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Anisotropic Friedel oscillations in 
graphene-like materials: The Dirac 
point approximation in wave-
number dependent quantities 
revisited
Tohid Farajollahpour1,2, Shirin Khamouei1, Shabnam Safari Shateri1,3 & Arash Phirouznia   1,2

Friedel oscillations of the graphene-like materials are investigated theoretically for low and 
intermediate Fermi energies. Numerical calculations have been performed within the random phase 
approximation. It was demonstrated that for intra-valley transitions the contribution of the different 
Dirac points in the wave-number dependent quantities is determined by the orientation of the wave-
number in k-space. Therefore, identical contribution of the different Dirac points is not automatically 
guaranteed by the degeneracy of the Hamiltonian at these points. Meanwhile, it was shown that the 
contribution of the inter-valley transitions is always anisotropic even when the Dirac points coincide 
with the Fermi level (EF = 0). This means that the Dirac point approximation based studies could give 
the correct physics only at long wave length limit. The anisotropy of the static dielectric function reveals 
different contribution of the each Dirac point. Additionally, the anisotropic k-space dielectric function 
results in anisotropic Friedel oscillations in graphene-like materials. Increasing the Rashba interaction 
strength slightly modifies the Friedel oscillations in this family of materials. Anisotropy of the dielectric 
function in k-space is the clear manifestation of band anisotropy in the graphene-like systems.

One of the richest and most thriving fields of condensed matter physics is two dimensional structures. Experimental 
observation of graphene in 20041,2 created a great motivation in scientists to study the intriguing properties in other 
two-dimensional (2D) allotropes of IV group elements such as silicene, germanene3 and recently stanene4,5. These 
new 2D materials and other buckled honeycomb lattice structures predicted in theoretical works6–9 and several 
experimental synthesization have also been performed for realization of these materials10–13. These silicon and ger-
manium analogues of graphene with slightly buckled honeycomb geometry have been predicted to have cone-like 
band energy around the Dirac points where electrons follow the massless Dirac equation near the Fermi level6–8. 
The hybridization of π bonds in silicene is not pure and the structure of silicene shows a mixed hybridization. 
The π electrons in silicene are much more active and this leads to a different structure from graphene14. Similar to 
the graphene structure, silicon atoms are arrayed in a hexagonal lattice, with a slight buckling that proved by first 
principle studies where it has been shown that low buckled silicene is thermally stable7. It was also shown that the 
electronic dispersion of the silicene near K points of the first Brillouin zone is linear similar to the behavior of Dirac 
materials6,7,15,16. The spin orbit coupling (SOC) in silicene is stronger than that of graphene which leads to relatively 
large energy gap at the Dirac points. Strong SOC in silicene makes this monolayer a good candidate for topolog-
ical insulators and quantum spin Hall effect8,17–19. The unique optical and electronic properties of graphene-like 
systems such as silicene have made these materials a good candidate for plasmonics applications. Meanwhile, 
plasmonic-based studies have already been performed for graphene, however, the other graphene-like systems are 
known as highly appealing subjects for this field of condensed matter physics20–23.
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It has been generally assumed that the degeneracy of the Dirac points provides the identical contribution of 
these points in the physical quantities. This could be considered as a correct and valid procedure for calculation 
of the scalar quantities. However, in this case the band anisotropy of the honeycomb structures is completely 
disregarded. Identical treatment of the Dirac points automatically ignores anisotropy of the band energy. It seems 
that this anisotropy could be appeared just at high Fermi energies. However, as it was shown in this work, even in 
the case of low Fermi energies where the Fermi level could match the Dirac points the contribution of inter-valley 
transitions are completely anisotropic.

Within the Dirac point approximation when the Dirac points are treated identically, anisotropic effects have 
been completely ignored at low Fermi energies. Some of the anisotropic effects are raised by increasing the Fermi 
energy up to the range of trigonal warping limit. However, even at low Fermi energies, band anisotropy of the 
system manifests itself in the dielectric function ε →q( ), at least at the range of inter-valley transitions where 

∼ |
→

−
→

′|q K KD D  in which 
→
KD and 

→
′KD  are different Dirac points. At the level of low Fermi energies, the band 

energy of the system is reduced to a cone-like dispersion. In this case, the Fermi level is identified with a symmet-
ric circle around the Dirac points known as Fermi circle. For a given transferred momentum →q , different Dirac 
points have not the same contribution in this type of the physical quantities.This could be considered as another 
type of anisotropic behaviors in wave number dependent quantities that originate from non-identical contribu-
tion of the Dirac points. This work attempts to provide some insight into the limitations of equivalent treatment 
of the Dirac points. Results of the current work emphasize the need for a systematic revision of identical treat-
ment of the Dirac points in different types of quantities. Specifically, we analyze the robustness of the band aniso-
tropy in graphene and other honeycomb systems which manifests itself in the dielectric function and Friedel 
oscillations of the system. To achieve this goal, random phase approximation (RPA)24 is employed beyond the 
Dirac point approximation. In this case, at low Fermi energies, the validity of identical contribution of the Dirac 
points in the dielectric function could be examined within this approach.

It is obvious that the contribution of the nonlinear part of the energy dispersion at high Fermi energies could 
be given beyond the Dirac point approximation. The exact contribution of each Dirac point can be taken into 
account when the calculations are performed beyond the Dirac point approximation numerically. It can be 
shown that even at low Fermi energies the band induced anisotropy could be observed in graphene-like materi-
als. Meanwhile the anisotropic effects which have been observed at low Fermi energies have nothing to do with 
the nonlinear part of the energy dispersion which is available beyond the Dirac point approximation. This could 
be understood if we consider that band anisotropy is present both at high and low energy limits.

Friedel oscillation has been reported for graphene using low energy effective Hamiltonian which relies 
on the Dirac-cone approximation25–28. It is important to note that the information about the possible top-
ological phase transitions could be captured by Friedel oscillations. Results of the Friedel oscillations in 
silicene demonstrates that there is a connection between the Friedel oscillations and topological phase tran-
sition29. In this work, calculations have been performed beyond the Dirac point approximation in which all 
possible types of the band anisotropy, including the nonlinear and linear parts of the spectrum, could be 
considered. Meanwhile, the linear dispersion at Dirac points and even existence of Dirac cones in silicene 
is being seriously debated30,31. Having been motivated by the mentioned points, we have performed current 
numerical study to obtain a better understanding about the limitations of the Dirac point approximation in 
graphene-like systems.

material a t tSO tintR l

silicene 3.86 Å 1.6 eV 0.75 meV 0.46 meV 0.23 Å

germanene 4.02 Å 1.3 eV 8.27 meV 7.13 meV 0.33 Å

graphene 2.46 Å 2.8 eV 0.00114 meV — 0

Table 1.  Lattice constant and Energy scales for graphene and other buckled honeycomb materials8,55–57.

Figure 1.  The bare polarization bubble diagram corresponding to Eq. (3).
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Methods
Graphene-like materials are honeycomb lattice structures. Meanwhile, the SOC of buckled honeycomb structures 
contains parallel and perpendicular terms. The Hamiltonian of the buckled honeycomb lattice in tight-binding 
approximation in the presence of SOCs can be written as
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where the operator α
†c c( )ja j  creates (annihilates) an electron with spin α at site j and t is the nearest neighbor hop-

ping amplitude. The values of these parameters for different materials are given in Table 1. The tSO is the spin-orbit 
induced next-nearest neighbor hopping, =

→
×

→
|
→

×
→

|u d d d d/ij i j i j  where 
→
di and 

→
dj  are the two nearest bonds that 

Figure 2.  Dirac points of monolayer graphene and Fermi curves at different Fermi energies. Fermi contours 
have been depicted for EF = 0.6 eV, 1.0 eV 1.5 eV, 2.0 eV, 3.0 eV, 4.0 eV and 5.0 eV. For a given wave vector →q  the 
contribution of the different Dirac points on ε →q( ) strictly depends on the orientation and position of the →q  
with respect to the six Dirac vectors. Trigonal warping of the Fermi curves at different Fermi energies has also 
indicated in this figure. Single Dirac cone approximation could take into account the anisotropic effects comes 
from the trigonal warping of a single Fermi curve, however, since the orientation of the deformed Fermi curves 
are not the same, the anisotropic contribution of the other cones are not identical.

Figure 3.  Intra-valley (a) and inter-valley (b) transitions for a given transferred momentum →q . Dashed circles 
indicate the Fermi circles of the honeycomb system in the absence of the spin-orbit couplings. When the 
momentum conservation rule is satisfied for →q  the initial and final states should be placed on the Fermi circles. 
In this case, the contribution of the given states (black vectors) is identical with the contribution of the sixfold-
rotated states (cyan vectors). One can imagine about another type of possible transitions (c) with constant value 
of the transferred momentum q = q1 between the equi-energy states = = =′ ′ ′′E E E Ek

s
k
s

k
s

k
s

1
 where the 

corresponding pair vectors (→q  →q1), (
→
k  

→
′k 1) and ( ′

→
k  ′′
���
k ) are not related by sixfold symmetry operators e.g. 

→ ≠ →
π q qn
2 /6 1 . It can be shown that form factor of these transitions are different i.e. F(k, k′) ≠ F(k′1, k′′). At zero 

Fermi energy (d) i.e. when kF = 0 intra-valley transitions occur at q = 0 which result in central peak of the 
dielectric function (has been shown in the next section). However inter-valley transitions (light green vectors) 
are still the source of anisotropy of the dielectric function.
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connect the next-nearest neighbors, Where uij = 1 if the next-nearest neighbor hopping is counterclockwise and 
uij = −1 when it is clockwise with respect to the positive z axis32. The 〈〈ij〉〉 run over all the next-nearest neighbor 
hopping sites and σ→ is the Pauli matrix. tintR and textR are the strength of intrinsic and extrinsic Rashba SOCs 

Figure 4.  Band structure of gapless graphene at different Rashba couplings.

Figure 5.  k-space dielectric function of monolayer graphene at textR = 0. Additionally it was assumed that 
the intrinsic spin-orbit coupling has been also negligible. This enables us to compute the net band induced 
anisotropic effects.

Figure 6.  k-space dielectric function of monolayer silicene and germanene.
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respectively and μij = +1(−1) stands for the A (B) site. l is the distance between the two sub-lattice planes in the 
buckled structures. ζ = +1(−1) for the A (B) site and Ez is the applied electric field perpendicular to the plane. 
The strength of the external Rashba coupling can be manipulated by an external gate voltage. The extrinsic Rashba 
coupling arises as a result of the inversion symmetry breaking due to an applied perpendicular electric field or 
interaction with substrate33. 

Dielectric function, screening of charged impurities and also dynamical polarization which gives collective 
excitations could be captured by the polarization function Π(ω, q). Dielectric function and collective density 
oscillations of an electron liquid (plasmons), have been observed in different metals and superconductors34,35. 
At the static limit (ħω = 0) polarization function gives the screening behavior of the coulomb potential. The die-
lectric function is relevant to plasmonic studies. Meanwhile, the transport and phonon spectra are also another 
relevant fields36. The electron-electron interaction has been considered within the random phase approxima-
tion characterizes by the density-density correlation function or polarization function (Fig. 1)24–26,35,37–42. In this 
approach dielectric function is given by

ε ω ω= − Π
→ →
q V q q( , ) 1 ( ) ( , ) (2)

where V(q) is the 2D Coulomb potential, V(q) = 2πe2/q. Within the Dirac point approximation an effective 
Coulomb potential could be employed in which V(q) = 2πα/q and α is the ratio of coulomb to kinetic energy 
and named effective fine structure constant where it has been considered to be α = e2/(ħε0vF) where ε0 is the bare 
dielectric constant and vF is the Fermi velocity22. Unlike to the graphene where the value of fine structure constant 
could be determined experimentally in different substrates43, for other buckled honeycomb structures one can 
set α = 0.822. The polarization function in one loop approximation is calculated directly from the bubble diagram 
that shown in Fig. (1).

Figure 7.  Dielectric function of monolayer graphene at different symmetrically chosen slices for textR = 0 in 
k-space. (a) At qx = 0.0015 Å−1 plane. (b) qy = 0.0015 Å−1 plane. (c) At qx = 0.15 Å−1 and qy = 0.15 Å−1 slices. 
(d) At qx = 0.26 Å−1 and qy = 0.26 Å−1 planes. Anisotropic effects appear far away from the origin where the 
contribution of the inter-valley transitions should be taken into account.
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All of the results of the present study have been obtained from the Eq. 3 beyond the Dirac point approxima-
tion. Where the summation has been performed over the full Brillouin zone (BZ) and all of the eigenstates in 
which =

β − +
fk
s

E E
1

exp ( ) 1k
s

F
 is the Fermi distribution function, and EF is the Fermi energy. The form factor is given 
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 in which λ λ| >= | > ⊗ | >k kk

s
k
s  are the 

eigenstates of the Hamiltonian where λ| >k
s  is the eigenstate in the spin and pseudo-spin subspaces and s = 1.. 4 is 

the band index. δ→
′

→
+→k k q,  represents the momentum conservation for contributing transitions.

On the other hand, within the generally used Dirac point approximation the Eq. 3 is reduced to26
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Figure 8.  Dielectric function of monolayer silicene at different symmetrically chosen slices for textR = 0.01 eV in 
k-space. (a) At qα = 0.01 Å−1 planes (α = x, y). (b) qα = 0.02 Å−1 planes. (c) At qα = 0.2 Å−1 slices. (d) At qα =  
0.3 Å−1 planes. Anisotropic effects appear far away from the origin where the contribution of the inter-valley 
transitions is dominant.
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where g is valley degeneracy factor and the summation runs around a single Dirac point. k ∈ FC indicates that the 
integration should be performed within the Fermi circle (FC) of a given Dirac point. It should be noted that in 
this relation the degeneracy factor, g, implies identical contribution of the different Dirac points in the polariza-
tion function at given →q . As discussed before, the valley degeneracy could result in equivalent contribution of the 
Dirac points in scalar quantities such as total energy. Consequently, calculation of wave-vector dependent quan-
tities should be performed beyond the Dirac point approximation even at low Fermi energies.

When the integration is reduced to the Fermi circle of a single Dirac point the contribution of the inter-valley 
transitions is ignored automatically. Inter-valley transitions could take place when the transferred momentum, q, 
satisfies ∼ |

→
−

→
′|q K KD D . At zero Fermi energy the anisotropy of the dielectric function results from this type of 

transitions.
Within a second-order perturbation approach it has been realized that the exchange interaction of the local-

ized spins S1 and S2 with the conducting electrons results in an effective magnetic interaction between these local-
ized magnetic moments known as RKKY interaction given by44 HRKKY(r) = JS1.S2Π(r) in which J is the exchange 
coupling constant between the conducting electrons and localized magnetic moments and Π(r) is the Fourier 
transform of the k-space polarization function Π(q). Therefore, the characteristic properties of this interaction 
could be captured by the polarization function of the mediating electrons. Accordingly, it is expected that the ani-
sotropy of the polarization function could manifest itself in the anisotropy of the RKKY interaction as it appears 
in the dielectric function.

The polarization function could be separated into the inter-band (if s ≠ s′) and the intra-band (if s = s′)  
contributions41. In addition each of these contributions could be classified as intra-valley and inter-valley transi-
tions correspond to different ranges of transferred momentum, →q , i.e. ≤ < |

→
−

→
′|q k K KF D D  and ∼ |

→
−

→
′|q K KD D  

respectively (where kF is the radius of the Fermi circle and 
→
KD, 

→
′KD  are different Dirac points). The static polariza-

tion function is of particular importance as it determines the screened potential of a charge impurity which has 

Figure 9.  Dielectric function of monolayer germanene at different symmetrically chosen slices for textR = 
0.05 eV in k-space. (a) At qα = 0.01 Å−1 planes (α = x, y). (b) qα = 0.02 Å−1 planes. (c) At qα = 0.2 Å−1 slices. (d) 
At qα = 0.3 Å−1 planes. Anisotropic effects appear far away from the origin where the contribution of the inter-
valley transitions is dominant.
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been assumed to be substituted at a given A-site. The screening particle density δn(r) due to the central impurity 
Ze is,

∫δ
π ε

→ =






→ Π →
→







→.→ .n r Ze V q q
q

i q r d q( )
1

(2 )
( ) (0, )

(0, )
exp( )

(5)2
2

It is really important to note that the above integration goes beyond the limit of intra-valley transitions (the 
radius of Fermi circle) and therefore the contribution of the inter-valley transitions should be included. This 
means that the pattern of Friedel oscillations requires the whole information of the static response function in the 
first Brillouin zone. Accordingly, inter-valley transitions between the different Dirac cones should be included. 
This type of transitions cannot be captured within the single Dirac cone approximation.

Non-identical contribution of different Dirac cones
As depicted in Fig. (2) at low Fermi energies the Fermi curves have been appeared as separated islands around 
each Dirac point. Therefore, the amount of the dielectric and polarization functions in a given →q  wave number 
have significantly been determined by the orientation of the wave number with respect to the Dirac points posi-
tion vectors. This anisotropy of the q-space is reflected in the real space quantities such as Friedel oscillations.

One might conclude that the circular shape of the Fermi contours around the Dirac points implies that all 
of the physical observables of the system should be isotropic as long as the Dirac point approximation is valid. 
However it should be considered that the isotropic form and circular shape of the Fermi contours around each 
of the Dirac points cannot result in isotropic properties at least when the inter-valley transitions are taken into 
account. Accordingly it is important to note that the results of present study cannot be compared with the results 
that have been obtained within the single-valley Dirac point approximation45.

When >E 0F  both of the intra-valley and inter-valley transitions result in anisotropic dependence of the 
dielectric function in q-space; therefore, different directions of a given transferred momentum, q, have not iden-
tical contribution even when the Dirac points are degenerate. Accordingly, the conventional single-valley Dirac 
point approximation could not describe all of the physics of the vector dependent parameters at low wave-length 

Figure 10.  Real space anisotropic Friedel oscillations in monolayer graphene at different Rashba couplings. 
(a–d) As shown in these figures the Rashba interaction has not a significant influence on the Friedel oscillations 
at intermediate Rashba coupling strength.
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limit. This could also result in anisotropic electric and thermal conductivity in graphene-like materials in the 
presence of short range scatterers in which all of the intra-valley and inter-valley scatterings are possible.

At non-zero Fermi energies the intra-valley transitions could take place within the range of q ≤ kF. Meanwhile 
we have assumed that the Fermi energy is still low enough where the linear dispersion relation of the Dirac cone 
is valid at the vicinity of the Fermi energy. It can be shown that both of the intra-valley (q ≤ kF for this case) and 
inter-valley transitions should be considered as anisotropic contributions in the dielectric function. In this case, 
since the inter-band transitions ( λ λ| >→ | ′ > ≠ ′′

′k k s sk
s

k
s ) are absent in the static limit (ħω = 0) all of the con-

tributing terms (both intra-valley and inter-valley transitions) are intra-band. Consequently, the contribution of 
∼q 0 transitions in the static dielectric function decreases by increasing the Fermi energy. It can be shown that 

for EF ≠ 0 we have F k q k( , ) 0ss
→

+ → →
=′  when q = 0 and s ≠ s′.

In the case of intra-valley transitions initial and final states 
→
k  and ′

→
k  belong to the same Dirac valley cone 

while in the inter-valley transitions 
→
k  and ′

→
k  belong to different Dirac cones (Fig. 3(a) and (b)). The momentum 

conservation rule for each transition between the states 
→
k  and ′

→
k  with transferred momentum →q  could be satis-

fied when 
→
k  and ′

→
k  sweep the Fermi circles as shown in Fig. 3. Where intra-valley transitions are characterized 

by 0 ≤ q ≤ kF while inter-valley transitions are identified by ∼ |
→

−
→

′|q K KD D  where kF is the radius of the Fermi 
circle. 

→
KD and 

→
′KD  are different Dirac points as shown in Fig. 3(a) and (b).

In the absence of the SOCs, it can be shown that due to this six-fold band rotational symmetry of the system if 
the transition rule is satisfied for a given transferred momentum (→q ) it will also be satisfied for the sixfold rotated 
wave number →

π qn
2 /6  (Fig. 3(a) and (b)). In which  π2 /6 is the sixfold rotation operator one can write 

  δ δ δ= =→
+→ ′

→ →
+ → ′

→ →
+→ ′

→
π π πk q k k q k k q k, , ,n n n

n n n2 /6 2 /6 2 /6
. Meanwhile, the form factor of is also invariant under the sixfold 

rotations   
→

+ → →
=

→
+ → →

π π π′ ′F k q k F k q k( , ) ( , )s s s s
n n n
2 /6 2 /6 2 /6 . In both cases, i.e. for inter-valley and intra-valley 

transitions band symmetry of the honeycomb structures manifests itself as =→ →
π

E E
k
s

k
s

n
2 /6

. Therefore Eq. 3 reveals 

Figure 11.  Real space anisotropic Friedel oscillations in monolayer silicene ((a) and (b)) and germanene ((c) 
and (d)) at different Rashba couplings. The Rashba interaction has not a significant influence on the Friedel 
oscillations.
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that for a given transferred momentum, →q , satisfying the transition rule 
→

=
→

′ − →k k q . The contribution of the 
→

→
→

′k k  scattering in the dielectric function is identical with the contributions of the 
→

→
→

′π πk kn n
2 /6 2 /6   scat-

terings for both of the inter-valley and intra-valley transitions. In other words, it could be inferred that 
ε ε→ = →

πq q( ) ( )2 /6  ε= →
π q( )2 /6

2  ε=… = →
π q( )2 /6

5 .
The first consequence of the above argument is that the different Fermi curves of each Dirac point have not 

identical contribution on the dielectric function at a given →q  wave number. When →q  satisfies the transition rule 
for a specific Dirac cone (for example in an intra-valley process) this rule will be satisfied for  → = ...π q n( 1 5)n

2 /6  
at other Dirac cones where →q  itself could not satisfy the momentum conservation rule or could not give the same 
contribution at these Dirac cones. Accordingly, the dielectric function should be anisotropic in the q−space with 
sixfold symmetry which was originated from the symmetry of the band structure.

All of the other possible transitions with a given fixed value of the transferred momentum could take place 
between the isoenergy states as shown in Fig. 3(c). In this group of the transitions, transferred momentum is the 
same q = q1 (disregarding its direction) and both of the initial final states are located at Fermi circle 

= = = =′ ′ ′′E E E E Ek
s

k
s

k
s

k
s

F1
. However, corresponding pair vectors are not related by sixfold symmetry operators 

i.e.  → ≠ →
π q qn

2 /6 1, 
→

≠
→

′π k kn
2 /6 1 and  ′

→
≠

→
″π k kn

2 /6 . The transition rule has been satisfied for these transition 
where we have → + → =

→
′k q k  and 

→
′ + → =

→
″k q k1 1 . Meanwhile, the form factor of the transitions are not the 

same F(k, k′) ≠ F(k′1, k′′) which implies that the corresponding contributions are not identical (Fig. 3(c)).
When the Fermi energy located at Dirac points i.e. EF = 0 then, the intra-valley transitions occur just in 

→ =q 0 between different bands (Fig. 3(d)). Unlike the case EF ≠ 0 the intra-valley contributions are identical at 
zero Fermi energy. These contributions result in the central peak of the dielectric function. Since the V(q) = 
2πe2/q diverges at q = 0. However the inter-valley transitions that occur away from the Γ-point (q = 0) result in 
anisotropic contributions as the previous case.

Results and Discussions
Due to the foregoing discussions for wave number-dependent or non-scalar quantities such as dielectric func-
tion, electric and thermal conductivities, we have to concern about the position of the Dirac points relative to 

Figure 12.  Band structure of silicene (a,b) and germanene (c,d) when the system is band insulator in the 
different values of external Rashba term and Fermi energies. lEz = 0.06 eV where >lE tz SO for both silicene and 
germanene.

Figure 13.  Angular dependence of the normalized graphene Friedel oscillations, δn(r, θ)/n0, for textR = 0, EF = 
0.1t and KBT = 0 at (a) r = 4 Å, (b) r = 5 Å, (c) r = 14 Å and (d) r = 25 Å in which we have defined 

δ= → =n n r( 0)0 .
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the direction of the characteristic vector of the physical quantity (such as transfered momentum) even when the 
Dirac point approximation is valid. For sharp scattering potentials, we have to consider the inter-valley tran-
sitions in the calculation of these quantities. Within the Dirac point approximation, the integration over the 
state-resolved contributions is generally performed over a single Fermi circle. This could be a correct approach 
when we assume the identical contribution of each Dirac point and ignore the inter-valley transitions. In this 
case, if we put aside the Dirac point approximation and perform the integration over the whole Brillouin zone the 
correct contribution of each Dirac point could be obtained.

The main limitations for the use of the Dirac point approximation has been discussed within the current work. 
Non-identical contribution of the Dirac points results in anisotropic dielectric function in k-space. Moreover, the 
anisotropy of the dielectric function leads to anisotropic Friedel oscillation in graphene-like materials. Increasing 
the Rashba coupling strength cannot results in significant change in the dielectric function and Friedel oscillation. 
At the level of the Dirac point approximation anisotropy of the band energy and its relevant effects have been 
ignored. Meanwhile, the anisotropy of single Fermi circle reshaping, which arises by increasing the Fermi energy, 
could be obtained within the single Dirac cone approximation.

According to the numerical results, two-dimensional graphene like materials show anisotropic Friedel oscil-
lations beyond the Dirac cone approximation even when the Dirac points located at the Fermi level. At first look, 
it seems that the degeneracy of the K-points results in identical contribution of each Dirac point in all of the 
physical quantities. However, this is not the case for some of the quantities which directly depend on the direction 
of the transfered wave number. In this case each of the Dirac points has not identical contribution for this type 
of the quantities, even when the Dirac point approximation is valid. Meanwhile, since the inter-valley transitions 
could take place between the different Dirac cones, these type of transitions cannot be captured within the single 
Dirac cone approximation.

Anisotropic Friedel oscillations in two-Dimensional structures have been observed before46. However, in the 
present case, the anisotropic effects are direct manifestation of non-identical contribution of Fermi circles of 
different Dirac points in wave number dependent quantities. Some of the physical quantities, such as dielectric 
function, are given by integration over the Brillouin zone as expressed in Eq. 3. This integration goes beyond the 
states in which the Dirac point approximation and the linear dispersion relation no longer valid. However, distri-
bution function at low temperatures and Fermi energies picks up the contribution of those states which have been 
located near to the Dirac points. Nevertheless, isoenergy inter-valley transitions between these states can induce 
the anisotropic effects in multi-valley structures.

The linear dispersion relation (and therefore circle like Fermi curves) around the Dirac points valid even up to 
∼E 1F  eV in graphene and the thermal transitions at room temperature with KBT = 0.025 eV could not induce 

any considerable contribution from those states which have been located far from the Dirac points. So it seems 
that the Dirac point approximation could still describe the physics of the honeycomb lattice and the linear disper-
sion relation around the Dirac points could be employed for the calculation of the dielectric function. This means 
that the non-linear part of the band structure and the anisotropy that might be induced by this part could be 
ignored. This is due to the fact that this part of the band structure (which could be considered the energy states 
with >E eV1k

s ) could not contribute in the isoenergy transitions of the static limit and low Fermi energies. 
Therefore, the anisotropic effects arise primarily from the inter-valley transitions which cannot be described 
within the Dirac point approximation.

Increasing the Fermi energy results in deformation of circle-like Fermi curves (Fermi-circles) of low Fermi 
energies around the Dirac points47. In this case, the isotropic form of the Fermi circles change into the 
trigonal-shaped contours (known as trigonal warping effect) and the isotropic form of the Fermi curve around of 
the Dirac points has totally been removed at high Fermi energies. This type of deformation could results in a new 
source of anisotropy at high Fermi energies which could be captured within the single cone approximation. 
Meanwhile, in the current work, which was limited to the low Fermi energies, trigonal warping induced anisot-
ropy has not been considered. At low Fermi energies for gap-less honeycomb structures such as graphene (Fig. 
(4)) optical transitions around each Dirac points, taking place within a single Fermi circle, have the main contri-
bution in the dielectric function of the honeycomb systems. This manifests itself as a central peak of the dielectric 
function in the middle of the Brillouin zone (Fig. 5). Beyond the Dirac point approximation the central peak 
contains the contribution of all of the Dirac points via the inter-band transitions. When the Fermi energy is close 
to Dirac points (EF = 0) and at the long wave length limit ( | − ′q K KD D) the occupation factor − ′

′f fk
s

k
s  is 

significant only when the k and k′ states are close to the Dirac point of different bands (s ≠ s′). Meanwhile, the 
Kronecker delta, δ ′

→ →
+→k k q, , in the expression of the polarization indicates that the contribution of the Dirac points 

should be selected by Γ-point → =q( 0). Since at this limit the main contribution is due to the intra-valley transi-
tions which take place near the Dirac points in which k ≈ KD and k′ ≈ KD, the mentioned Kronecker delta which 
reflects the momentum conservation, imposes that the contribution of the Dirac points should be manifest them-
selves at the Γ-point → ≈q( 0) of the q-space (Fig. 5). The mentioned argument reveals the fact that the central 
peak of the dielectric function in graphene is exactly sum of all of the intra-valley contributions from each Dirac 
point. Although the contribution of the intra-valley transitions are dominant at ∼q 0, this is not the case for 
inter-valley transitions within the range of |KD − K′D| − 2kF ≤ q < |KD − K′D| + 2kF.

In order to obtain the anisotropic effects which have been induced merely by band energy we switch off both 
types of the spin orbit couplings. At zero Rashba interaction, both intrinsic and extrinsic spin-orbit couplings are 
absent. This enables us to obtain the anisotropic effects which could be induced merely by band energy. Dielectric 
function at zero Rashba coupling and zero Fermi energy (EF = 0) has been obtained as depicted in Fig. 5.

At the first look, it seems that there is no anisotropy in the dielectric function of the honeycomb structures 
(Figs 5 and 6), however, it should be noted that the anisotropy of the dielectric function has been hidden behind 
the large central peak at ∼q 0. The amount of the dielectric anisotropy is very small in comparison with the value 
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of the dielectric function at the Γ-point. Accordingly, this fact prevents the identification of the directional 
dependence of the dielectric function. At low wave numbers i.e. in the range of the intra-valley transitions dielec-
tric function seems to be quite isotropic in q-space (Fig. 7(a) and (b)). However, far from the central region if we 
select different symmetric slices of the dielectric surface, the anisotropy of the dielectric function will be evident 
(Fig. 7(c) and (d)). It can be expected that the anisotropy of the dielectric function would be appeared at 

≥ |
→

−
→

′|q K KD D  (Fig. 7(c) and (d)). Dirac point approximation based studies result in completely isotropic die-
lectric function. At the log wave length limit, the static dielectric function within the Dirac point approximation 
has been suggested to be ε(q) = 1 + 2πe2D0/κq. In which κ is the background dielectric constant and D0 = D(EF) 
is the density of states at Fermi energy40,48.

A similar discussion holds for the case of silicene and germanene where as shown in Figs 8 and 9 dielectric 
function has completely different behavior on symmetrically chosen slices, especially far enough the Γ point. 
These figures evidently show that for different directions in the k-space behavior of the dielectric function are 
quite different. This reveals that the contributing inter-valley transitions in finite wave length limit 
( ∼ | − ′ |q K KD D ) introduce the anisotropic behaviors.

As discussed before, band induced anisotropic effects (see Fig. 2) have been reflected in the Friedel oscillations 
of the graphene-like structures illustrated in Figs 10 and 11. In addition, corresponding band structures near the 
Dirac points and given Fermi levels have been shown in Fig. 12. Increasing the Rashba coupling strength slightly 
modifies the Friedel oscillations honeycomb structures Figs 10 and 11. This could be explained if we consider 
relatively large and dominant intrinsic spin-orbit coupling in silicene. As shown in the Fig. (10), the anisotropic 
Friedel oscillations have been observed even when the Rashba coupling strength is very low or zero. It can be 
inferred from the results of the current work that the Rashba coupling is less effective in the generation of the ani-
sotropy. Therefore one can conclude that the anisotropy of the dielectric function and Friedel oscillations mainly 
depends on the anisotropy of the band structure in k-space.

There are several studies which have been performed in this field, aiming at an accurate quantitative predic-
tion of dynamical dielectric function, screened charged impurity potential and Friedel oscillations in 
graphene-like materials. It was realized that the long-distance decay of Friedel oscillations in graphene depends 
on the symmetry of the scatterer49. A faster, δ ∼n r1/ 3, decay in comparison with conventional 2D electron sys-
tems has been observed in Friedel oscillations of a localized impurity inside the monolayer graphene within the 
Dirac point approximation26,49. However, 1/r decay has been reported for bilayer graphene50 and strong asymme-
try and an inverse square-root decay has also been obtained for an anisotropic graphene-like structure when one 
of the nearest-neighbor hopping amplitudes is different from the others51. Recently, in rhombohedral graphene 
multi-layers, 1/r decay has been observed for impurity induced Friedel oscillations52. Completely isotropic behav-
ior has been reported for the potential of a screened charged impurity, Friedel oscillations25–28 and static dielectric 
function40 within the Dirac point approximation in graphene. Similarly, the Dirac point approximation results in 
isotropic screened potential of a charged impurity in other graphene-like materials such as silicene and 
germanene22.

The Dirac point approximation based studies give the correct physics of the long wave length limit (q ≪ 
kF) at EF = 0 where inter-valley transitions could not contribute in the physical processes. In the absence of the 
spin-orbit couplings by using the massless linear Dirac spectrum it was also shown that short wavelength spatial 
dependence of the local density of states leads to anisotropic Friedel oscillations which has the form53.

δ ρ∼ → .n r c r E k r
r

( ) ( ) ( ) sin(2 )
(6)F

F
0 2

In which →c r( ) is the short wavelength spatial dependence factor and ρ0(E) is the density of states. Anisotropic 
dependence of the Friedel oscillations has been introduced by c(→r ) factor which was found to be invariant under 
threefold rotations53. However, if the impurity could not produce inter-valley scatterings this factor is reduced to 
a constant number53. Therefore, the anisotropic effects have been removed in the absence of inter-valley transi-
tions53. In the current study, we have observed that for finite Fermi energies 0 < EF ≤ 1 eV intra-valley transitions 
are the source of the anisotropic behaviors at linear energy dispersion regime.

In the case of the single valley band structures, where all of the transitions are intra-valley transitions, the wave 
length of the Friedel oscillations is modulated by Fermi wave number. However, it can be easily shown that this is 
not the case for multi-valley band structures. In which the inter-valley transitions could contribute in the dielec-
tric function. As indicated in Eq. (6) it was expected that the wavelength of the Friedel oscillations should be 
modulated by the Fermi wave-vector kF

53. Where the long range behavior of the local density of states has been 
obtained within the single valley approximation and linear dispersion relation53. The possible transfered momen-
tums, q, determine the oscillation wavelength of the induced charged and for single valley band structures in 
two-dimensional systems typical transfered momentum is ∼q k2 F. However it should be noted that for a typical 
graphene Fermi energy e.g. EF = 0.1 eV one can obtain kF = EF/(ħvF) = 0.0152 Å−1. Therefore, the oscillation 
wavelength that corresponds to the intra-valley transitions is about λ π= ∼k2 /2 200intra F  Å. On the other hand, 
in the present case, the inter-valley transitions with momentum transfer of ∼ |

→
−

→
′| ±q K K k2 F correspond to 

the oscillations with wavelength of λ π= |
→

−
→

′| ±K K k2 /( 2 )inter F . The wavelengths of the oscillations in the 
current work for monolayer graphene are in the following range 7Å  λ inter 13 Å that are at the same order of the 
inter-valley transition wavelengths given by λ π= |

→
−

→
′| ±K K k2 /( 2 )inter F . For example the distance between 

two successive Dirac points in graphene is about ∆ = | − ′| ∼ .K K K 1 7 Å−1. Therefore the average momentum 
transfer between these Dirac points is ∼ | − ′| = .

�� ��
q K K /2 0 85 Å−1 then λinter = 2π/ΔK = 7.37 Å. Results indicate 

that the wavelength of the oscillations is less-sensitive to the value of the Fermi energy and Rashba coupling 
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strength. This can be realized if we consider that |
→

−
→

′| K K k2 F for intermediate Fermi energies. Accordingly, 
the difference of the Friedel oscillations in graphene-like materials characterizes just by the Dirac point 
wave-vector (

→
KD) of each structure.

Decay rate of the Friedel oscillations are determined by fitting to the numerical results. We have examined 
several decay rates such as 1/r, 1/r2 and 1/r3. Numerical fitting shows that the 1/r decay rate is much more close to 
the computational data profile. More precisely decay rate is actually 1/r1+η where 0 < η < 0.2.

Another important issue about the Friedel oscillations is that how sharp the mentioned density anisotropy 
really is? In this way, we have obtained the angular dependence of the induced density at different distances as 
depicted in Fig. (13). As indicated in this figure the anisotropy of the Friedel oscillations increases by distance. 
It can be realized that the angular dependence of the induced density is so sharp at intermediate distances. This 
provides more detectable condition for observation of the anisotropy.

Interestingly, it was shown that the Friedel oscillations in graphene have a strong sublattice asymmetry54. 
These calculations have been performed beyond the Dirac point approximation within the Born approximation 
which can be employed for weak scattering potentials and the stationary phase approximation (SPA) has also 
been applied for Brillouin zone integrations54. Anisotropic Friedel oscillations could also be inferred from the 
numerical results of the recent work in the absence of the spin-orbit interactions especially over short distances.

Finally, it is important to note that the anisotropy of the dielectric function suggests that the orientation of the 
bases vectors of the honeycomb lattice could be determined by full optical measurements. Since dynamical die-
lectric function of the graphene-like materials possibly have the same anisotropic nature, the absorption spectra 
of honeycomb structures (the imaginary part of the dielectric function) should be anisotropic. Accordingly, the 
real space orientation of the basis vectors could be explored since the absorption spectra leads to identification of 
the band energy configuration in k-space.
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