging. The HBED chelator forms a
thermodynamically stable complex with Ga, and 68Ga-PSMA-11 shows fast blood clearance, low
liver uptake and high uptake in PSMA-expressing tissues [40]. The PSMA-617 agent, a 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated molecule suitable for labelling with
68Ga and 177Lu, allows the use of a theranostic pair. Numerous studies have evaluated the role of this
agent in both imaging and therapy; some have found that this, and other DOTA-conjugated agents,
have lower tumor uptake relative to HBED-CC chelated agents [42] although the agent is commonly
used due to its possible therapeutic applications. The lower tumor affinity of DOTA-conjugated
compounds led to the development of 1,4,7,10-tetraazacyclododececane,1-(glutaric acid-4,7,10-triacetic
acid (DOTAGA)-conjugated compounds [43], including PSMA-I&T, which also incorporates a
lipophilic peptidic linker to improve the interaction with PSMA, and therefore enhance tumor uptake.
This agent, like PSMA-617, allows a theranostic approach to prostate cancer diagnosis and treatment.
The clinical efficacy of 68Ga-PSMA-I&T appears equivalent to 68Ga-PSMA-HBED though imaging
characteristics appear slightly better for the latter imaging agent [44].

Technetium [45], iodine [46] and fluorine-18 [47–49] labelled PSMA analogues have also been
developed, and although potentially promising, particularly due to their longer half-life, this paper will
concentrate on the Gallium-68 agents which could be considered now almost part of routine clinical
practice in Australia. F-18 labelled PSMA ligands have recently been reviewed elsewhere [50,51].
Choline, though initially considered a potential diagnostic tool [52], although established and
reimbursed in Europe, has not been well established in Australia and may now possibly be relegated
to the history books with the advent of 68Ga PSMA PET/CT [51,53,54].

A clear advantage of 68Ga-labelled diagnostic radiopharmaceuticals is on-site synthesis, with
gallium-68 produced and eluted from a 68Ge/68Ga generator. This process is analogous to the
99Mo/99mTc generator, the “workhorse” of nuclear medicine for the past 50 years. In-house synthesis
allows, within the limits of 68Ge decay and 68Ga ingrowth, on demand radiopharmaceutical production,
without the need for a medical cyclotron and its supporting infrastructure. These benchtop generators
have a footprint such that they can be easily housed in most imaging facility supporting laboratories
without significant, if any, modification to infrastructure. In addition, ongoing developments by the
various manufacturers mean that they are becoming increasingly user-friendly, with manufacturer
efforts focusing, importantly, on radiation safety.

There are now several GMP-compliant 68Ge/68Ga generators available which yield highly
chemically pure 68Ga on elution, with minimal breakthrough of parent 68Ge and other metal
impurities [55], which may interfere significantly with peptide radiolabelling. These generators differ
principally in the stationary phase to which the parent radioisotope (68Ge) is adsorbed. This phase
determines the concentration, ranging from 0.05 to 1.0 M, of HCl mobile phase that must be used
to separate daughter 68Ga from 68Ge during elution. In turn this mobile phase has an effect on
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the chemistry of radiolabelling. The various approaches to elution and subsequent chemistry of
radiolabelling have been nicely summarized by Mueller et al. [56].

PSMA labelling with 68Ga is most often performed with modular synthesis units; these use sterile,
single use cassettes and GMP compliant reagents and are accommodated in a hot cell, or similarly
shielded workspace. Such units have the advantage of automation and minimal operator radiation
exposure, but have lengthy synthesis times (up to 35 min), during which period, of course, 68Ga
decays, meaning that the efficiency of the generator, in terms of patient doses produced, is decreased.
Furthermore, these units are costly, and the design of some is not failsafe, leading to unsuccessful
syntheses, and consequences in terms of workflow, patient scheduling and inconvenience.

Recently, several one- or two-step GMP compliant kit-based synthesis cold kits have become
available. While these are not compatible with all 68Ge/68Ga generators, they have short reaction times
at room temperature, with minimal risk of operator (or instrument) error. They are similar in principle
to cold kits for 99mTc labelling, are well-accepted by technologists and laboratory staff, do not have
high associated consumables costs, and do not require a hot cell environment. As with 68Ga-labelled
peptides produced by synthesis units, they require quality control by well-established instant thin
layer chromatography methods, but are, overall, superior in terms of generator efficiency (for the
68Ge/68Ga generator with which they are compatible) and simplicity for the user. Several PET/CT
facilities in Sydney and Perth attest to the efficiency, high yield and ease of use of kit technology in
providing 68Ga-PSMA-11 for routine clinical prostate cancer imaging [57]. Other kit formulations of
68Ga-PSMA are in preclinical [58] and early clinical development [59]. This evolution of simple kits
will be instrumental in the ongoing widespread adoption of 68Ga-PSMA PET/CT imaging in staging
and restaging of prostate cancer.

2. 68Ga PSMA PET/CT in Recurrent Disease

The earliest, and most extensive, experience with 68Ga-PSMA PET/CT imaging has been in the
most common clinical scenario of biochemical relapse post-definitive primary therapy [60]. Up until
the advent of 68Ga-PSMA PET/CT the mainstay of imaging included CT +/− bone scintigraphy
and in some cases MRI [20]. The largest retrospective study of 1007 patients, reported detection
rates for 68Ga-PSMA-11 PET/CT of 79.5%, in the setting of biochemical recurrence [61]. A recent
meta-analysis revealed detection rates with 68Ga-PSMA PET/CT of 58% in patients with PSA between
0.2–1.0 ng/mL, 76% for PSA between 1 and 2 ng/mL and 95% for PSA > 2.0 ng/mL [62]. These findings
reflect our own single institutional dataset utilizing 68Ga-PSMA I&T in 150 consecutive patients,
where we have seen PSMA-avid disease in the setting of biochemical relapse in 25% of patients
with PSA < 0.5 ng/mL. 67% of patients with PSA 0.5–1.5 ng/mL and in 92% of patients with
PSA > 1.5 ng/mL [63]. Importantly, 68Ga-PSMA-I&T PET/CT reveals, in many cases, metastatic
disease that is considered occult on CT, as demonstrated in Figure 1. In our dataset, statistically
significant differences were seen between recurrent disease demonstrated by 68Ga-PSMA I&T and
diagnostic contrast CT detection rates [63]. When compared with histological diagnosis, specificities of
up to 100% have been detected in pre-surgical nodal assessment prior to nodal salvage surgery using
68Ga-PSMA [64,65]. A recent prospective Australian multi-center trial has shown that 68Ga-PSMA
PET/CT leads to a change in management intent in 62% of patients with biochemical relapse, based
upon the PSMA PET/CT scan result [66]. A separate study of 131 patients showed 68Ga-PSMA HBED
PET/CT had a clinical impact in 76% of patients imaged [67].

68Ga-PSMA PET/CT has been shown in multiple studies to be superior to choline-based PET/CT
imaging in the setting of biochemical relapse [53,68,69]. Choline PET/CT imaging is now effectively
no longer offered clinically in Australia for this indication. Fluorinated PSMA derivatives appear to
show equivalence in the setting of mCRPC to that of 68Ga-PSMA ligands [50,51,70,71], but are not yet
routinely available, and do not have a true theranostic therapeutic pair.

On the strength of the growing body of evidence in this setting of biochemical relapse post
definitive primary therapy [60–67,72] the use of 68Ga-PSMA PSMA PET/CT been incorporated into
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commonly accepted imaging algorithms in Australia such as the evidence-based Western Australian
Health Diagnostic Imaging Pathways [21]. This clinical acceptance is despite the lack of reimbursement
in Australia for 68Ga-PSMA PET/CT imaging.Diagnostics 2018, 8, x FOR PROOFREADING 6 of 17 
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3. 68Ga-PSMA PET/CT in Primary Disease

68Ga-PSMA PET/CT has recently been investigated as a potential staging modality in primary
prostate cancer. Given that cellular PSMA expression has been shown to correlate with PSA and
Gleason score [73] and 68Ga-PSMA PET/CT has been shown to be superior to standard staging
modalities, such as CT, the use of 68Ga-PSMA PET/CT would seem to be a logical clinical extension in
staging of primary disease. Early data appear to confirm this contention, with several studies [74,75],
including our own [76], showing high rates of detection of CT occult early metastatic disease (Figure 2).
In our recent study there was very good correlation between PSA and Gleason score and the chance
of PSMA-avid metastatic disease. This finding correlates with other studies indicating a role in
intermediate-to-high risk primary prostate cancer, with often occult nodal, and occasionally osseous,
metastases identified. In assessment of potential bone metastases, 68Ga-PSMA PET/CT has been
shown to be superior to bone scintigraphy in several studies [77,78].

In assessment of intra-prostatic tumor 68Ga-PSMA-11 PET/CT has been compared with
multi-parametric MRI, the current standard method for intra-prostatic tumor localization. Interestingly,
just as with 68Ga-PSMA PET/CT, multiparametric MRI, which is accepted as the most sensitive imaging
method for assessing the prostate gland itself [21], is also not reimbursed in Australia. Giesel et al.
revealed concordance between positive findings on each modality [79]. Combined 68Ga-PSMA-11
PET/CT/MRI was analyzed in 53 patients with intermediate- and high-risk prostate cancer [80], and
indicated a superior accuracy of the hybrid approach than with either modality alone. The sensitivities
and specificities were 76% and 97%, for hybrid 68Ga-PSMA-11 PET/CT/MRI; 58% and 82% for
multi-parametric MRI (p = 0.003); and 64% and 94%, for 68Ga-PSMA-11 PET/CT.

The greatest clinical importance of 68Ga-PSMA PET/CT in the staging of primary prostate cancer
is the resulting change in management intent in one-fifth of all patients imaged [66]. The prognostic
implication of treatment replanning in these patients is substantial. It is hoped that this will be
reinforced by the outcome of the ProPSMA study (ACTRN12617000005358), which is currently
recruiting in Australia, and a number of studies in the United States (e.g., NCT02611882 and
NCT03388346).
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Figure 2. Staging 68Ga-PSMA PET/CT. Gleason 4 + 5. PSA 19 ng/mL. Intense 68Ga-PSMA avid
primary disease in prostate with 68Ga-PSMA avid superficial left inguinal node metastasis.

4. New Clinical Applications

4.1. 68Ga-PSMA PET/CT and PET/MRI Guided Biopsy

The high sensitivity of 68Ga-PSMA PET/CT, coupled with the increased expression in higher
grade tumors, guided intra-prostatic biopsy has shown in several small studies that 68Ga-PSMA
avidity correlates well with gross tumor volume as detected by multiparametric MRI and voxel based
determinants directly matched to histopathological specimens [81,82]. This correlation supports the
concept of utilizing these data to potentially reduce sampling error and improve diagnostic accuracy
of targeted biopsy. Current prostatic biopsy is often performed blind, although MRI directed biopsy
based on Prostate Imaging Reporting and Data System (PI-RADS) is being increasingly utilized [83–86].
The addition of 68Ga-PSMA PET/MRI may further improve the utility and accuracy of this technique
and direct biopsy to the most relevant area within the prostate. This is exquisitely demonstrated
in Figure 3.
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4.2. 68Ga-PSMA PET/CT-Directed Surgery and Radiotherapy

The visualization of previously unappreciated PSMA-avid small lymph nodes in the pelvis, in
both primary staging of prostate cancer and in the setting of biochemical recurrence post-definitive
primary therapy, has raised interest in extended or targeted primary lymphadenectomy at time of
primary prostatic surgery or as salvage lymphadenectomy. The results, however, of 68Ga-PSMA
PET/CT targeted nodal surgery, either in the primary or salvage setting, have been relatively poor,
with an increase in morbidity and no significant improvement in biochemical remission [65,87,88].
Although the technique shows high specificity (>90%), the sensitivity is only moderate (60–80%), thus
the nodes visualized resemble the tip of the iceberg. Micro-metastatic, or very small volume metastatic
nodal disease, will be unlikely to be detected even with the resolving capacity of the most modern
PET/CT imaging technology.

Attempts at improving surgical detection by probe techniques, similar to those described with
sentinel node biopsy, have been attempted, to improve lymphadenectomy both in the primary and
salvage settings. Although data are limited, the use of a gamma probe to detect 111In-PSMA injected
pre-operatively appears promising in detecting PSMA-avid occult small volume/micro-metastatic
nodal disease [89–92]. This technique also exemplifies the utility of the I&T PSMA compound, which
allows successful binding of other radio-isotopes to allow this novel radio-guided surgical approach.

The results with 68Ga-PSMA PET/CT directed external beam radiotherapy in the primary and
salvage setting have been encouraging. Several studies have shown a change in radiotherapy planning
from 20–60% of patients imaged with 68Ga-PSMA PET/CT prior to external beam radiotherapy [93–95].
68Ga-PSMA PET/CT also has a role post-definitive radiotherapy in detecting site of biochemical relapse.
In an Australian study of 419 men treated with external beam radiotherapy, 68Ga-PSMA PET/CT
identified all cases of biochemical relapse [96]. This allows potential salvage therapy if the recurrence
is outside the previous radiotherapy field, as was the case for the patient in Figure 4. A negative
68Ga-PSMA PET/CT scan in the setting of biochemical recurrence also appears to have prognostic
implications for salvage radiotherapy. In a study of 164 Australian men, a negative 68Ga-PSMA
PET/CT showed treatment response benefit compared with patients with a positive 68Ga-PSMA
PET/CT scan [97]. Although seemingly counter-intuitive, this again reinforces the likely scenario
that very small volume/micro-metastatic nodal recurrence is more likely to be amenable to pelvic
radiotherapy than disease that is visible on 68Ga-PSMA PET/CT. By this stage the chance of disease
having spread outside the confines of the area of the salvage pelvic radiotherapy field, is likely to
be high. Whether systemic therapy, combined with either chemotherapy or targeted radiopeptide
therapy, together with salvage pelvic radiotherapy can improve response rates in this setting has yet to
be elucidated. The long-term outcome of altering treatment planning based on 68Ga-PSMA PET/CT
has not yet been addressed in any large longitudinal studies.
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4.3. Monitoring Treatment Response

Serial 68Ga-PSMA PET/CT scans have been used to assess the intermediate term outcomes of
radiotherapy in recurrent nodal disease [98,99] (Figure 5). These studies show reductions in SUV
in most lesions treated, indicating response, however, the responses based on 68Ga-PSMA PET/CT
may take several months to be fully realized [99]. Therapeutic response of chemotherapy based on
68Ga-PSMA PET/CT imaging has been poorly studied with only a single paper showing a potential role
of this imaging modality with monitoring the effectiveness of docetaxel chemotherapy [100]. This is,
however, a growing area of interest as 68Ga-PSMA PET/CT imaging starts taking over the traditional
role that CT and bone scintigraphy has had in monitoring chemotherapeutic response in prostate
cancer patients [27]. The poor correlation of RECIST to recognized measures of evaluating molecular
responses to cancer treatments, such as the European Organization for Research and Treatment of
Cancer (EORTC) criteria has been documented [101]. There is a consensus movement within the
nuclear medicine community to harmonize quantitative methods to more accurately compare tumor
response to treatment, such as with standard uptake values, and using established criteria such as those
found in the EORTC [102], and the PERCIST criteria [103]. More specific definitions for interpreting
and evaluating responses 68Ga-PSMA PET/CT have also been described [104]. These molecular based
evaluation systems will likely replace the antiquated RECIST criteria for assessing therapeutic response
in the era of targeted therapies and molecular imaging.
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4.4. 68Ga-PSMA PET/CT Guided Theranostic Pair Therapy with 177Lu-PSMA or 225Ac-PSMA

Given that cancer is a molecular disease characterized by alterations in molecular epitopes,
we can target specific biomarkers, such as PSMA, for imaging. Such imaging agents can be
radiolabelled with diagnostic gamma emitters or positron emitters and their theranostic pair
with beta and alpha radiometals such as lutetium-177 and actinium-225 for therapeutic purposes.
The power of this theranostic paradigm has been well demonstrated in gastroentero-pancreatic
neuroendocrine tumors (GEP-NETs) over many years [105–111] and recently confirmed in the
randomized controlled NETTER-1 trial which showed a five-fold improvement in response with
177Lu-DOTATATE (Lutathera™) compared with conventional treatment [112]. The theranostic
principle allows us “to see what we treat and treat what we see” [113]. The use of molecular imaging
agents to target specific therapy is directly analogous to the use of Herceptin in patients with breast
cancer where treatment is only given on the prior demonstration of the specific HER-2 receptor on
tumor cells [114]. 68Ga-PSMA PET/CT imaging performs the same gate keeping function by in vivo
demonstration of the upregulation of the PSMA receptor in prostate cancer.

68Ga-PSMA PET/CT has been used over the last 4–5 years in its theranostic capacity to guide
therapy using the labelled therapeutic radiopharmaceutical 177Lu-PSMA (Figure 6). This targeted
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radiopeptide therapy has been shown to decrease PSA levels, objectively decrease tumor volumes
and tumor activity and improve progression free survival in 40–70% of mCRPC patients who have
failed previous treatment modalities including chemotherapy [2,115–120]. This has been shown to be
a well-tolerated treatment with minimal acute or medium term side-effects, similar to our experience
with 177Lu-DOTATATE in NET’s. More recently targeted alpha therapy 225Ac-PSMA has also been
shown, in much smaller studies, to also decrease PSA levels, tumor volumes and tumor activity in
patients who have failed 177Lu-PSMA [3,121]. A more pronounced effect on salivary gland function has
been identified following 225Ac-PSMA therapy. Longer term toxicities, if any, are yet to be determined.Diagnostics 2018, 8, x FOR PROOFREADING 10 of 17 
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Figure 6. Before (top) and after (bottom) 3 cycles of 177Lu-PSMA therapy for progressive metastatic
castrate resistant prostate cancer. [X axis—time in months/; Y axis—PSA (µg/L)].

5. Conclusions

68Ga-PSMA PET/CT imaging has become in a relatively short period of time, the gold standard
for restaging recurrent prostate cancer in clinical centers in which this imaging modality is available.
It is likely to become the standard imaging modality in the staging of intermediate-to-high risk primary
prostate cancer. The potential to guide therapy, and to facilitate more accurate prostatic biopsy is
being explored. In the theranostic paradigm, 68Ga-PSMA PET/CT imaging is critical for detecting
PSMA-avid disease which may then respond to targeted 177Lu-PSMA or 225Ac-PSMA therapies.
The 68Ga-PSMA PET/CT is being investigated as a method to monitor the therapeutic response to all
treatment modalities.
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