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Motor-imagery tasks are a popular inputmethod for controlling brain-computer interfaces (BCIs), partially due to their similarities
to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has
shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-
imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-classmotor-imagery-
based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand,
right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move
backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found
between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid
robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second
BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class
motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.

1. Introduction

The ability to direct a robot using only human thoughts could
provide a powerful mechanism for human-robot interaction
with a wide range of potential applications, from medical
to search-and-rescue to industrial manufacturing. As robots
becomemore integrated into our everyday lives, from robotic
vacuums to self-driving cars, it will also become more
important for humans to be able to reliably communicate
with and control them. Current robots are difficult to control,
often requiring a large degree of autonomy (which is still an
area of active research) or a complex series of commands
entered through button presses or a computer terminal. Using
thoughts to direct a robot’s actions via a brain-computer
interface (BCI) could provide a more intuitive way to issue
instructions to a robot. This could augment current efforts

to develop semiautonomous robots capable of working in
environments unsafe for humans, which was the focus of
a recent DARPA robotics challenge [1]. A brain-controlled
robot could also be a valuable assistive tool for restoring com-
munication or movement in patients with a neuromuscular
injury or disease [2].

The ideal, field-deployable BCI system should be non-
invasive, safe, intuitive, and practical to use. Many previous
studies have focused on electroencephalography (EEG) and,
to a lesser extent, functional magnetic resonance imaging
(fMRI). Using these traditional neuroimaging tools, various
proof-of-concept BCIs have been built to control the navi-
gation of humanoid (i.e., human-like) robots [3–9], wheeled
robots [10–12], flying robots [13, 14], robotic wheelchairs
[15], and assistive exoskeletons [16]. More recently functional
near-infrared spectroscopy (fNIRS) has emerged as a good
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candidate for next generation BCIs, as fNIRS measures the
hemodynamic response similar to fMRI [17, 18] but with
miniaturized sensors that can be used in field settings and
even outdoors [19, 20]. It also provides a balanced trade-off
between temporal and spatial resolution, compared to fMRI
and EEG, that sets it apart and presents unique opportunities
for investigating new approaches, mental tasks, information
content, and signal processing for the development of new
BCIs [21]. Several fNIRS-based BCI systems have already
been investigated for use in robot control [22–27].

Motor imagery, or the act of imagining moving the body
while keeping the muscles still, has been a popular choice for
use in BCI studies [3, 11, 13, 22, 23, 28–37]. It is a naturalistic
task, highly related to actual movements, which could make
it a good choice for a BCI input. While motor-execution
tasks produce activation levels that are easier to detect,
motor imagery is often preferred as issues with possible
proprioceptive feedback can be avoided [38]. EEG BCIs have
shown success with up to four classes, typically right hand,
left hand, feet, and tongue [11, 28, 29]. Other studies have
shown potential for EEG to detect difference between right
and left foot or legmotor imagery [39, 40] and even individual
fingers [41]. Studies have also used fNIRS to detect motor-
imagery tasks, with many focusing on a single hand versus
resting state [30], left hand versus right hand [31, 32], or
three motor-imagery tasks and rest [33]. Shin and Jeong used
fNIRS to detect left and right leg movement tasks in a four-
class BCI [42], and in prior studies we presented preliminary
offline classification results using left and right foot tasks
separately in a four-class motor-imagery-based fNIRS-BCI
[22, 23]. fNIRS has also been used to examine differences in
motor imagery due to force of hand clenching or speed of
tapping [34].

Many factors can affect the quality of recorded motor-
imagery data. Kinesthetic motor imagery (i.e., imagining
the feeling of the movement) has shown higher activation
levels in the motor cortex than visual motor imagery (i.e.,
visualizing the movement) [43, 44]. Additionally, individual
participants have varying levels ofmotor-imagery skill, which
also affects the quality of the BCI [45–47]. In some partici-
pants, the use of feedback duringmotor-imagery training can
increase the brain activation levels produced during motor
imagery [48, 49].

Incorporating robot control into a BCI provides visual
feedback and can increase subject motivation. Improved
motivation and feedback, both visual and auditory, have
demonstrated promise for reducing subject training time and
improving BCI accuracy [50, 51]. The realism of feedback
provided by a BCI may also have an effect on subject per-
formance during motor imagery. For example, Alimardani
et al. found a difference in subject performance in a follow-
up session after receiving feedback from viewing a robotic
gripper versus a lifelike android arm [52].

In this study, we report the first online results of a four-
classmotor-imagery-based fNIRS-BCI used to control both a
virtual and physical robot.The four tasks used were imagined
movement of upper and lower limbs: the left hand, left foot,
right foot, and right hand. To the best of our knowledge,

this is the first online four-classmotor-imagery-based fNIRS-
BCI, as well as the first online fNIRS-BCI to use left and
right foot as separate tasks. We also examine the differences
in oxygenated hemoglobin (HbO) activation between the
virtual and physical-robot BCIs in an offline analysis.

2. Materials and Methods

Participants attended two training sessions, to collect data
to train an online classifier for the BCI, followed by a third
session in which they used the BCI to control the navigation
of both a virtual and actual robot. This section outlines the
methods used for data collection, the design of the BCI, and
offline analysis of the collected data following the completion
of the BCI experiment.

2.1. Participants. Thirteen healthy participants volunteered
to take part in this experiment. Subjects were aged 18–35,
right-handed, English-speaking, and with vision correctable
to 20/20. No subjects reported any physical or neuro-
logical disorders or were on medication. The experiment
was approved by the Drexel University Institutional Review
Board, and participants were informed of the experimental
procedure and provided written consent prior to participat-
ing.

2.2. Data Acquisition. Data were recorded using fNIRS as
described in our previous study [53]. fNIRS is a noninva-
sive, relatively low-cost, portable, and potentially wireless
optical brain imaging technique [19]. Near-infrared light is
used to measure changes in HbO and HbR (deoxygenated
hemoglobin) levels due to the rapid delivery of oxygenated
blood to active cortical areas through neurovascular cou-
pling, known as the hemodynamic response [54].

Participants sat in a desk chair facing a computermonitor.
They were instructed to sit with their feet flat on the floor and
their hands in their lap or on chair arm restswith palms facing
upwards. Twenty-four optodes (measurement locations) over
the primary and supplementarymotor corticeswere recorded
using a Hitachi ETG-4000 optical topography system, as
shown in Figure 1. Each location recorded HbO and HbR
levels at a 10Hz sampling rate.

2.3. Experiment Protocol. Motor-imagery and motor-execu-
tion data were recorded in three one-hour-long sessions on
three separate days. The first two sessions were training days,
used to collect initial data to train a classifier, and the third
day used this classifier in a BCI to navigate both a virtual
and physical robot to the goal location in a series of rooms.
The two robots are described below in Section 2.3.3 Robot
Control. The training session protocol included five tasks:
a “rest” task and tapping of the right hand, left hand, right
foot, and left foot. This protocol expands on a preliminary
study reported previously [22, 23]. Data collection for the two
training days has been described previously [53].

2.3.1. Tasks. Subjects performed all five tasks during the
two training days (rest, along with the (actual or imagined)
tapping of the right hand, left hand, right foot, and left foot).
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Figure 1: fNIRS sensor layout of light sources (red squares) and
detectors (blue squares). Adjacent sources and detectors are 3 cm
apart and create 24 optodes (numbered 1–24).

During the third session, only the four motor-imagery tasks
were used to control the BCI.

Participants were instructed to self-pace their real or
imagined movements at once per second for the duration of
the trial. The hand-tapping task was curling and uncurling
their fingers towards their palm as if squeezing an imagi-
nary ball, while the foot-tapping task involved raising and
lowering the toes while keeping the heel on the floor. While
resting, subjects were instructed to relax their mind and
refrain from moving. During motor-imagery tasks, subjects
were instructed to refrain from moving and use kinesthetic
imagery (i.e., imagine the feelings and sensations of the
movement).

Each trial consisted of 9 seconds of rest, a 2-second
cue indicating the type of upcoming task, and a 15-second
task period. During the two training sessions the cue text
indicated a specific task (e.g., “Left Foot”), while, during
the robot-control task, it read “Free Choice,” indicating the
subject should choose the task corresponding to the desired
action of the robot. Trials during the training days endedwith
a 4-second display indicating that the task period had ended.
During the robot-control session, the task was followed by a
reporting period so that the subject could indicate which task
they had performed. The BCI then predicted which task the
user had performed and sent the corresponding command to
the robot, which took the corresponding action. The timings
for training and robot-control days are shown in Figure 2.

2.3.2. Session Organization. In total, 60 motor-execution and
150 motor-imagery trials were collected during the training

days, and an additional 60 subject-selected motor-imagery
trials were recorded during the robot-control portion. The
two training days were split into two runs, one for motor
execution and one for motor imagery, which were repeated
three times as shown in Figure 3. The protocol alternated
between a run of 10 motor-execution trials and a run of 25
motor-imagery trials in order to reduce subject fatigue and
improve their ability to perform motor imagery [55]. Each
run had an equal number of the five tasks (rest and motor
execution or motor imagery of the right hand, left hand, right
foot, and left foot) in a randomized order.The third day (robot
control) had two runs of 30 motor-imagery tasks, chosen by
the user, which were used to control the BCI. The rest and
motor-execution tasks were collected for offline analysis and
were not used in the online BCI.

2.3.3. Robot Control. The robot-control session had two
parts, beginning with control of a virtual robot using the
MazeSuite program (http://www.mazesuite.com) [56, 57] and
followed by control of the DARwIn-OP (Dynamic Anthropo-
morphic Robot with Intelligence-Open Platform) robot [58].
The objective in both scenarios was to use the BCI to navigate
through a series of three room designs (shown in Figure 4),
in which there was a single goal location (a green cube) and
an obstacle (a red cube). A room was successfully completed
if the user navigated the robot to the green cube, and it
failed if the robot touched the red cube. After completion
or failure of a room, the subject would advance to the next
room.The sequence was designed such that the robot started
closer to the obstacle in each successive room to increase
the difficulty as the subject progressed. The run ended if the
subject completed (or failed) all three rooms or reached the
maximum of 30 trials. Each room could be completed in 5 or
fewer movements, assuming perfect accuracy from the BCI.

To control the BCI, subjects selected a motor-imagery
task corresponding to the desired action of the (virtual or
physical) robot. The task-to-command mappings were as
follows: left foot/walk forward, left hand/turn left 90∘, right
hand/turn right 90∘, and right foot/walk backward. These
four tasks were chosen to emulate a common arrow-pad
setup, so that each action had a corresponding opposite
action that could undo a movement. During BCI control,
the original experiment display showed a reminder of the
mapping between the motor-imagery tasks and the robot
commands. A second monitor to the left of the experiment
display showed a first-person view of the experiment room
for either the virtual or physical robot. The experiment setup
and example display screens are shown in Figure 5.

The virtual robot was controlled using the built-in control
functions of the MazeSuite program [56, 57]. The virtual
environment and movements of the virtual robot were
designed to replicate as closely as possible the physical room
andmovements of theDARwIn-OP, allowing the participants
to acquaint themselves with the new robot-control paradigm
before adding the complexities inherent in using a real robot.
The virtual robot could make perfect 90∘ turns in place, and
the forward and backward distance was adjusted tomatch the
relative distance traveled by the DARwIn-OP robot as closely
as possible. The goal and obstacle were shown as floating

http://www.mazesuite.com
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Figure 2: Trial timing diagrams for training sessions (a) and robot-control session (b).
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green and red cubes, respectively, that would trigger a success
or failure state on contact with the virtual robot.

During the second run, the user controlled the DARwIn-
OP in an enclosed area with a green box and red boxmarking
the location of the goal and obstacle, respectively. Success
or failure was determined by an experimenter watching the
robot during the experiment. The DARwIn-OP is a small
humanoid robot that stands 0.455m tall, has 20 degrees of
freedom, and walks on two legs in a similar manner to
humans [58]. The robot received high-level commands from
the primary experiment computer using TCP/IP over a wire-
less connection. Control of the DARwIn-OP was handled via
a custom-built C++ class that called the robot’s built-in stand-
ing and walking functions using prespecified parameters to
control the movements at a high level. This class was then
wrapped in a Python class for ease of communicationwith the
experiment computer. The head position was lowered from
the standardwalking pose, in order to give a better view of the
goal and obstacle. In order to turn as closely to 90∘ in place as
possible, the robot used a step size of zero for approximately 3
seconds with a step angle of approximately 25∘ or −25∘. When
moving forward or backward, the DARwIn-OP used a step
size of approximately 1 cm for 2 or 3 seconds, respectively.The
exact values were empirically chosen for this particular robot.

2.4. Data Analysis. In addition to the evaluation of the
classifier performance during the online BCI, a secondary
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Figure 5: The DARwIn-OP robot standing at the starting location of the first room (a), the first-person display of the virtual room (b), and
the experiment display showing the mappings between motor-imagery tasks and robot commands (c).

offline analysis of the data was performed to further compare
the two robot BCIs.

2.4.1. Online Processing. Motor-imagery data from the two
training days were used to train a subject-specific classifier
to control the BCI during the third day. The rest and motor-
execution trials were excluded from the training set, as
the BCI only used the four motor-imagery tasks. All data
recordings from the training days for HbO, HbR, and HbT
(total hemoglobin) were filtered using a 20th-order FIR
filter with a 0.1 Hz cutoff. Artifacts and optodes with poor
signal quality were noted and removed by the researcher.
One subject was excluded from the online results due to
insufficient data quality.

In addition to using only the low-pass filter, a variety
of preprocessing methods were evaluated: correlation-based
signal improvement (CBSI), common average referencing
(CAR), task-related component analysis (TRCA), or both
CAR and TRCA. CBSI uses the typically strong negative
correlation between HbO and HbR to reduce head motion
noise [59]. CAR is a simple method, commonly used in EEG,
in which the average value of all optodes at each time point
is used as a common reference (i.e., that value is subtracted
from each optode at that time point). This enhances changes
in small sets of optodes while removing global spatial trends
from the data. TRCA creates signal components from a
weighted sum of the recorded data signals [60]. It attempts
to find components that maximize the covariance between
instances of the same task while minimizing the covariance
between instances of different tasks.

Individual task periods were extracted and baseline cor-
rected, using the first 2 seconds of each task as the baseline
level. Figure 6 shows an example of how preprocessing
methods affect the recordedHbOandHbR for a single optode
during one task period. Comparing Figures 6(a) and 6(b)
shows how filtering removes a significant quantity of high-
frequency noise from the signal. Figure 6(c) shows the change
in the signal after applying CAR and baseline correction.

Four different types of features were calculated individ-
ually on each optode for HbO, HbR, and HbT. The features
used were as follows: mean (average value of the last 10

seconds of the task), median (median of the last 10 seconds
of the task), max (maximum value of the last 10 seconds
of the task), and slope (slope of the line of best fit of the
first 7 seconds of the task). Datasets were created using
features calculated on HbO, HbT, or both HbO and HbR.
Each feature set was reduced to between 4 and 8 features
using recursive feature elimination. If both HbO and HbR
were used, the specified number of features was selected for
each chromophore. This resulted in 300 possible datasets
(5 preprocessing methods, 3 chromophore combinations, 4
types of features, and 5 levels of feature reduction). Features
in each dataset were normalized to have zero mean and unit
variance.

Prior to the BCI session, a linear discriminant analysis
(LDA) classifier was trained on the data from the two training
days, following the flow chart shown in Figure 7 [61]. LDA is
one of the simplest classification methods commonly used in
BCIs [38], requiring no parameter tuning, which reduces the
number of possible choices when selecting a classifier. LDA
was implemented using the Scikit-learn toolkit [62].

To select an online classifier, an LDA classifier was trained
on one training day (60 motor-imagery trials) and tested on
the other for each of the 300 feature sets. This was repeated
with the two days reversed, and the feature set with the
highest average accuracy was selected.The classifier was then
retrained on both training days (120 motor-imagery trials)
using the selected feature set and was used as the online
classifier for both robot-control BCIs.

Results are reported as accuracy (average number of
correct classifications), precision (positive prediction value),
recall (sensitivity or true positive rate), 𝐹-score (the balance
between precision and recall), and the area under the ROC
curve (AUC). The 𝐹-score is calculated as 𝐹-Score = 2 ×
(precision × recall)/(precision + recall).

2.4.2. Offline Processing. For the offline analysis, an automatic
data-quality analysis was used on the BCI session data to
determine which optodes and trials should be removed due
to poor quality. This was done separately for the virtual and
DARwIn-OP runs using a modified version of the method
described by Takizawa et al. for fNIRS data [63]. Any optodes
with a very high (near maximum) digital or analog gain
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Figure 6: Example of data analysis for a representative trial. Data from a single optode showing the original HbO and HbR signals (a), the
data after filtering (b), and after applying CAR and baseline correction (c). Resting periods before and after the task are shown by gray boxes.
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were removed, as these were likely contaminated by noise.
Areas with a standard deviation of 0 in a 2-second window
of the raw light-intensity data were considered to have been
saturated, and artifacts were determined to be areas with a
change of 0.15 [mM] during a 2-second period on HbO and
HbR data after application of the low-pass filter. Optodes that
had at least 20 (of the original 30) artifact- and saturation-
free trials were kept, with the remaining optodes being

removed. Then, any trials with artifacts or saturated areas in
any remaining good optodes were removed. An additional
5 subjects were excluded from the offline analysis due to
insufficient data quality.

CARwas used for all offline analysis, followed by task data
extraction and baseline correction as in the online analysis.
Offline analysis examined the average HbO activation levels
during the first and last second of each trial. Statistical
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Table 1: Effects and interactions of task, optode, and robot type for
the BCI control session.

𝐹-value 𝑝 value
Task 0.011 0.998

Optode 10.982 0.000
Robot type 0.043 0.835

Optode ∗ task 1.393 0.018
Task ∗ robot type 0.008 0.999

Optode ∗ robot type 2.155 0.001
Optode ∗ task ∗ robot type 1.147 0.192

analysis was done using linear mixed models, with multiple
tests being corrected using false discovery rate (FDR).

3. Results

Offline analysis found that optode (24 levels), the interaction
of optode and task (4 levels: right hand, left hand, right foot,
and left foot), and the interaction of optode and robot type
(2 levels: virtual and DARwIn-OP) had a significant effect on
the average HbO activation during the last second of each
trial. A post hoc analysis run individually for each optode
found no significant effect for task, robot type, or task∗ robot
type interaction. 𝐹-values and 𝑝 values for the main effects
are shown in Table 1, with the post hoc analysis available
in Table S1 in Supplementary Material available online at
https://doi.org/10.1155/2017/1463512.

A second post hoc analysis, run individually for each
optode under each task condition separately, showed that
robot type had a significant effect on at least one optode under
each task condition (𝑝 < 0.05, FDR corrected).The effect was
found for two optodes (14 and 16) for the left hand task, one
optode (14) for left foot, 6 optodes (4, 9, 16, 18, 20, and 23) for
right foot, and one optode (6) for right hand.The full table of
𝑝 values is available in Table S2 in Supplementary Material.

A comparison of topographic HbO activation levels
demonstrated differences between individual tasks as well as
the two BCIs. Left hand showed a much more contralateral
activation pattern with the DARwIn-OP robot, with two
optodes on the ipsilateral side showing a significant decrease
in HbO levels between the first and last second of the task,
whereas, during control of the virtual robot, it had a more
ipsilateral activation pattern and no optodes with statistically
significant changes in activation over the course of the task.
Right hand, however, became strongly ipsilateral, with one
ipsilateral optode showing significant activation, during the
DARwIn-OP BCI.

Right foot activation became more contralateral, with
stronger activation being closer to Cz on the contralateral side
and a significant decrease in activation on the ipsilateral side.
Left foot changed from a centralized bilateral activation near
Cz when controlling the virtual robot to a more diffuse and
ipsilateral activation pattern during DARwIn-OP control. It
did, however, show an optode with significant decrease in
HbO activation on the ipsilateral side during DARwIn-OP
control.

Table 2: Online BCI results.

Accuracy Precision Recall 𝐹-Score AUC
S1 30.00 0.31 0.29 0.30 0.50
S2 27.12 0.32 0.29 0.30 0.50
S3 25.00 0.19 0.25 0.22 0.47
S4 21.67 0.30 0.26 0.28 0.50
S5 30.00 0.28 0.28 0.28 0.54
S6 26.67 0.37 0.28 0.32 0.50
S7 35.00 0.36 0.37 0.37 0.59
S8 36.67 0.34 0.32 0.33 0.53
S9 18.33 0.22 0.21 0.21 0.54
S10 20.00 0.20 0.21 0.20 0.45
S11 31.67 0.22 0.25 0.24 0.49
S12 23.33 0.23 0.23 0.23 0.52
Avg. 27.12 0.28 0.27 0.27 0.51

Topographic plots of the average HbO activation during
the last second of each task across all subjects are shown in
Figure 8. Optodes showing a significant difference in average
HbO level between the first and last second of the task are
circled (𝑝 < 0.05, FDR corrected).

While controlling the online four-class BCI, participants
achieved an average accuracy of 27.12% for the entire session.
Five participants (S1, S5, S7, S8, and S11) achieved an accuracy
of 30% or higher, reaching 36.67% accuracy (S8). The online
accuracy, precision, recall,𝐹-Score, andAUC for each subject
are detailed in Table 2.

There was a significant increase in classification accuracy
during DARwIn-OP control as compared to virtual robot
control (one-sided paired t-test, 𝑡(11) = 2.077, 𝑝 = 0.031),
with the average accuracy increasing by 5.21 +/− 2.51% (mean
+/− standard error). All but one subject achieved the same
or better performance in the second run while controlling
the DARwIn-OP compared to during the first run with the
virtual robot, and two subjects achieved 40% accuracy. The
online accuracy, precision, recall, 𝐹-Score, and AUC for each
subject for each BCI individually are detailed in Table 3. One
subject (S5) did not use the left hand task during the virtual
robot run, and therefore no AUC value is listed.

This improvement in performance appears to be reflected
in the number of goals reached by the participants. While
controlling the virtual robot, subject S11 was the only par-
ticipant to run into an obstacle, and they were also the only
participant to reach a goal. During control of the DARwIn-
OP robot, two subjects (S2 and S5) reached two of the goals,
and two others (S1 and S11) reached a single goal. Two subjects
(S1 and S7) collided with an obstacle while navigating the
DARwIn-OP.

Subjects S1 and S6, who showed the largest improvement
between the virtual and DARwIn-OP BCIs, have confusion
matrices that indicate differing methods used to increase
accuracy.The confusionmatrix of online classification results
for subject S1 shows a strong diagonal pattern when con-
trolling the DARwIn-OP, as expected for a well-performing
classifier. Interestingly, left foot and right foot are never

https://doi.org/10.1155/2017/1463512
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Figure 8: Average HbO activation for each task during virtual and DARwIn-OP robot BCIs. Optodes with significant differences in HbO
activation levels between the first and last second of the task are circled (𝑝 < 0.05, FDR corrected).

misclassified as the opposite foot, as might be expected based
on their close proximity in homuncular organization, even
though suchmisclassifications were present when controlling
the virtual robot. Left hand was the most frequently mis-
classified task, commonly confused with left foot and right

hand. Left foot tasks were also misclassified as left hand tasks
but were correctly classified much more often. Subject S6, on
the other hand, achieved higher accuracy when controlling
the DARwIn-OP by primarily classifying the two hand tasks
correctly. This subject’s classifier had a strong tendency to



BioMed Research International 9

Table 3: Online BCI results for virtual and DARwIn-OP BCIs individually.

Virtual robot DARwIn-OP robot
Accuracy Precision Recall 𝐹-Score AUC Accuracy Precision Recall 𝐹-Score AUC

S1 23.33 0.27 0.28 0.27 0.51 36.67 0.36 0.38 0.37 0.53
S2 24.14 0.24 0.23 0.23 0.40 30.00 0.44 0.34 0.38 0.63
S3 23.33 0.16 0.25 0.19 0.55 26.67 0.20 0.23 0.21 0.43
S4 26.67 0.36 0.44 0.40 0.59 16.67 0.17 0.18 0.18 0.47
S5 30.00 0.29 0.23 0.25 N/A 30.00 0.35 0.31 0.33 0.57
S6 13.33 0.21 0.14 0.17 0.42 40.00 0.55 0.52 0.53 0.65
S7 33.33 0.35 0.34 0.35 0.59 36.67 0.46 0.39 0.42 0.57
S8 33.33 0.29 0.30 0.29 0.53 40.00 0.40 0.35 0.38 0.54
S9 16.67 0.16 0.22 0.18 0.52 20.00 0.25 0.20 0.22 0.55
S10 20.00 0.17 0.22 0.20 0.42 20.00 0.20 0.17 0.18 0.48
S11 30.00 0.23 0.25 0.24 0.44 33.33 0.19 0.27 0.22 0.54
S12 20.00 0.21 0.19 0.20 0.50 26.67 0.26 0.30 0.28 0.58
Avg. 24.51 0.24 0.26 0.25 0.50 29.72 0.32 0.30 0.31 0.54

predict right hand tasks during both BCIs, although actual
right hand tasks were often misclassified during virtual robot
control. The two foot tasks in both scenarios were frequently
misclassified, typically as right hand. The confusion matrices
are shown in Figure 9.

4. Discussion

In this work, we present the results of a four-class motor-
imagery-based BCI used to control a virtual and physical
robot. There were significant differences in performance
between controlling the virtual robot and the physical
DARwIn-OP robot with the BCI. Subjects had significantly
higher accuracy when controlling the DARwIn-OP than
when controlling the virtual robot (29.72% versus 24.51%
accuracy, resp.). An offline analysis showed that the interac-
tion between optode and robot type had a significant effect on
HbO levels, indicating that this increase in accuracy may be
at least partially due to changes in HbO activation patterns
during the tasks. Topographic plots of HbO activation also
show changes in activation pattern between the virtual and
DARwIn-OP BCIs, with left hand and right foot tasksmoving
to a more contralateral activation pattern while right hand
and left foot became more ipsilateral in the second BCI.

These changes could be due to the participants adapting
their mental strategy based on the BCI’s classifier while
controlling the virtual robot, thereby modifying their motor-
imagery activation patterns. Confusionmatrices of the online
BCI classifiers show different patterns of correct and incor-
rect classification between subjects and between control of
the virtual and physical robot. Such changes could reflect
differences in the activation patterns generated during motor
imagery, potentially showing differences in mental strategy
developed by the participants while using the BCIs. This is in
line with previous findings that feedback, especially from a
BCI, can improve motor-imagery activation [49, 52, 64, 65].
Participants could also have improved as they became more
familiar with the BCI experiment protocol, increasing their

confidence in using the BCI, which has also been shown to
have an effect on motor-imagery ability [45].

It is also possible that the differences between the virtual
and DARwIn-OP robots themselves contributed to differ-
ences in subject performance.Themore realistic visuals when
using the DARwIn-OP could have had an effect, similar to
the results found by Alimardani et al. [52]. There has been
limited study on this topic, and further experiments would
be needed in order to determine if this was a factor in subject
performance.

There was a large difference between the accuracy of the
highest-accuracy and lowest-accuracy subjects (40% versus
16% accuracy), in line with previous findings that people
have differentmotor-imagery abilities [45–47]. Future studies
could be improved by screening participants for motor-
imagery abilities, as suggested by Marchesotti et al. [46],
and potentially using feedback to improve the performance
of participants identified as low motor-imagery ability [48].
As Bauer et al. found that the use of a robot BCI could
improve motor-imagery performance, longer or additional
BCI sessions could be incorporated in order to improve
motor-imagery performance [49].

In this work, we adapted the preprocessing pipeline for
each subject based on classifier performance on the two
training days. While this allows one more element of cus-
tomization for each subject-specific classifier, it also increases
the likelihood of overfitting on the training data, which
can result in poor performance on the online BCI. Future
work could compare the different preprocessingmethods and
select a single method that performs best across subjects.
Additionally, the ability to distinguish between four motor-
imagery tasks with simple descriptive features and classifiers
may be limited. Future work could employ more intelligent
feature reductionmethods (e.g., Sequential Floating Forward
Selection) or explore more powerful feature design methods
using deep neural networks or autoencoders. Support vector
machines with nonlinear kernels may be able to achieve
higher classification accuracy than LDA classifiers. The more
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Figure 9: Confusion matrices for the two subjects showing the most improvement between the virtual and DARwIn-OP online BCI results.
The confusion matrices indicate different strategies for improving accuracy during DARwIn-OP control: S1 shows a mostly diagonal pattern
while S6 shows a focus on correct classification of the two hand tasks.

powerful classification abilities of neural networks may also
prove beneficial for improving BCI performance, as has been
explored recently with EEG-based BCIs [66–69].

5. Conclusions

This study reports the first online results of a motor-imagery-
based fNIRS-BCI to control robot navigation using four
motor-imagery tasks. Subjects used the BCI to control first
a virtual avatar and then a DARwIn-OP humanoid robot
to navigate to goal locations within a series of three rooms.
Classification accuracy was significantly greater during the
DARwIn-OP BCI, and an offline analysis found a significant
interaction between optode and both task and robot type on
HbO activation levels. These findings corroborate previous
studies that show feedback, including feedback from control-
ling a robot BCI, can improve motor-imagery performance.
It is also possible that the use of a physical, as opposed to
virtual, robot had an effect on the results, but future study
would be needed to assess that. Furthermore, the activation

patterns for left hand and right foot change to show a more
strongly contralateral activation pattern during the second
BCI, becoming more in line with the expected activation
patterns based on the cortical homunculus layout of the
motor cortex.

These findings indicate that future studies could benefit
from additional focus on feedback during training and in
particular additional training periods spent controlling the
actual BCI. There was also a large discrepancy between
the accuracy of the highest-accuracy and lowest-accuracy
subject, indicating that future studies could be improved by
screening potential subjects for BCI abilities and potentially
providing these subjects with extra feedback training.
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Blankertz, “Large-scale assessment of a fully automatic co-
adaptive motor imagery-based brain computer interface,” PLoS
ONE, vol. 11, no. 2, article e0148886, 2016.

[36] B. Koo, H.-G. Lee, Y. Nam et al., “A hybrid NIRS-EEG system
for self-paced brain computer interface with online motor
imagery,” Journal of Neuroscience Methods, vol. 244, no. 1, pp.
26–32, 2015.

[37] W. Yi, L. Zhang, K. Wang et al., “Evaluation and comparison
of effective connectivity during simple and compound limb
motor imagery,” in Proceedings of the 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC ’14), pp. 4892–4895, Chicago, Ill, USA, August
2014.

[38] N. Naseer and K. Hong, “fNIRS-based brain-computer inter-
faces: a review,” Frontiers in Human Neuroscience, vol. 9, pp. 1–
15, 2015.

[39] Y. Hashimoto and J. Ushiba, “EEG-based classification of
imaginary left and right foot movements using beta rebound,”
Clinical Neurophysiology, vol. 124, no. 11, pp. 2153–2160, 2013.

[40] W.-C. Hsu, L.-F. Lin, C.-W. Chou, Y.-T. Hsiao, and Y.-H. Liu,
“EEG classification of imaginary lower LIMb stepping move-
ments based on fuzzy SUPport vector MAChine with Kernel-
INDuced MEMbership FUNction,” International Journal of
Fuzzy Systems, vol. 19, no. 2, pp. 566–579, 2017.

[41] L. Stankevich and K. Sonkin, “Human-robot interaction using
brain-computer interface based on eeg signal decoding,” in

Proceedings of the Interactive Collaborative Robotics (ICR), A.
Ronzhin, G. Rigoll, and R. Meshcheryakov, Eds., vol. 9812, pp.
99–106, Springer International Publishing.

[42] J. Shin and J. Jeong, “Multiclass classification of hemodynamic
responses for performance improvement of functional near-
infrared spectroscopy-based brain-computer interface,” Journal
of Biomedical Optics, vol. 19, no. 6, article 067009, 2014.

[43] M. Lotze and U. Halsband, “Motor imagery,” Journal of Physiol-
ogy Paris, vol. 99, no. 4–6, pp. 386–395, 2006.

[44] A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards,
and J. Doyon, “Brain activity during visual versus kinesthetic
imagery: an fMRI study,” Human Brain Mapping, vol. 30, no. 7,
pp. 2157–2172, 2009.

[45] C. Jeunet, B. N’Kaoua, and F. Lotte, “Advances in user-training
for mental-imagery-based BCI control: pychological and cog-
nitive factors and their neural correlates,” Progress in Brain
Research, vol. 228, pp. 3–35, 2016.

[46] S. Marchesotti, M. Bassolino, A. Serino, H. Bleuler, and O.
Blanke, “Quantifying the role of motor imagery in brain-
machine interfaces,” Scientific Reports, vol. 6, article 24076, 2016.

[47] F. Lebon, W. D. Byblow, C. Collet, A. Guillot, and C. M.
Stinear, “The modulation of motor cortex excitability during
motor imagery depends on imagery quality,” European Journal
of Neuroscience, vol. 35, no. 2, pp. 323–331, 2012.

[48] K. J. Miller, G. Schalk, E. E. Fetz, M. Den Nijs, J. G. Ojemann,
and R. P. N. Rao, “Cortical activity during motor execution,
motor imagery, and imagery-based online feedback,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 107, no. 9, pp. 4430–4435, 2010.

[49] R. Bauer, M. Fels, M. Vukelić, U. Ziemann, and A. Gharabaghi,
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