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Purpose: To determine disease-associated single-gene variants in
conotruncal defects, particularly tetralogy of Fallot (TOF).

Methods: We analyzed for rare loss-of-function and deleterious
variants in FLT4 (VEGFR3) and other genes in the vascular
endothelial growth factor (VEGF) pathway, as part of a genome
sequencing study involving 175 adults with TOF from a single site.

Results: We identified nine (5.1%) probands with novel FLT4
variants: seven loss-of-function, including an 8-kb deletion, and two
predicted damaging. In ten other probands we found likely
disruptive variants in VEGF-related genes: KDR (VEGFR2; two
stopgain and two nonsynonymous variants), VEGFA, FGD5,
BCAR1, IQGAP1, FOXO1, and PRDM1. Detection of VEGF-
related variants (19/175, 10.9%) was associated with an increased
prevalence of absent pulmonary valve (26.3% vs. 3.4%, p < 0.0001)

and right aortic arch (52.6% vs. 29.1%, p= 0.029). Extracardiac
anomalies were rare. In an attempt to replicate findings, we
identified three loss-of-function or damaging variants in FLT4,
KDR, and IQGAP1 in ten independent families with TOF.

Conclusion: Loss-of-function variants in FLT4 and KDR con-
tribute substantially to the genetic basis of TOF. The findings
support dysregulated VEGF signaling as a novel mechanism
contributing to the pathogenesis of TOF.
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INTRODUCTION
Tetralogy of Fallot (TOF) is the most common cyanotic heart
malformation in humans. Approximately 20% of TOF
patients are diagnosed with genetic syndromes.1 Recurrent
22q11.2 deletions, associated with 22q11.2 deletion syndrome,
and other rare copy-number variants (CNVs) contribute
substantially to the genetic burden, and have suggested
disease-related mechanisms, such as disturbances of cell
migration and vasculature development.2 The role of genetic
factors is further supported by an increased risk of congenital

heart defects (CHD) in first-degree relatives of TOF patients.3

However, for the majority of individuals with TOF, the
etiology remains unknown. TOF-associated single-gene
defects are rarely identified. A multisite collaborative study
using exome sequencing recently identified FLT4 loss-of-
function variants in 2.3% of children with TOF.4 Exome
sequencing also revealed another FLT4 frameshift deletion in
a TOF patient.5 As part of a genome sequencing study of the
underlying genetic causes in adults with CHD, predominantly
TOF, from a single site, we investigated rare and predicted
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damaging variants in FLT4 and other vascular endothelial
growth factor (VEGF)-related genes.

MATERIALS AND METHODS
Study participants
The study was approved by the Research Ethics Boards at the
University Health Network (REB 98-E156), Centre for
Addiction and Mental Health (REB 154/2002), and The
Hospital for Sick Children (REB 1000053844). Informed
consent was obtained from all probands and/or their legal
guardians.
Cohort 1: Study participants with microarray data available

were selected from a well-characterized cohort of n= 552
unrelated adults with TOF or related congenital heart defects
and no 22q11.2 microdeletion, recruited from the Toronto
Congenital Cardiac Centre for Adults.2,6 We performed
genome sequencing on n= 231 probands (175 TOF, 49
transposition of the great arteries, 7 other CHD). Of these, by
design, n= 122 (92 TOF) had no rare (<0.1%) genic CNVs
>10 kb, whereas n= 109 (83 TOF) had rare, autosomal CNVs
>10 kb overlapping putative CHD candidate genes (Supple-
mentary information, Tables S3 and S6, contain details on
design and selection for sequencing).2,6

Cohort 2: We additionally performed genome sequencing of
11 individuals with TOF from ten families, eight of which
were sequenced as parent–child trios. The families originated
from a larger cohort of various CHD, recruited through the
Ted Rogers Cardiac Genome Clinic.

Genome sequencing
DNA was sequenced on the Illumina HiSeq X system at The
Centre for Applied Genomics (TCAG) in Toronto, Canada
(Supplementary information, Table S1).7 Population allele
frequencies were derived from 1000 Genomes, ExAC, and
gnomAD (Supplementary information). Probability of loss-
of-function intolerance (pLI) scores were derived from ExAC
(http://exac.broadinstitute.org/); haploinsufficiency (HI) pre-
dictions were derived from DECIPHER (https://decipher.
sanger.ac.uk/).

RESULTS
Rare FLT4 variants associated with tetralogy of Fallot
As an initial stage of this study on adults with congenital
cardiac disease, we investigated genome sequencing data for
disease-associated single-nucleotide variants (SNVs) and
CNVs in the VEGF pathway. We identified nine previously
unreported variants in FLT4, encoding vascular endothelial
growth factor receptor 3 (VEGFR3). All were within the 175
individuals with TOF, thus the prevalence of FLT4 variants in
this adult TOF cohort was 5.1% (9/175). Seven of the variants
had loss-of-function effects (two stopgain, three frameshift
insertion/deletions, one canonical splice site, one multiexon
8-kb deletion; Fig. 1a and Table 1). A missense variant
p.(Leu1173Val) was predicted to be deleterious (CADD= 25,
SIFT= 0, PolyPhen2= 1), and was located in the terminal α-
helix of the protein kinase domain, adjacent to a cluster of

phosphorylated residues. An in-frame deletion p.(Glu741del)
in immunoglobulin homology domain 7 (Ig7), close to the
dimerization site Arg737 (ref. 8), was predicted to impact
affinity for dimer formation. None of the nine individuals
were considered syndromic (Table 1). One proband
(TOF158) had a daughter with TOF, who had inherited the
paternal FLT4 stopgain variant.

Variants in other vascular endothelial growth factor related
genes
Assessing for rare variants in other genes encoding vascular
endothelial growth factors (VEGFA, VEGFB, VEGFC,
VEGFD, PGF) or their receptors (FLT1, KDR, NRP1,
NRP2),9 we identified two stopgain and two nonsynonymous
variants in KDR (encoding VEGR2; Fig. 1a and Table 1), and
a stopgain variant p.(Glu39*) in VEGFA predicted to affect all
isoforms. All variants were identified in individuals with TOF
and absent in public databases. Like FLT4, both KDR and
VEGFA were predicted to be intolerant to loss-of-function
variants (KDR: pLI= 0.98, HI= 2.2%; VEGFA: pLI=NA,
HI= 0.1%). The KDR missense variant p.(Arg833Trp) was
predicted to be deleterious (CADD= 33, SIFT= 0, Poly-
Phen2= 1), potentially through a disruption of the terminal
protein kinase structure. The in-frame deletion p.(Glu407del)
was in Ig4, a domain important for receptor activity and
signaling.10

Under the hypothesis that haploinsufficiency of the VEGF
signaling pathway is associated with TOF, and causative genes
are likely intolerant to loss-of-function variation, we then
systematically analyzed the data set for such variants. We
screened unreported stopgain, frameshift, and canonical
splice-site variants (n= 105) and coding deletions (n= 13),
in 3230 genes with ExAC pLI >0.9 for known functions in the
VEGF signaling pathway (Supplementary information).
Thereby we identified five additional null variants (Fig. 1b
and Table 1): a stopgain variant p.(Arg1225*) in FGD5
(pLI= 0.99), a deletion of exons 2–7 in BCAR1 (pLI= 0.99), a
stopgain variant p.(Tyr103*) in IQGAP1 (pLI= 1), a frame-
shift deletion p.(Val194Thrfs*137) in FOXO1 (pLI= 0.97),
and a stopgain variant p.(Cys608*) in PRDM1 (pLI= 0.98).

Clinical phenotype
Nineteen (nine males, 10 females) of 175 (10.9%) probands
with TOF were identified with VEGF pathway-associated
variants. Individuals with VEGF-related variants and TOF
were enriched for absent pulmonary valve: 5/19 (26.3%) vs. 6/
175 (3.4%) (Fisher’s exact test; FET: p < 0.0001, odds ratio
52.4, 95% confidence interval [5.4–2586.4]) and right aortic
arch: 10/19 (52.6%) vs. 51/175 (29.1%) (FET: p= 0.029, odds
ratio 3.1, 95% confidence interval [1.05–9.3]). None had
lymphedema. We did not identify any other likely causal
variants in these 19 probands. However, eight (42.1%) of the
19, including three with FLT4 variants, were amongst those
with putative CHD-relevant CNVs. Phenotypic information
and additional rare variants are summarized in Tables 1
and S3.
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Additional cohorts
Using genome sequencing data for another cohort (n= 11
individuals with TOF from ten families), we discovered three
other variants in VEGF pathway genes. In a patient with TOF
and congenital lymphedema, we identified a previously
described frameshift variant p.(Pro30Argfs*3) in FLT4
(ref. 4), inherited from her mother with normal echocardio-
graphy results. We identified a predicted damaging KDR
missense variant p.(Ala1030Thr) (CADD= 35, SIFT= 0,
PolyPhen2= 1), located in the protein kinase domain

adjacent to the catalytic residues Asp1028 and Arg1032
(ref. 11) in a mother and daughter, both with TOF and
pulmonary atresia. In a patient with complex congenital
cardiac disease including TOF (Table 1), esophageal atresia
with tracheal fistula, bilateral iris coloboma, and clinodactyly
of all fifth digits, we identified another stopgain variant
p.(Arg766*) in IQGAP1, inherited from his unaffected father.
Review of previously published microarray studies revealed

several FLT4 and other VEGF-related genes impacted by rare
CNVs in individuals with cardiac defects (Table S4). Apart
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Fig. 1 VEGF pathway and genome sequencing in tetralogy of Fallot. (a) Variant positions in vascular endothelial growth factor receptors 3 (VEGFR3;
FLT4) and 2 (VEGFR2; KDR): loss-of-function variants (black; multiexon 8-kb deletion indicated by horizontal arrow), in-frame deletions or deleterious
missense variants (gray). Loss-of-function variants in ref.4 indicated by vertical dashed lines and #; in FLT4 (NM_182925.4), from left to right:
p.(Pro30Argfs*3) [1x inherited, 1x de novo], p.(Arg82*), p.(Thr168Serfs*76), p.(Tyr361*), p.(Pro364Alafs*63), p.(Gln736*), p.(Leu935Profs*72),
p.(Cys949Argfs*53), p.(Gln999*); and in KDR (NM_002253.2): p.(Lys529*), c.1646-2A>T. Nomenclature as recommended by the Human Genome Var-
iation Society (HGVS; http://varnomen.hgvs.org/). (b) Selected components of vascular endothelial growth factor (VEGF) signaling in endothelial cells,
focusing on candidate genes for tetralogy of Fallot and their presumed roles in vascular development. VEGFA induces the formation of VEGFR2 homodimers
(blue/blue), VEGFR2/ VEGFR3 heterodimers (blue/red), and binds to the coreceptor NRP1 (ref. 9). VEGFR1 (encoded by FLT1; not shown) may function as a
negative regulator for VEGFA signaling, but also forms heterodimers with VEGFR2 (ref. 9). P130cas (encoded by BCAR1) mediates VEGFR2/NRP1 signaling
and functions in the assembly of multiprotein complexes, among which are IQGAP1 and FGD5 (ref. 17). FGD5 also inhibits VEGFR2 degradation.18

VEGFR2 suppresses the activity of the transcription factor FOXO1, which is important for the regulation of coordinated vascular sprouting.19 The tran-
scriptional repressor PRDM1 was linked to VEGF signaling in tumor vasculature and in wound healing;20 arterial pole defects in mutant mice indicate PRDM1
also functions in cardiovascular development (Table S5)
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from one frameshift insertion in BCAR1, there were no rare
loss-of-function variants of FLT4, KDR, VEGFA, FGD5,
IQGAP1, FOXO1, or PRDM1 identified in the genome
sequencing data of 7231 individuals with autism from the
MSSNG database (https://www.mss.ng/#).

DISCUSSION
Our results support the hypothesis that dysregulated VEGF
signaling contributes to the genetic etiology of TOF. We
confirmed the importance of deleterious FLT4 variants,4 and
identified null alleles in multiple haploinsufficiency-intolerant
genes in the VEGF pathway.
For FLT4 variants, the results were overall consistent with a

previous study4 that reported similar variants in 9 of 426
nonsyndromic TOF probands and one subject with an
unspecified conotruncal defect, but no association with
neurodevelopmental disorders or other congenital anomalies.
FLT4 variants were more prevalent in our cohort than in the
previous report (5.1% vs. 2.3%) (ref. 4). There could be several
reasons for this beyond sampling variability. Genome
sequencing results in more uniform and complete coverage
of coding regions than exome sequencing, and enables the
detection of structural variants (e.g., small CNVs, such as
those identified in FLT4 and BCAR1; Fig. S1). Another
difference in study design was that the adult cohort studied
here had undergone extensive microarray studies, although
we found no evidence to support enrichment for disease-
associated single-gene defects in the n= 92 (52.6%) TOF
patients with no cardiac disease–related rare CNVs (Table S3).
Our analysis also considered missense variants and in-frame
deletions/insertions, in addition to obvious loss-of-function
alleles examined in the previous exome sequencing study.4

None of the loss-of-function FLT4 variants identified
through genome sequencing in our adult TOF cohort
overlapped with those previously reported.4 However, we
identified one previously reported,4 recurrent frameshift
deletion (Fig. 1a) in an infant with both TOF and
lymphedema. Missense variants in the protein kinase domain
reported to cause Milroy disease (hereditary lymphedema,
OMIM-P 153100) provide evidence for allelic heterogeneity in
FLT4. However, robust genotype–phenotype correlations are
challenged by the abovementioned frameshift deletion and by
a missense substitution in the protein kinase domain in an
individual with isolated TOF (Fig. 1a). The absence of
lymphedema history in our adult cohort, including those with
FLT4 variants, would suggest at most a mild or fully remitted
lymphedema phenotype.
The case-only adult cohort design did not allow for systematic

segregation testing in family members; this will be the focus of
future studies. However, as for most (6/9) families with
incomplete penetrance of FLT4-associated TOF in a previous
study,4 an FLT4 variant in our second TOF cohort was inherited
from an unaffected mother. This evidence for reduced
penetrance and variable expression may be related to other, as
yet unidentified, genetic and perhaps nongenetic factors relevant
to expression of the TOF phenotype, such as oligogenicTa
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inheritance models. Estimating recurrence risks and penetrance
will require larger disease and population-based cohorts.
FLT4 encodes VEGFR3, one of three main cell surface

receptors for vascular endothelial growth factors. We
conjectured that variants in other genes involved in VEGF
signaling could disrupt this network and may also be involved
in the etiopathogenesis of TOF. We identified KDR (encoding
VEGFR2) as a novel TOF-associated gene, with five novel
damaging variants in our data set (Fig. 1a). This was
supported by loss-of-function variants in two individuals
with conotruncal defects reported in supplementary data of a
previous study.4 We also detected a stopgain variant in
VEGFA as a further candidate for TOF pathogenesis. VEGFA
perturbation has previously been linked to cardiac develop-
ment and TOF.12,13 VEGFA and VEGFR2 are the best studied
regulators of vascular development under physiological and
pathological conditions. VEGFA induces the formation of
VEGFR2 homodimers and VEGFR2/VEGFR3 heterodimers,
both of which are involved in the regulation of angiogenic
sprouting.9,14

Our analyses identified null alleles in additional candidate
genes that link the VEGF signaling pathway to TOF: FGD5,
BCAR1, IQGAP1 (2x), FOXO1, and PRDM1 (Fig. 1b and
Supplementary information). Mouse constitutive knockout
models support a role for these VEGF-related genes in
cardiovascular development (Table S5). Mutant Prdm1 mice
show arterial pole defects and pharyngeal arch anomalies that
are more severe on a Tbx1 heterozygous background,
reflecting interaction between these two genes. Complete
deletion of any of Flt4, Kdr, Vegfa, Fgd5, Bcar1, or Foxo1 is
embryonically lethal with impaired cardiac and/or vessel
development.
We found that TOF probands with VEGF-related variants

were enriched for the presence of absent pulmonary valve and
right aortic arch. Impairment of asymmetric VEGF signaling
and blood flow were previously linked to right aortic arch.15

Further studies are required to confirm that haploinsuffi-
ciency of VEGFA, FGD5, BCAR1, IQGAP1, FOXO1, and
PRDM1 are associated with TOF, and to delineate the
associated phenotypes. The functional impacts of the
missense and in-frame variants in FLT4 and KDR require
elucidation. We did not identify deleterious variants in other
promising candidate genes such as NRP1 (encoding Neuro-
pilin-1, a VEGFR2 coreceptor) or FLT1 (encoding VEGFR1)
in this data set, and statistical evaluation of the VEGF
pathway awaits final analyses of all rare variants and gene
pathways for the entire cohort sequenced. However, previous
studies reported loss-of-function variants in FLT1 (n= 2) or
BCAR1 (n= 1) in subjects with conotruncal defects (supple-
mental data4), and a heterozygous deletion encompassing
NRP1 cosegregating with TOF in a single family.16

Our findings, in the context of previously published data,
support the hypothesis of deficient VEGF signaling as a novel
and plausible pathomechanism of TOF and related cardio-
vascular defects. Loss-of-function variants in FLT4 and KDR
contribute substantially to the disease prevalence and warrant

consideration for clinical diagnostic testing, particularly in
patients with TOF and normal extracardiac development.
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